
LVMT: An Efficient Authenticated
Storage for Blockchain

Chenxing Li ¹, Sidi Mohamed Beillahi2 , Guang Yang¹, Ming Wu¹, Wei Xu3, Fan Long1,2

1Shanghai Tree-Graph Blockchain Research Institute
2University of Toronto 3Tsinghua University

The 17th USENIX Symposium on Operating Systems Design and Implementation

Evolution of Blockchain Performance
Early blockchain systems are slow

(< 30 transactions / second) Reaches 20,000 transactions/second

Resolved bottlenecks (reaches 20,000 transactions/second)

Consensus for Transaction Order
Resolved by high performance consensus
protocols

Transaction Broadcast
Resolved by bandwidth-efficient
protocol

User transaction Blockchain nodes
receive transactions

Ordered transaction
with consensus

Next bottleneck

Transaction Execution
Impedes by inefficient
authenticated storage.

Ordered transaction
with consensus

Execution Receipt

Architecture of Blockchain Execution Layer

Stack-based
Virtual Machine

A Key-value
storage

Fetch value of key 0x23

If not exists, load the
value from the storage

Push the value to stack

Ordered
Transactions Cache

Opcode Stack
PUSH 0x23 [0x23]

SLOAD [val]

PUSH 0x45

SSTORE

Execute

Architecture of Blockchain Execution Layer

Stack-based
Virtual Machine

A Key-value
storage

Set value of key 0x45

Flush all the changes at
the end of block execution

Ordered
Transactions Cache

Opcode Stack
PUSH 0x23 [0x23]

SLOAD [val]

PUSH 0x45 [val, 0x45]

SSTORE []

Execute

Architecture of Blockchain Execution Layer

Stack-based
Virtual Machine

Ordered
Transactions Cache

Opcode Stack
PUSH 0x23 [0x23]

SLOAD [val]

PUSH 0x45 [val, 0x45]

SSTORE []

Execute

Authenticated
Data Structure

Backend Key-value
Database

1 r, 1 w

4 r, 8 w
(By our experiments)

Authenticated Storage

The Merkle Tree

Vector Commitment protocol: Merkle Tree

Variants for blockchain system: MPT, RainBlocks, LMPTs

• When an input element changes, the

nodes along the path also changes.

• Each node is a key-value pair in backend

→ 𝑂 log 𝑛 read-write amplification

Each node is the hash
value of its children.

The Merkle Tree

Vector Commitment protocol: AMT

Variants for blockchain system: LVMT (our work)

• AMT removes the inner nodes and

achieves 𝑂(1) cost in maintaining

commitment.

Challenges in using AMT

• Fast in complexity ≠ fast in practice
• AMT has slow cryptographic operations.

• AMT is not scalable.
• Max capacity of AMT = Size of public parameters.

• Proof generation is Expensive
• Maintaining data for generating proofs is also
𝑂(log 𝑛)

Challenge 1: Costly cryptographic
operations

𝑎! → 𝑎!′

𝐶 → 𝐶 + 𝑎!′ − 𝑎! ⋅ 𝐺! .
Precomputed Parameter (200 byte)

Elliptic Curve Multiplication (92 𝝁s)

Big Integer Subtraction (<0.01 𝜇s)

Elliptic Curve Addition (0.34 𝜇s)

In AMT, each time a value changes as,

the commitment adjusts accordingly

Challenge 1: Costly cryptographic
operations

𝑎! → 𝑎!′

𝐶 → 𝐶 + 𝑎!′ − 𝑎! ⋅ 𝐺! .
Precomputed Parameter (200 byte)

Elliptic Curve Addition (0.34 𝜇s)

In AMT, each time a value changes as,

the commitment adjusts accordingly

(Assumes 𝑎#$ − 𝑎# = 1)

1

Solution 1: Version-based database

Challenge 2: AMT is not scalable

00

01

10

11

AMT

Input vector of size 2%
(for any 𝑘)

Vector Index254-bit value

Take as input Maintain
Commitment

3. Blockchain has 256-bit key space,
but 𝑘 = 256 is infeasible.

1. Determined at
the setup phase

Stores

2. Precomputed parameters
in size of 2%

Solution 2: Use multiple-level AMT.

Challenge 3: Maintaining proof data incurs
significant costs

Nodes not serving clients only need to
maintain commitment in 𝑂 1 time

Nodes serving clients maintain
auxiliary information for

generating proof in 𝑂 log 𝑛 time.

Solution 3: Proof Sharding
Commitment

Consensus node
Don’t maintain proof and
do not serve users

RPC provider
Maintain proofs with a
cluster to serve users

Commitment
Proof shard

Commitment
Proof shard

Commitment
Proof shard

Commitment
Proof shard

Modular Authenticated Storage Benchmark Tool

Execution Task

Key-Value Database

Authenticated Data
Structure

LVMT#

MPT RAIN LMPTs

#: the fraction of proof shards

LVMT-r Only maintains commitment

Baselines

1m 10m 100m

fresh
real

Random task on various ledger size (in million)

Randomly access new keys only
Real Ethereum trace

Throughput on micro-benchmarks

Read Amplification

Throughput on a Blockchain Node

Time Usage Breakdown

Conclusion

• LVMT utilizes the superior vector commitment protocol AMT,
offering higher optimization potential.

• Through the version-based design, multi-level AMT, and proof
sharding, LVMT addresses challenges effectively.

• LVMT enhances the execution throughput of a blockchain
system by up to 2.7x.

Thank you and see you in Q&A

Email: lylcx2007@gmail.com
Github: https://github.com/ChenxingLi/authenticated-storage-benchmarks

https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e

mailto:lylcx2007@gmail.com?subject=Questions%20about%20LVMT%20paper
https://github.com/ChenxingLi/authenticated-storage-benchmarks
https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e

