The 17th USENIX Symposium on Operating Systems Design and Implementation

LVMT: An Efficient Authenticated Storage for Blockchain

*Chenxing Li*¹, Sidi Mohamed Beillahi², Guang Yang¹, Ming Wu¹, Wei Xu³, Fan Long^{1,2}

¹Shanghai Tree-Graph Blockchain Research Institute ²University of Toronto ³Tsinghua University

Evolution of Blockchain Performance

Early blockchain systems are slow

(< 30 transactions / second)

(reaches 20,000 transactions/second)

Reaches 20,000 transactions/second

Resolved bottlenecks

Transaction Broadcast Resolved by bandwidth-efficient protocol

User transaction

Blockchain nodes receive transactions

Execution Receipt

Consensus for Transaction Order Resolved by high performance consensus protocols

-	(,	
	2	

Ordered transaction with consensus

 Transaction Execution
 Impedes by inefficient authenticated storage.

Ordered transaction with consensus

(,日

Architecture of Blockchain Execution Layer

Architecture of Blockchain Execution Layer

Architecture of Blockchain Execution Layer

Authenticated Storage

The Merkle Tree

Vector Commitment protocol: Merkle Tree

Variants for blockchain system: MPT, RainBlocks, LMPTs

- When an input element changes, the nodes along the path also changes.
- Each node is a key-value pair in backend
 → O(log n) read-write amplification

Input vector

The Merkle Tree

Vector Commitment protocol: AMT

Variants for blockchain system: LVMT (our work)

 AMT removes the inner nodes and achieves O(1) cost in maintaining commitment.

Commitment

Challenges in using AMT

- Fast in complexity ≠ fast in practice
 - AMT has slow cryptographic operations.
- AMT is not scalable.
 - Max capacity of AMT = Size of public parameters.
- Proof generation is Expensive
 - Maintaining data for generating proofs is also O(log n)

Challenge 1: Costly cryptographic operations

In AMT, each time a value changes as, $a_i \rightarrow a_i'$

the commitment adjusts accordingly

$$C \rightarrow C + (a_i' - a_i) \cdot G_i.$$
Precomputed Parameter (200 byte)
Elliptic Curve Multiplication (92 µs)
Big Integer Subtraction (<0.01 µs)
Elliptic Curve Addition (0.34 µs)

Challenge 1: Costly cryptographic operations

In AMT, each time a value changes as, $a_i \rightarrow a_i'$ (Assumes $a_i' - a_i = 1$) the commitment adjusts accordingly $C \rightarrow C + 1 \cdot G_i$. Precomputed Parameter (200 byte) Elliptic Curve Addition (0.34 μ s)

Solution 1: Version-based database

Set (key,val)

Challenge 2: AMT is not scalable

Solution 2: Use multiple-level AMT.

Set (key, val)

1. Incease version numbers in $\boxed{\star}$, \boxed{B} and \boxed{A} by 1 and update commitments.

2. Add the following tuples to the Merkle trees.

Prove key

1. Prove the version numbers with respect to the AMT commitment:

2. Prove the existence of the left three tuples in Merkle trees to demonstrate the commitments at specifined version numbers.

Rt

Challenge 3: Maintaining proof data incurs significant costs

Input vector

Solution 3: Proof Sharding

Modular Authenticated Storage Benchmark Tool

Throughput on micro-benchmarks

Read Amplification

Throughput on a Blockchain Node

Time Usage Breakdown

- LVMT utilizes the superior vector commitment protocol AMT, offering higher optimization potential.
- Through the version-based design, multi-level AMT, and proof sharding, LVMT addresses challenges effectively.
- LVMT enhances the execution throughput of a blockchain system by up to 2.7x.

Thank you and see you in Q&A

Email: <u>lylcx2007@gmail.com</u>

Github:

https://github.com/ChenxingLi/authenticated-storage-benchmarks https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e