
Automated Verification of Idempotence for
Stateful Serverless Applications

Haoran Ding, Zhaoguo Wang, Zhuohao Shen, Rong Chen, Haibo Chen
Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

Serverless Computing

Developer User User
Client

Platform

A Serverless Application

A set of
functions

Serverless Computing

Instance

Developer User User

Instance

Client

Platform

A Serverless Application

A set of
functions

Serverless Computing

Instance

Developer User

Shared Database

User

Instance

Client

Platform

A Serverless Application

A set of
functions

Problem of Retry-Based Fault Tolerance

Client

Shared Database

Platformvoid purchase(userId, productId) {
price = get(“product”, productId);
BEGIN_TX;
balance = get(“user”, userId);
put(“user”, userId, balance-price);
END_TX;
return;

}

Problem of Retry-Based Fault Tolerance

Client

Instance

Shared Database

Platformvoid purchase(userId, productId) {
price = get(“product”, productId);
BEGIN_TX;
balance = get(“user”, userId);
put(“user”, userId, balance-price);
END_TX;
return;

}

Problem of Retry-Based Fault Tolerance

Client

Instance

Shared Database

Platformvoid purchase(userId, productId) {
price = get(“product”, productId);
BEGIN_TX;
balance = get(“user”, userId);
put(“user”, userId, balance-price);
END_TX;
return;

}

Problem of Retry-Based Fault Tolerance

Client

Instance

Shared Database

Fault

Platformvoid purchase(userId, productId) {
price = get(“product”, productId);
BEGIN_TX;
balance = get(“user”, userId);
put(“user”, userId, balance-price);
END_TX;
return;

}

Problem of Retry-Based Fault Tolerance

Client

Instance Instance

Retry

Shared Database

Fault

Platformvoid purchase(userId, productId) {
price = get(“product”, productId);
BEGIN_TX;
balance = get(“user”, userId);
put(“user”, userId, balance-price);
END_TX;
return;

}

Problem of Retry-Based Fault Tolerance

Client

Instance Instance

Retry

Shared DatabaseCharge twice

Fault

Platformvoid purchase(userId, productId) {
price = get(“product”, productId);
BEGIN_TX;
balance = get(“user”, userId);
put(“user”, userId, balance-price);
END_TX;
return;

}

Problem of Retry-Based Fault Tolerance

Client

Instance Instance

Retry

Shared DatabaseCharge twice

Repeated execution è incorrect execution results!

Fault

Platformvoid purchase(userId, productId) {
price = get(“product”, productId);
BEGIN_TX;
balance = get(“user”, userId);
put(“user”, userId, balance-price);
END_TX;
return;

}

We need idempotence, but at what cost?
Idempotence

An application should expose the same behavior regardless of retry

Currently, developers are mandated to ensure idempotence

1. Is the application idempotent?
2. How to fix idempotence issues?

Developer

？
？？

Existing Work
AWS Powertool

Targets retries caused by only exception thrown by functions
• It cannot guarantee idempotence under other cases, such as hardware crash

FSCQ, Yggdrasil, Perennial, GoJournal, …

Verify idempotence of only a sequential function
• However, serverless functions usually run concurrently

Beldi, Boki, …

Ensure the exactly-once execution of all database operations
• However, their mechanisms introduce heavy performance cost

Flux

Goal Automatically verify and ensure idempotence of serverless applications

Challenge #1

A formal definition of idempotence for concurrent functions is desired but missing

Challenge #2

Concurrency and arbitrary failure hinder automated verification

Challenge #3

Ensuring idempotence while introducing minor performance cost is difficult

Flux

Goal Automatically verify and ensure idempotence of serverless applications

1 Formal definition of idempotence: idempotence consistency
• Support concurrent functions

2 Automated verifier of idempotence consistency
• Ensure soundness

3 Accurately identify root causes of issues via verification and repair them
• Ensure idempotence consistency while reducing unnecessary performance cost

Reuse existing definition of idempotence?
Idempotence definition for a sequential function

A function always produces the same program state and return value regardless of retry

Idempotent sequential code 1
void write(string key, int val) {
put(“data”, key, val);
return;

}

Idempotent sequential code 2
int read(string key) {
int val = get(“data”, key);
return val;

}

Perform the same update regardless of retry No side effect

Limitation of the Existing Definition

write(“k”, 1)
Happen before

Limitation of the Existing Definition

write(“k”, 1)
Fault

Happen before

Limitation of the Existing Definition

write(“k”, 1)

read(“k”)

Fault

Happen before

1

Limitation of the Existing Definition

write(“k”, 1)

read(“k”)

write(“k”, 2)

Fault

Happen before

1

Limitation of the Existing Definition

write(“k”, 1)

read(“k”)

write(“k”, 2)

read(“k”)

Fault

Happen before

1

2

Limitation of the Existing Definition

write(“k”, 1)

read(“k”)

write(“k”, 2)

read(“k”)

write(“k”, 1)
Fault

Happen before

Retry

1

2

Limitation of the Existing Definition

write(“k”, 1)

read(“k”)

write(“k”, 2)

read(“k”)

write(“k”, 1)

read(“k”)

Fault

Happen before

Retry

1

2
1

Limitation of the Existing Definition

write(“k”, 1)

read(“k”)

write(“k”, 2)

read(“k”)

write(“k”, 1)

read(“k”)

Fault

Happen before

Retry

1

2
1

From the view of clients, there are only two requests for “write”,
but the value is flipped for three times

Limitation of the Existing Definition

write(“k”, 1)

read(“k”)

write(“k”, 2)

read(“k”)

write(“k”, 1)

read(“k”)

Fault

Happen before

Retry

1

2
1

Idempotence is not ensured under concurrency!
From the view of clients, there are only two requests for “write”,

but the value is flipped for three times

Rethink the Definition of Idempotence

Inspired by “serializability”, we define “idempotence” as a consistency model

Definition of “Serializability” (Consistency Model)

Concurrent Execution
Behavior

Sequential Execution
Behavior

simulate

The requirement for the definition of idempotence

Define the acceptable behavior of a concurrent execution under retry

Our Definition: Idempotence Consistency

Definition of “Idempotence” (Idempotence Consistency)

Execution Behavior
with Retry

Execution Behavior
without Retry

simulate

Behavior A sequence of function
invocations and responses= The database state+

Automated Reasoning of Concurrency

…

Challenge There are infinite interleavings to consider

Basic Idea

Compositional proof technique

func1 func2 func3

What is the property “P”?？

Implies
Each function satisfies P The application satisfies

idempotence consistency

𝒇∗ models the function 𝒇 running with failure and retry

• Insert the following code after each database operation in 𝑓

Idempotence Simulation

bool retry = random();
if (retry) {
reset_local_state();
goto BEGIN;

}

Model failure

Model retry

Idempotence simulation: each execution of 𝒇∗ can be simulated by an execution of 𝒇

Theorem

Given a function set 𝑭, if each function 𝒇 in 𝑭 satisfies idempotence simulation,
then 𝑭 satisfies idempotence consistency.

Basic Idea

Failure reduction: Assume failure occurs at most once

Automated Reasoning of Failure

bool retry = random();
if (retry && (retry_num == 0)) {
retry_num = 1;
reset_local_state();
goto BEGIN;

}

Theorem

If a function satisfies idempotence simulation with at most one failure, then it
satisfies idempotence simulation with arbitrary failure.

Challenge Arbitrary failures also cause infinite interleavings

Retry is allowed only when
it has not occurred before

Existing work ensures exactly-once execution of all operations via logs
• Each get always returns the same value as the first execution on retry

• Each put does nothing on retry

Key observation
• Logging only some of database operations can still ensure idempotence consistency

How to repair inconsistent applications?

void purchase(userId, productId) {
price = get(“product”, productId);
BEGIN_TX;
balance = get(“user”, userId);
put(“user”, userId, balance-price);
END_TX;
return;

}

Not logging “get” also
ensures idempotence consistency

Advisor

Serverless Platform (e.g., AWS Lambda, Azure, GCP)

Flux

!ℱ:Non-idempotent func

!ℱ, ℱ,…

ℱ:Idempotent func [ℱ]: Func with logging

Application

Basic Idea
Find a set of operation such that
• Logging all operations in the set can ensure idempotence consistency
• Unnecessary logs are not in the set

Advisor

Verifier

Serverless Platform (e.g., AWS Lambda, Azure, GCP)

Flux

!ℱ:Non-idempotent func

!ℱ, ℱ,…

ℱ:Idempotent func [ℱ]: Func with logging

Application

Basic Idea
Find a set of operation such that
• Logging all operations in the set can ensure idempotence consistency
• Unnecessary logs are not in the set

Advisor

Verifier

Serverless Platform (e.g., AWS Lambda, Azure, GCP)

Flux

!ℱ:Non-idempotent func

!ℱ, ℱ,…

ℱ:Idempotent func

ℱ

[ℱ]: Func with logging

Application

Basic Idea
Find a set of operation such that
• Logging all operations in the set can ensure idempotence consistency
• Unnecessary logs are not in the set

Advisor

Verifier Advisor

Serverless Platform (e.g., AWS Lambda, Azure, GCP)

Flux

!ℱ:Non-idempotent func

!ℱ, ℱ,…

ℱ:Idempotent func

!ℱ

ℱ

[ℱ]: Func with logging

Application

Basic Idea
Find a set of operation such that
• Logging all operations in the set can ensure idempotence consistency
• Unnecessary logs are not in the set

Advisor

Verifier Advisor

Serverless Platform (e.g., AWS Lambda, Azure, GCP)

Flux

!ℱ:Non-idempotent func

!ℱ, ℱ,…

ℱ:Idempotent func

!ℱ

ℱ

!ℱ + candidate set

[ℱ]: Func with logging

Application

Basic Idea
Find a set of operation such that
• Logging all operations in the set can ensure idempotence consistency
• Unnecessary logs are not in the set

Advisor

Verifier Advisor

Serverless Platform (e.g., AWS Lambda, Azure, GCP)

Flux

!ℱ:Non-idempotent func

Logging Mechanism
(e.g., Beldi, Boki)

!ℱ, ℱ,…

ℱ:Idempotent func

!ℱ

ℱ

!ℱ + candidate set

[ℱ]: Func with logging

[ℱ]

!ℱ + set
Application

Basic Idea
Find a set of operation such that
• Logging all operations in the set can ensure idempotence consistency
• Unnecessary logs are not in the set

Evaluation

What is the cost of verifier and advisor?1

How much performance can Flux improve?2

Applications
AWS serverless applications repository, popular GitHub repository, …
• 27 serverless applications
• 79 serverless functions

What is the cost of verifier and advisor?

Verifier Advisor

• The verification time < 110s
• Find all idempotence issues

• The optimization time < 90s

 0
 150
 300
 450
 600

 0 150 300 450 600Th
ro

ug
hp

ut
 (r

eq
/s

)

Request Rate (req/s)

Raw
Flux
Beldi

How much performance can Flux improve?

6x lower latency

10x peak throughput

101

102

103

104

 1Data Analysis Replicator SPECjbb Uploader Alexa Hotel GraphQL HttpEP

La
te

nc
y

(m
s)

Raw Flux Beldi

17
.2

2

7.
82

82
.9

2

3.
63

16
.1

2 48
.1

6

4.
01

19
8.

94

17
.2

2

7.
82

19
5.

13

3.
63

17
.5

2 50
.7

9

4.
27

19
9.

50

51
.5

8

38
.6

2 20
2.

81

21
.9

0 53
.3

5

11
9.

61

23
.6

4

33
9.

22

43
.7

9

15
.4

0

28
8.

59

11
.4

6

35
.6

7

89
.8

7

12
.7

2

25
0.

44

43
.7

9

15
.4

0

29
4.

79

11
.4

6

56
.3

9 14
0.

88

43
.1

7

26
7.

82

10
9.

85

83
.6

5

66
4.

11

46
.4

2 99
.2

3

26
5.

92

53
.7

9

40
8.

64

101

102

 1 Data Analysis Replicator Uploader Hotel GraphQL HttpEP

La
te

nc
y

(m
s)

Flux Boki

4.
02 6.

51

3.
81

22
.6

5

5.
90

26
.3

0

10
.7

5

14
.7

2

8.
38 24

.6
5

7.
33

28
.3

2

22
.6

6

12
.0

0

8.
73

32
.6

2

12
.1

1

33
.2

5

40
.8

9

20
.9

4

16
.1

8

63
.7

0

14
.6

2

44
.2

6

Summary

Flux

• A new definition of idempotence for stateful serverless applications

• The first automated verifier of idempotence consistency

• An algorithm to reduce performance cost of fault tolerance based on verification

Thank You

