
TAILCHECK: A Lightweight Heap Overflow
Detection Mechanism

with Page Protection and Tagged Pointers

Amogha Udupa S. G. Raveendra Soori Michael Ferdman Dongyoon Lee

July 11, 2023
1

Problem: Heap Overflow

• C/C++ lacks memory safety
• 2022 CWE top-most dangerous software weaknesses
• Security implications

- privilege escalation - Information leakage

2

Prior Solution Drawbacks

• Guard Pages (Ex. ElectricFence, PageHeap)
• ✅ No metadata lookup and no explicit checks
• ❌ High memory overhead, slow

• Explicit Bounds Checking (Ex. SoftBound)
• ✅ Uses shadow memory region
• ❌ Costly metadata lookup and bound comparison cost

• Pointer Tagging (Ex. Delta Pointers)
• ✅ Quick metadata look up
• ❌ Requires large tags, shrinks address space

3

TailCheck 1. Page Protection

3. Pointer Tagging

d

Guard
Page

2. Memory Dereference Duplication

0x0000 0xffff

0x000a 0x000a + d

Tagged ptr : 0xd00a

Tail
object

Original
object

4

TailCheck 1. Page Protection

3. Pointer Tagging

d

Guard
Page

2. Memory Dereference Duplication

0x0000 0xffff

0x000a 0x000a + d

Tagged ptr : 0xd00a

Out of bounds access ⇒ Page fault

Tail
object

Original
object

4

Outline

• Introduction
• Design
• Memory allocator
• Compiler code instrumentation

• Evaluation
• Security evaluation
• Server application performance (vs AddressSanitizer)
• SPEC CPU performance (vs Delta Pointers)

TailCheck Design

1. Memory allocator
• Sets up guard pages
• Initializes pointer tags

2. Compiler instrumentation
• Adds duplicate memory access to a tail object (for OOB check)
• Masks/restores pointer tags across un-instrumented library function calls

Reusing guard pages and implicit OOB check ⇒ Low cost 5

TailCheck Memory Allocator

• mimalloc based – equal sized blocks allocated together
• Last block reserved for TailObject, end aligned with Guard Page
• TailObjects are allocated for block-group size lesser than 64kB
• 16-bit TailTag can represent up to 64kB distance

• TailTag is calculated for allocations, tagged pointer is returned

Tail
Object0x0000 0xffffGuard

Page

TailTag d

Allocation

6

TailCheck Memory Allocator
• Small object pages share a single TailObject

• Large Objects are their own TailObjects
• Large Objects have zero-value TailTag
• Object end aligned to protected page

Tail
Object0x0000 0xffff

0x0000 0xffff

Guard
Page

Guard
Page

Guard
Page

d1
d2

7

TailCheck Code Instrumentation

ADDR_BITS = 48

MASK = ((1<< ADDR_BITS)-1)

p = tagp & MASK
d = tagp >> ADDR_BITS

Transformed to…

d

p p+d

int* tagp = malloc(...)

load tagp

load p+d // TailCheck
load p

8

TailCheck Code Instrumentation

• LLVM Link-Time-Optimization passes
• Dereference Duplication
• CallSite Masking – remove tag at instrumentation boundary
• Optimizations
• SafeAlloc – statically known safe access (Delta Pointers)
• Hoist TailPointer calculation out of loops
• Gather Pointer Arithmetic that use the same base pointer

9

Outline

• Introduction
• Design
• Memory allocator
• Compiler code instrumentation

• Evaluation
• Security evaluation
• Server application performance (vs AddressSanitizer)
• SPEC CPU performance (vs Delta Pointers)

TailCheck Evaluation

• Server Applications
• apache, nginx – 256 request per second, varying file sizes
• memcached, redis – 50% get/set ratio, varying value sizes

• SPEC CPU 2006, v1.0
• C and C++ applications

• SPEC CPU 2017, v1.0.5
• Speed set, C and C++
• Single threaded

10

Security Evaluation

• Overflows are caught as segmentation faults
• SPEC CPU 2006 has no reported heap buffer overflows
• SPEC CPU 2017 gcc’s illegal read in tree-ssa-sccvn.c:3365
• Detected read of 4 bytes out of the allocated area
• SPEC CPU 2017 v1.0.5 benchmark

11

Server Application Performance

• Less than 4% overhead on tail (99th percentile) latencies
• 3x better compared to AddressSanitizer

1.0

1.1

1.2

1.3

1.4

1.5

32
KB

12
8K

B

51
2K

B

2M
B

(M
ea

n)

32
KB

12
8K

B

51
2K

B

2M
B

(M
ea

n)

32
KB

12
8K

B

51
2K

B

2M
B

(M
ea

n)

32
B

12
8B

51
2B 2K

B

(M
ea

n)

32
B

12
8B

51
2B 2K

B

(M
ea

n)

Apache Nginx Nginx (w/o poolalloc) Memcached Redis

99
th

%
 L

at
en

cy
 (n

or
m

'd
 to

 b
as

e) TailCheck AddressSanitizer

12

SPEC CPU Performance

• On SPEC CPU 2006, TailCheck overhead is 29%
• On SPEC CPU2017, TailCheck overhead is 33% (peak memory: 9%)

1.0

1.1

1.2

1.3

1.4

1.5

Integer FP Average

SPEC CPU 2006

TailCheck Delta Pointers

1.0

1.1

1.2

1.3

1.4

1.5

TailCheck
Baseline

TailCheck
Optimized

TailCheck
Optimized+SafeAlloc

SPEC CPU 2017

13

Conclusions

• TailCheck offers page protection-based heap memory safety
• TailCheck allocator + compiler managed tagged pointers
• Duplicate memory dereference implicitly checks for out of bounds access

• Optimizations improve TailCheck performance by 20%
• TailCheck is fast, can be run in production
• 4% and 3% overhead for the average and tail latencies for servers
• SPEC CPU 2006 and SPEC CPU2017 overhead is 29% and 33%

14

