
Cilantro
Performance-Aware Resource Allocation for General

Objectives via Online Feedback
Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo Guo,

Benjamin Hindman, Joseph Gonzalez, Michael Jordan, Ion Stoica

1

Resource allocation in multi-tenant clusters
Compute Resources

100 CPUs

Alice Bob

Resource Allocator

How should we divide resources
between Alice and Bob?

? ?

2

SLO: 100 QPS SLO: 50 QPS

Equal Allocation
Compute Resources

100 CPUs

Alice Bob

Resource Allocator

Equal shares are fair*,
but inefficient

50 CPUs 50 CPUs

I needed only 20
CPUs for 100 QPS

I needed 80
CPUs for 50 QPS

*fair = proportional shares
3

SLO: 100 QPS SLO: 50 QPS

Asking for resource demands
Compute Resources

100 CPUs

Alice Bob

60 CPUs 40 CPUs

I don’t know,
give me 60 CPUs

I don’t know,
give me 40 CPUs

Resource Allocator

How many
CPUs do you

need?

How many
CPUs do you

need?

4
Observed in: Delimitrou & Kozyrakis ’14 (PARTIES), Abdu Jyothi et al ’16 (Morpheus), Rzadca et al ’20 (Google Autopilot)

etc.

SLO: 100 QPS SLO: 50 QPS
Needed 20 CPUs Needed 80 CPUs

Asking for resource demands
Compute Resources

100 CPUs

Alice Bob

Inaccurate resource demands result in inefficient allocations

60 CPUs 40 CPUs

I don’t know,
give me 60 CPUs

I don’t know,
give me 40 CPUs

Resource Allocator

How many
CPUs do you

need?

How many
CPUs do you

need?

5
Observed in: Delimitrou & Kozyrakis ’14 (PARTIES), Abdu Jyothi et al ’16 (Morpheus), Rzadca et al ’20 (Google Autopilot)

etc.

SLO: 100 QPS SLO: 50 QPS
Needed 20 CPUs Needed 80 CPUs

Asking for resource demands
Compute Resources

100 CPUs

Inaccurate resource demands result in inefficient allocations

60 CPUs 40 CPUs

I don’t know,
give me 60 CPUs

I don’t know,
give me 40 CPUs

Resource Allocator

How many
CPUs do you

need?

How many
CPUs do you

need?

6
Observed in: Delimitrou & Kozyrakis ’14 (PARTIES), Abdu Jyothi et al ’16 (Morpheus), Rzadca et al ’20 (Google Autopilot)

etc.

Needed 20 CPUs Needed 80 CPUs

Alice Bob

Users have performance objectives, not resource demands

SLO: 100 QPS SLO: 50 QPS

How can we do performance-aware scheduling?

Towards performance-aware scheduling

• Users know their performance objectives (SLOs), but not the
resources required to achieve SLOs

• A resource-performance mapping can map SLOs to resource demands

7

“To get 100 QPS,
need 30 CPUs”

Alice
SLO: 100 QPS

Towards performance-aware scheduling

• Users know their performance objectives (SLOs), but not the
resources required to achieve SLOs

• A resource-performance mapping can map SLOs to resource demands

8

“To get 100 QPS,
need 30 CPUs”

Alice
SLO: 100 QPS

“To get 100 QPS,
need ? CPUs”

Challenge 1 - Resource-performance curves are not known

Resource allocation objectives are diverse
Compute Resources

Alice Bob

Resource Allocator

I need 20 CPUs
for 100 QPS

I need 80 CPUs
for 50 QPS

9

? ?

Admin

Maximize the
average QPS
over all users

Objective

Challenge 2 – Scheduling objectives are diverse and require a
general resource allocator to satisfy objectives

100 CPUs20 CPUs

Cilantro

10

• Cilantro is a general framework to enable performance-aware
scheduling in clusters

Challenge 1 – Resource-performance
curves are unknown

Challenge 2 -
Support a diverse set of objectives

Use online learning to generate
progressively accurate resource-

performance models

Performance Model

Decouple allocation policy from
learning mechanisms by using
resource-performance models

Cilantro Scheduler

Job 1 Job 2

Shared Cluster

Online Learners

Policy

User-defined Objective

Per-Job Feedback

Job 1 40

Job 2 60

Resource Allocations

Performance Model
(Job 1)

Performance Model
(Job 2)P95_SLO: 100ms

P95_actual: 125ms
load: 50q

1
P95_SLO: 100ms

P95_actual: 125ms
load: 50q

2

Cilantro workflow
Creating a closed scheduling loop of resource allocations and job feedback

11

Job 1 Job 2

Shared Cluster

Per-Job Feedback

Job 1 40

Job 2 60

Resource Allocations

P95_SLO: 100ms
P95_actual: 125ms

load: 50q

1
P95_SLO: 100ms

P95_actual: 125ms
load: 50q

2

Cilantro Scheduler

Online Learners

Policy

User-defined Objective

Performance Model
(Job 1)

Performance Model
(Job 2)

Large and expensive search space

Model estimates have uncertainty

Challenges in Online Learning

Reduce search space by defining a constrained
utility model

Make policies uncertainty-aware

12

Cilantro utility model

Utility is a function of performance. It must be:
1. Monotonically non-decreasing
2. Clipped at SLO

Pe
rf

or
m

an
ce

Resources (# CPUs)

U
til

ity

SLO

Each job has an unknown resource-performance curve

SLO (Service level objective) is the performance
goal specified by the user

These properties are desirable because
1. Makes exploration tractable
2. Reflective of real-world “utility”

13

Common Scheduling Objectives

14

General Performance objectives

Demand-based objectives

Social Welfare
“Maximize mean utility across all jobs”

𝑎 = argmax
!!

1
𝑛
*
"#$

%

𝑢"(𝑎", 𝑙")

𝑎 = argmax
!!

min(𝑢"(𝑎", 𝑙"))

Egalitarian Welfare
“Maximize minimum utility across all jobs”

Utility u, num jobs 𝑛, allocation 𝑎, job load 𝑙

No Justified Complaints (NJC) Fairness
“Guarantee at least fair-share”

𝑎 = argmax
!!

min
"∈{$,…%}

𝑢"(𝑎", 𝑙")
𝑢"(𝑅/𝑛, 𝑙")

Application Performance objectives

Minimize end-to-end latency
of a collection of microservices

𝑎+ = argmax
!∈,"

𝑢(𝑎, 𝑙)

Making policies uncertainty-aware
“Optimism in the Face of Uncertainty”[1]

(OFU) principle
Prioritize actions with the highest potential utility

Acti
on

 1
Acti

on
 2

Acti
on

 3

Real payoff

Expected payoff

Confidence bounds

Pick Action 1

Action 1 has highest
upper confidence bound

Pick Action 2

Action 2 has highest
upper confidence bound

Model corrects
overly optimistic

bounds for Action 1

Model updates
bounds for Action 2

Pa
yo

ff
Acti

on
 1

Acti
on

 2
Acti

on
 3

[1] “Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems”, Bubek et. al 2012

Acti
on

 1
Acti

on
 2

Acti
on

 3

15

Acti
on

 1
Acti

on
 2

Acti
on

 3

Real payoff

Expected payoff

Confidence bounds

Pick Action 1

Action 1 has highest
upper confidence bound

Pick Action 2

Action 2 has highest
upper confidence bound

Model updates
bounds for Action 2

Pa
yo

ff
Acti

on
 1

Acti
on

 2
Acti

on
 3

[1] “Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems”, Bubek et. al 2012

Acti
on

 1
Acti

on
 2

Acti
on

 3

Making policies uncertainty-aware
“Optimism in the Face of Uncertainty”[1]

(OFU) principle
Prioritize actions with the highest potential utility

OFU allows policies to use confidence bounds to
balance explore-exploit tradeoff

16

OFU-Adapted Objectives

17

Performance-based objectives

Demand-based objectives

Social Welfare
“Maximize mean utility across all jobs”

𝑎 = argmax
!!

1
𝑛
*
"#$

%

4𝑢"(𝑎", 5𝑙")

𝑎 = argmax
!!

min(4𝑢"(𝑎", 5𝑙"))

Egalitarian Welfare
“Maximize minimum utility across all jobs”

Utility u, num jobs 𝑛, allocation 𝑎, job load 𝑙

NJC Fairness
“Guarantee at least fair-share”

Application-specific objectives

Minimize end-to-end latency
of a collection of microservices

𝑎+ = argmax
!∈,"

6𝑢(𝑎, 7𝑙)

Details in the paper!

Applications of Cilantro

18

Multi-tenant Cluster Sharing Microservices Resource Allocation

Allocating resources to independent jobs to
maximize stated objective

Resources

Resource Allocator

? ? ? ?

Admin
Objective

Application

Resource Allocator

? ? ? ?

Allocating resources to microservices to
minimize end-to-end application latency

Resources

In the paper

This Talk

Evaluation – Microservices

● Hotel Reservation benchmark from DeathStarBench
● Contains 19 microservices serving one endpoint

Frontend
Query

Search

Recommend

Profile

Geo

Rating

Reserve

User

Geo
MongoDB

User
MongoDB

Profile
MongoDB

Rate
MongoDB

Reserve
MongoDB

Recommend
MongoDB

Profile
memcached

Rate
memcached

Reserve
memcached

`

Consul
Mesh

Jaeger

Response

19

Evaluation – Microservices

● Hotel Reservation benchmark from DeathStarBench
● Contains 19 microservices serving one endpoint

Frontend

Search

Recommend

Profile

Geo

Rating

Reserve

User

Geo
MongoDB

User
MongoDB

Profile
MongoDB

Rate
MongoDB

Reserve
MongoDB

Recommend
MongoDB

Profile
memcached

Rate
memcached

Reserve
memcached

`
Query

Consul
Mesh

Jaeger
Cilantro observes end-
to-end query latency…

… to distribute 160 CPUs
between 19 microservices…

Response

… without any visibility into the
structure or performance of individual microservices

20

Evaluation - Microservices

Cilantro reduces P99 latency to 0.57x of the best baseline
without any visibility into the performance or structure of component microservices 21

Cilantro Summary

• Cilantro is a general, performance-aware
cluster scheduling framework

• Users do not state their resource demands -
they provide SLOs and feedback.

• Online learning estimates resource-
performance curves and policies adapt to
uncertainty in estimates

• Improves utilities up to 1.2 − 3.7× in cluster
sharing and reduces latencies by 43% for
microservices

22

github.com/romilbhardwaj/cilantro

Cilantro Scheduler

Online Learners

Policy

User-defined Objective

Performance Model
(Job 1)

Performance Model
(Job 2)

romilb@eecs.berkeley.edu

