
RON: One-Way Circular Shortest Routing to 
Achieve Efficient and Bounded-waiting 

Spinlocks

Shiwu Lo, Han-Ting Lin, Yao-Hong Xie, Chao-Ting Lin, Yu-Hsueh Fang, Ching-Shen Lin,
Ching-Chun Huang, Kam Yiu Lam, Yuan-Hao Chang

SOURCE CODE



Lock-unlock problems on NUMA machines

• Shared data among tasks is typically synchronized using critical 

sections to maintain data integrity.

• Accessing shared data involves transferring data between different 

CPU cores.

• The order in which threads lock-unlock the data corresponds to the 

sequence of data transmission across cores.



Background and Motivations
Multi-CPU NUMA

• Target: To minimize data transfer across CPUs

• Group the threads based on the CPUs they belong to and enable 

them to enter the critical section in batches.

• Grouping-based algorithms can lead to a trade-off between fairness 

and performance



Background and Motivations
Single-CPU NUMA (1/2)

1. Target: Minimize the data transfer between cores.
2. There is greater diversity in the interconnect speeds between cores. 
3. For example:

• Die1➔Die0 (577ns)
• Die1➔Die2 (636ns)
• Die1➔Die3 (630ns)
• The cost of crossing boundaries differs.

4. As a result, "how to allow threads 
on different cores to access shared 
data" is more like a path planning 
problem.



Background and Motivations
Single-CPU NUMA (2/2)

1. Some cores have a higher chance of acquiring the lock based on 

their proximity to the core holding the lock or their higher 

execution frequency.

2. To ensure fairness between cores, specific mechanisms are indeed 

required.



RON



The basic idea of RON

• Assume T1 holds the lock. When T1 
leaves the CS, a spinlock algorithm 
should “find a thread to enter CS.”
• “Find a core to enter CS” is the 

“traveling salesman problem” (TSP), in 
terms of minimizing handover costs.
• RON is an efficient spinlock algorithm 

for solving TSP online.



CPU

Die 0

CCX CCX

Die 1

CCX CCX

Die 2

CCX CCX

Die 3

CCX CCX

Step 1:
Finding the shortest circular 
path (offline)



Step 2:
Give each core a TSP_ORDER
(offline)

CPU

Die 0

CCX

0

1

3

2

CCX

4

5

6

7

Die 1

CCX

10

8

11

9

CCX

12

13

15

14

Die 2

CCX

29

31

28

30

CCX

27

26

24

25

Die 3

CCX

23

22

21

20

CCX

18

19

17

16



CPU

Die 0

CCX

0

1

3

2

CCX

4

5

6

7

Die 1

CCX

10

8

11

9

CCX

12

13

15

14

Die 2

CCX

29

31

28

30

CCX

27

26

24

25

Die 3

CCX

23

22

21

20

CCX

18

19

17

16

T1

T2

T3

T4 T5

T6

Step 3:
Arrange the order of entering the 
critical section based on the 
TSP_ORDER (online)
• RON: T1➜T5➜T3➜T6➜T2➜T4
• FIFO: T1➜T2➜T3➜T4➜T5➜T6

Note:
In this example, a thread can 
wait for a maximum of 31 
threads. In terms of fairness, it 
satisfies bounded waiting.

In the worst-case, each core has one thread 
waiting to enter the critical section.



RON + Oversubscription



Oversubscription
a trivial solution

• Each thread has a lock entity and 
inserts it into the wait list of RON.
• Thread T7 requests to enter the 

critical section after thread T6.
• Since thread T7 and thread T5 are 

on the same core, only one of they 
can be "running" at a time.
• When T1 attempts to transfer the 

lock to T5, T5 may be scheduled 
out. That is the running thread on 
the core is T7.

T5
T7



Oversubscription
Threads on the same core share the same lock

• Instead of passing the lock to 
the next thread based on 
TSP_ORDER, we'll now pass the 
lock to the next “core” based on 
TSP_ORDER.
• Threads (T5 and T7) on the same 

core compete for the “lock of 
core 12” using traditional 
spinlock algorithms,
• such as raw spinlock or ticket 

lock.

T5, T7



Oversubscription
Example of “RON + Plock”

1. When “T1” on “core 7” pass the 
lock to “core 12”, the thread 
currently running on “core 12” 
will get the lock.

2. Due to "T7" currently running on 
"Core 12", as a result, “7” will 
successfully acquire the lock.

3. In the next round, “T4” will pass 
the lock to “core 12”.

4. “T5” will successfully acquire the 
lock in this round.

❶

❷

❸

❹

T5, T7

❶

❷
❸

❹



Performance evaluation
Microbenchmarks - Quantitative Analysis
App-level benchmarks



Evaluation platforms

• CPU: AMD 2990WX with SMT
• 32 physical cores
• 64 SMT-cores

• Ubuntu 20.04
• Linux kernel 5.4
• gcc-9.3 with with the optimization parameter -march=znver1 -O3

• Temperature
• Lower temperatures generally result in higher CPU performance.
• To ensure accuracy in performance comparisons, all evaluations should start 

when the CPU temperature drops to 40 degrees.



Algorithms

We compared RON with the following algorithms.
• ShlfLock

• The 'shuffler' can group threads belonging to the same node together and 
execute them consecutively.

• C-BO-MCS
• If a core neighbors to the core that obtains the C-BO-MCS lock, it has a higher 

priority to enter the CS.

• Plock
• test-test-and-set

• Ticket lock
• The thread waits until its ticket number matches the system's grant number.



microbenchmarks

• Higher contention leads to more threads waiting at 
the spinlock() function.

• sizeof(sharedData) represents the size of the 
shared data that the thread accesses within the 

critical section.

• Higher values of nCS correspond to lower access 
frequency of sharedData, indicating lower 
contention.

while(1) {

}

spinlock()

spinunlock()

//critical section
for i = 0.. sizeof(sharedData)

sharedData[i] += 1;

//non-critical section
for_loop_sleep(nCS ± 15%);



Microbenchmarks
Scalability

32 cores with SMT = 64 SMT cores Oversubscription

• RON has a clear advantage in high contention and oversubscription 
scenarios.



Microbenchmarks
Assign apps to adjacent cores

• On multicore processors, it is possible to run multiple 

applications simultaneously. 

• Example: 8 cores for the database, 24 cores for the app 

server.

• When applications run on a subset of adjacent cores, 

RON performs well. 

• RON is a suitable choice when using more than 8 cores for 

an application.

4 cores

8 cores

16 cores

24 cores

32 cores



• More threads waiting, more advantages for 
an algorithm with scheduled spinlocks.
• Under high load, RON has the lowest 

handover time.

Handover time
while(1) {

}

spinlock()

spinunlock()

//critical section
for i = 0.. sizeof(sharedData)

sharedData[i] += 1;

//non-critical section
for_loop_sleep(nCS ± 15%);

Average number 
of threads in LS

Average number of threads in LS



Lock-Unlock Time
• Lock-unlock time depends on algorithm 

complexity and atomic operation cost.
• The cost of atomic operations includes 

• cache coherency protocols and 
• executing data operations.

while(1) {

}

spinlock()

spinunlock()

//critical section
for i = 0.. sizeof(sharedData)

sharedData[i] += 1;

//non-critical section
for_loop_sleep(nCS ± 15%);

Average number 
of threads in LS

Average number of threads in LS



• nCS ↓ ⟾ contention↑
• Coefficient of variation (CV)↓ ⟾ fairness↑
• RON, MCS, Ticket is a near-perfect fairness 

algorithm.
• For certain algorithms, efficiency can be improved by 

sacrificing performance.
• ShflLock
• C-BO-MCS

Fairness
Performance anomaly prevention

while(1) {

}

spinlock()

spinunlock()

//critical section
for i = 0.. sizeof(sharedData)

sharedData[i] += 1;

//non-critical section
for_loop_sleep(nCS ± 15%);

Non-critical section 
size is nCS ± 15%

non-critical section size (nCS ± 15%, nanoseconds)



Fairness
Performance anomaly prevention

• Without well control, threads with the same code could have very 
different lock-unlock performance.

• In high contention scenarios (nCS = 10K), with shlflock and C-BO-MCS, 
die1 and die3 threads have a lower chance of entering the critical 
section, in addition to having a higher coefficient of variation.



• As shown in the left figure, RON demonstrates the best relative 
operating time among the lock algorithms.
• The right figure illustrates the performance comparison of ShflLock, 

qspinlock, and RON in the Linux kernel.
• In Figure (a), with 64 threads continuously issuing system calls, RON 

demonstrates the best performance under such high pressure.
• Figure (b) depicts the execution of LevelDB, where RON and qspinlock exhibit 

nearly the same average performance.

Application-level benchmarks

High 
contention

Low 
contention



Conclusions

1. Due to the different connection speeds of the cores within a 
processor, optimizing spinlock performance can be likened to 
solving the shortest path problem.

2. Some cores are more powerful in acquiring locks. A more effective 
fairness mechanism is needed.

3. Configurability, which allows an application to utilize a group of 
adjacent cores, can be as important as scalability.

4. To prevent the next thread from being scheduled out, the 
oversubscription problem can be seen as “multithread-on-a-core 
share the same lock.”


