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Abstract

With the growing complexity of deep neural networks
(DNNs), developing DNN programs with intricate control
flow logic (e.g., loops, branches, and recursion) has become
increasingly essential. However, executing such DNN pro-
grams efficiently on accelerators is challenging. Current DNN
frameworks typically process control flow on the CPU, while
offloading the remaining computations to accelerators like
GPUs. This often introduces significant synchronization over-
head between CPU and the accelerator, and prevents global
optimization across control flow scopes.

To address this challenge, we propose COCKTAILER, a
new DNN compiler that co-optimizes the execution of control
flow and data flow on hardware accelerators. COCKTAILER
provides the uTask abstraction to unify the representation of
DNN models, including both control flow and data flow. This
allows COCKTAILER to expose a holistic scheduling space
for rescheduling control flow to the lower-level hardware par-
allelism of accelerators. COCKTAILER uses a heuristic policy
to find efficient schedules and is able to automatically move
control flow into kernels of accelerators, enabling optimiza-
tion across control flow boundaries. Evaluations demonstrate
that COCKTAILER can accelerate DNN models with control
flow by up to 8.2× over the fastest one of the state-of-the-art
DNN frameworks and compilers.

1 Introduction

In deep neural networks (DNNs), control flow plays a crucial
role in accomplishing sophisticated tasks, akin to its usage in
general programming languages. Examples of this include it-
erating over sequential data like text and time steps, activating
different components of the model based on input-data-driven
conditions, dynamically skipping some computation based on
runtime decisions for efficient computation, and recursively
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traversing tree-based data structures. A DNN program is typi-
cally divided into two parts: control flow and data flow. The
data flow is typically represented as a graph of DNN operators,
which can be efficiently executed on specialized accelerators
such as GPUs. The control flow, on the other hand, is either
implemented as a special operator [4] or by directly reusing
the built-in statements of programming languages [36], and
is typically executed on a CPU. Therefore, the control flow
and data flow are executed alternatively in an entire DNN
computation: the control flow determines which part of the
data flow should be executed, and then the corresponding data
flow is sent to accelerators for processing and the result is
obtained, which is used to decide the next step of control flow.

However, the interleaved execution paradigm on both sides
in existing DNN frameworks often introduces significant ef-
ficiency issues. First, the control flow and data flow require
frequent synchronization between the CPU and accelerator
(e.g., for checking conditions based on results), resulting in
significant communication overhead (e.g., across PCIE) in
the critical path. Second, the control flow in a DNN program
often establishes explicit boundaries between data flow opera-
tors, which prevents their holistic optimization for maximum
efficiency, such as fusing two operators across a loop scope.
Lastly, the control flow implicitly serializes the execution of
data flow operators that could potentially be executed in par-
allel. We have observed that these overheads are prevalent in
existing DNN models and can often occupy as much as 72%
of the total time in PyTorch. These efficiency issues not only
introduce obstacles to dynamic model developments but also
make many optimizations, e.g., dynamically skipping some
computation, hard to achieve theoretical speedup.

Based on our observation of DNN workload patterns, the
fundamental reason for the inefficiency is the parallelism
mismatch between the control flow and data flow. In partic-
ular, control flow operations, such as loops, branches, and
recursion, are single-thread semantic and execute in a strictly
sequential order. However, the data flow operators are par-
allelizable, running on multiple parallel threads (e.g., GPU
cores) and synchronizing periodically across different scopes
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of threads (between operators or thread blocks). To control
the execution flow of a parallel program, the mismatch be-
tween control flow and data flow forces existing practices to
place the control flow either outside the DNN operators (e.g.,
in existing DNN frameworks) or inside an individual DNN
operator, through implementing custom kernels in an ad-hoc
way (e.g., Relu operator). This can be either inefficient or
unscalable to support the increasing demands for control flow
in DNN workloads.

In this paper, we present a new DNN compiler, COCK-
TAILER, that addresses the challenges of co-optimizing con-
trol flow and data flow in a single space. COCKTAILER is
based on three key insights observed from studying DNN
models and modern accelerators. First, the data flow in DNNs
is inherently a multi-level parallel program, where individ-
ual operators are executed in different hardware parallelism,
such as threads, thread blocks, or kernels in GPUs. Second,
the control flow operations in DNNs are mostly applied at
the operator level, where all lower-level parallelisms share
the same control result. This implies that the control flow
can be rescheduled to the low-level parallelism by replicating
the control logic to all parallel tasks at different levels. Most
importantly, modern hardware accelerators, such as GPUs,
are designed to support the control logic in their low-level
programming languages in each thread, which makes this
rescheduling approach feasible in practice.

Based on these insights, COCKTAILER introduces the uTask
abstraction as the primitive execution unit of a DNN program
for both control flow and data flow. An operator in data flow
can be naturally decomposed into different levels of granu-
larity of uTasks aligned with its computation parallelism. For
control flow, COCKTAILER introduces three types of special
uTasks: loop uTask, branch uTask, and uTask reference, to
represent the program with control flow as a special uTask. By
unifying the DNN program into the uTask granularity, COCK-
TAILER creates a holistic space for co-scheduling control
flow uTasks with compute uTasks, i.e., by assigning the con-
trol flow uTask to the most efficient parallel level with data
dependencies resolved correctly. To facilitate this schedul-
ing, COCKTAILER proposes a scheduling mechanism and a
traverse-based bottom-up scheduling policy that incorporates
all control flow optimizations such as function inline, loop
unroll, and recursion unroll.

As a result, COCKTAILER is able to automatically move
control flow operations, such as loops or branches, into ac-
celerator side when applicable, enabling more optimization
opportunities across the control flow boundary. COCKTAILER
is built on top of general DNN tensor compilers by leverag-
ing their kernel generation capabilities for uTask, allowing it
to adapt to different accelerators such as CUDA GPUs and
ROCm GPUs easily. COCKTAILER’s approach can be ap-
plied to both DNN frameworks that implement control flow
as special operators or language-built-in statements, by only
compiling the sub-programs that can be optimized by COCK-
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Figure 1: Models with control flow

TAILER. Evaluation with 7 typical DNN models on CUDA
GPUs and ROCm GPUs shows that COCKTAILER accelerates
these models by up to 8.2× over the fastest one of state-of-
the-art DNN frameworks and compilers. Furthermore, the
evaluation shows that COCKTAILER not only reduces the
overheads introduced by control flow but also enables scenar-
ios like dynamically skipping some computation by achieving
real speedup. The code has been open-sourced1.

2 Background and Motivation

DNNs have been successfully applied in many areas, such as
computer vision, speech, and natural language. Meanwhile,
the concept of control flow in programming languages is
introduced to deep learning. The architecture of DNN models
rapidly evolves from sequential feed-forward layers [15, 23,
38] to structures with complex control logic [16,39–41,46,47],
enabling dynamic computation and adaptability within the
network architecture:

• Dynamic computation. Control flow enables construct-
ing dynamic computation architectures, which can adapt
their structure during runtime. For example, the loops are
widely used to handle variable-length sequences (e.g.,
text, speech, time-series data) in RNNs [16, 40, 58] and
Transformers [43].

• Conditional computation. Control flow enables the ex-
ecution of specific parts of the model based on certain
conditions [7, 24] like executing different parts of the
model for images with different resolution.

• Efficient computation. Control flow can help reduce the
computational resources required by DNN models by
selectively executing parts of the model based on input
data or intermediate results, e.g., the early-exiting mech-
anism [46, 47] that can skip some layers on easy input
samples. Besides, control flow can be leveraged to adapt
DNN models to different environments (e.g., different
hardware accelerators) by trading off computation cost
and model performance via control flow [26].

Dynamic computation for structural data is a common re-
quirement in modern deep learning models. For instance,
nearly 27% of the 52 models in PyTorch Hub (as of commit
ID 1c747e2) contain structural data (e.g., sequence, tree). Fur-
thermore, a survey on dynamic DNN models [13] indicates

1https://github.com/microsoft/nnfusion/tree/cocktailer_
artifact/artifacts
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that conditional computation and efficient computation are
promising research directions.

In programming languages, control flow constructs are
typically categorized into the following types: sequence,
branch, loop, and subroutine (function). Similarly, a majority
of DNN models with complex control flow can be catego-
rized into models with loops for temporal-wise dynamism
(e.g., LSTM [16], NASRNN [58], Seq2seq [40]), models with
branches to skip computation (e.g., BlockDrop [47], Skip-
Net [46]), and models with tree-based architecture via recur-
sion (e.g., RAE [39], Tree-LSTM [41]). We discuss the three
representative categories with their representative models, as
shown in Figure 1.

• Loop. Seq2seq [40] can generate arbitrary-length se-
quences. It contains a while loop that continues to emit
new tokens until an end-of-sequence (EOS) token.

• Branch. BlockDrop [47] is a convolution neural network
that can drop some convolution layers. Each layer is
implemented by an if statement with two branches for
whether executing the branch or not.

• Recursion. RAE [39] computes the embedding of a
parse tree by traversing the tree. It can be implemented
by a depth-first search using recursion.

To support these emerging DNN models, there are two
mainstream approaches. The first one, represented by Tensor-
Flow of version 1.x [4], supports these complex model archi-
tectures by introducing a set of control flow operators [52]
like Enter and NextIteration. Then, these control flow op-
erators are executed in the framework runtime with the CPU
threads. The second one, represented by PyTorch [36] and
JAX [11], leverages the programming language to represent
and execute the control flow. For example, in PyTorch, algo-
rithm designers program control logic in Python, and these
control flow statements are running in the Python runtime.

Both approaches schedule data flow operators onto the ac-
celerators while maintaining control flow in the CPU side for
execution. The reason is the parallelism mismatch between
the control flow and the data flow. Specifically, different from
data flow operators (e.g., matrix multiplication) that have in-
ternal data parallelism, control flow operations are represented
as single-thread computation. Modern hardware accelerators
have massive hierarchical parallel processing units. For exam-
ple, GPUs contain many parallel streaming multiprocessors
(SMs) and each SM has many parallel cores. This architec-
ture aligns with data flow operators’ parallelism, but it is
hard to schedule the single-thread control flow to the massive
hierarchical parallel processing units for execution. There-
fore, current practices [4, 11, 36, 52] schedule control flow
operations to the CPU side for execution. Such approaches
introduce boundaries between DNN operators of different
basic blocks, resulting in performance issues.

Figure 2 compares JAX’s performance of executing the
three models via dynamic control flow to executing the corre-
sponding traced static graph that has removed all the control
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Figure 3: Timeline of BlockDrop in JAX. The data copy from
GPU to CPU (MemcpyD2H) causes synchronization.

flow computation and only remains data flow computation.
Compared with the traced graph baseline, the control flow
computation of JAX causes 1.16×, 1.54×, and 56.22× slow-
down in Seq2Seq, BlockDrop, and RAE, respectively. More
results can be found in §5. The loop in Seq2seq and branches
in BlockDrop use control flow operators. The recursion in
RAE is executed in Python. Both approaches cannot match
the performance of static traced graphs.

The performance issue comes from the following parts.
(1) Boundary overheads. Executing data flow operators on
the accelerator and control flow operations on the CPU can
incur synchronizations between the CPU and the accelerator.
Take the BlockDrop model on a CPU-GPU system as an ex-
ample, the DNN operators in the branch body are executed
in the GPU side, while the branch operation is executed in
the CPU side. The CPU stalls when waiting for the GPU to
provide the data required for deciding the branch target, and
then the GPU stalls to wait for the CPU to check the branch
condition and send the following operations to the GPU. The
boundary overheads mainly contain the communication be-
tween the CPU and the accelerator and the kernel launching.
This boundary may also break the asynchronous execution in
the accelerator side.

Figure 3 shows part of the timeline of JAX executing the
BlockDrop model that the CPU-GPU synchronization not
only has high synchronization overheads but also breaks the
asynchronous execution and causes a long idle time without
computation in the GPU side.
(2) Boundary limits the optimization scope. Executing
control flow and data flow on separate sides divides the DNN
program into sub-programs, each representing a static data
flow that can be executed on the accelerator side. Many DNN
optimizations (e.g., Rammer [28], kernel fusion [35, 56], etc.)
are limited to only optimizing these sub-programs, resulting
in sub-optimal performance. Consider a multi-layer LSTM
model as an example: the DNN operators in LSTM cells
across different layers can be scheduled for parallel execution.
However, the loop control flow constrains the DNN optimiza-
tions within a cell, resulting in overlooking this parallelism.
(3) Boundary prevents parallelism in DNN programs.
This boundary makes the DNN programs in different con-
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trol flow statements executed sequentially due to the synchro-
nizations between the CPU and the accelerator, which may
prevent possible inter-operator parallelism. Take the RAE
model as an example, the recursion builds up a tree-based
architecture where operators without dependencies can be
executed concurrently. However, because the control flow can
only be executed sequentially, operators of nodes without
dependencies are executed sequentially.
Observations and opportunities. Given the fundamental
limitations of current approaches described above, it is desir-
able to schedule the DNN programs including control flow
and data flow in a single space (i.e., the accelerator side). How-
ever, it is challenging to achieve this because of the parallelism
mismatch between control flow and data flow. Fortunately,
control flow in DNN programs is applied across DNN oper-
ators, that is to say, the DNN operators’ computation under
control flow shares the same control logic. On the other hand,
most hardware accelerators (e.g., GPUs) have the ability to
execute control flow instructions. If we represent control flow
in a finer granularity that can be properly mapped to the paral-
lel processing units for execution, we can schedule both data
flow and control flow to the accelerator side.

3 COCKTAILER Design

The observation in §2 motivates COCKTAILER, a DNN com-
piler for co-optimizing control flow and data flow in a single
space. Figure 4 shows the overview of COCKTAILER. First,
COCKTAILER takes a DNN program with control flow and
data flow as input, where each operator in the data flow is
a uOperator that consists of independent and homogeneous
uTasks. Each uTask can be scheduled to one compute unit of
the accelerator. Second, instead of scheduling control flow on
the CPU side and data flow on the accelerator side separately,
COCKTAILER schedules control flow and data flow inside
the program in a single space. COCKTAILER will generate
the uProgram representation for the program, which contains
multiple independent uTasks (e.g., the Loop-uTasks in Fig-
ure 4(b)) that can be scheduled to the parallel compute units
in hardware accelerators for execution. Each uTask represents

both the control flow and data flow logic of one compute unit.
COCKTAILER abstracts an accelerator of massive paral-

lelism as multiple levels of parallel processing units. In each
level, there are parallel and homogeneous processing units,
which construct a higher level of processing unit. This hard-
ware abstraction naturally aligns with common hardware ac-
celerators. Take the NVIDIA GPU as an example, there are
multiple homogeneous streaming multiprocessors (SMs) in
a GPU, where each SM consists of multiple homogeneous
cores. Therefore, NVIDIA GPUs can be mapped as an archi-
tecture with 3 levels of parallel processing units in COCK-
TAILER’s hardware abstraction shown as Figure 4: L0 is the
core (thread); L1 is the SM (thread block); L2 is the GPU
device (kernel).

The example loop structure in Figure 4 is scheduled as a
uProgram mapped on the 3-level accelerator. The uProgram
consists of 4 loop-uTasks for 4 L1-Units resepectively and
each loop-uTask is mapped to a L1-Unit for execution. Both
the data flow operators and the loop are scheduled into the
loop-uTasks. Take the first loop-uTask as an example, it has a
loop control flow and a list of uTasks for data flow operations
containing 1 MatMul uTask, 1 Add uTask, and 1 Relu uTask.

The concepts of uTask, uOperator, and uProgram are de-
scribed in detail in §3.1. And the uProgram scheduling is
illustrated in §3.2.

3.1 uTask-based DNN Program
To co-schedule the control flow and the data flow of a DNN
program to accelerators with massive parallel units, COCK-
TAILER defines the DNN program in fine grained with the
concept of unit-task (uTask). Specifically, uTask is defined
as the computation logic that can be scheduled to one of the
multi-level processing units in hardware accelerators for exe-
cution. Note that the computation in a uTask can be a list of
other uTasks, i.e., a nested uTask. uProgram represents the ex-
ecution plan of the uTask-represented DNN program mapped
to a level of parallel processing units on the hardware.
uTask and uOperator for data flow operators. As Fig-
ure 5(a)(c) show, a data flow operator is represented as
a group of independent and homogeneous uTasks where
each uTask is the computation to be scheduled to one
processing unit. Specifically, each uTask takes a slice of
the input tensor via get_input_data() and executes the
corresponding computation defined in compute(). Then,
a uOperator is defined as the collection of all uTasks of
the corresponding data flow operator. The uTasks of a
uOperator are indexed by the logical uTask_id and called by
compute(uTask_id). The total uTask count in an uOperator
is reported by get_uTask_num(). When all uTasks in an op-
erator are executed, the execution of this operator is finished.

Data flow operators (e.g., matrix multiplication) are usually
implemented as multiple independent and homogeneous tasks
that are scheduled to the massive parallel units of accelerators
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interface uTask {
void compute();
void get_input_data();
};

(a)

interface NestedUTask: uTask {
void compute();
void get_input_data();

vector<uTask> body_uTasks;
};

(b)

interface uOperator {
void compute(uTask_id);
size_t get_uTask_num();

set<uTask> uTasks;
};

(c)

interface uProgram {
void compute(uTask_id);
size_t get_uTask_num();
set<uTask> uTasks;
size_t unit_level;

};

(d)
Figure 5: The definition of uTask, uOperator and uProgram

for execution. Each task consumes a slice of the input tensor,
processes the corresponding computation over the input slice,
and produces a slice of the output tensor. Take the NVIDIA
GPU as an example, the kernel of an operator (e.g., matrix
multiplication) is scheduled as multiple thread blocks and
each of them is mapped to an SM for processing a tensor
slice. Furthermore, a thread block is scheduled as multiple
threads and mapped to cores for processing a tensor slice.
Therefore, the concept of uTask is not only natural to represent
the fine-grained computation of data flow operators, but also
aligns with the hardware architecture of multi-level parallel
processing units in accelerators.

uTask for control flow. It is natural to represent data flow
operators with uTasks due to the internal data parallelism that
can be divided into parallel tasks. However, different from
DNN operators, the control flow cannot be divided into such
parallel tasks. To enable the scheduling of control flow on the
parallel processing units, we need to bridge this gap of the
mismatching between the control flow computation and the
massive parallelism in the accelerator.

Control flow operation applies to a scope of DNN operators
in DNN programs. When the DNN operators can be divided
into independent and homogeneous uTasks, controlling the
DNN operators is equal to applying control flow computa-
tion on each uTask. For example, assuming there is a loop
structure that has a matrix multiplication operator in the loop
body, compared with executing the loop over the operator, it
is equally that let each unit of the hardware accelerator pro-
cess the loop control flow over the uTask of the operator. If
we apply such control flow on the scope of the fine-grained
representation of these DNN operators, we can schedule such
computation including the control flow to the parallel process-
ing units of the hardware accelerators. That is to say, we can
represent control flow in the uTask granularity by replicating
the control flow computation to the multi-level parallel units
that each unit executes the control flow independently and
controls the uTasks scheduled on the unit.

According to the observation, COCKTAILER represents con-
trol flow operations as NestedUtasks defined in Figure 5(b),
where the computation in the body is represented in the
body_uTasks. These uTasks have data dependencies and
should be executed sequentially on one processing unit. Dif-
ferent from data flow operators that the get_input_data()
extracts a slice of the input tensor, the input data of the uTasks
in the body_uTasks of control flow is related to the results
of the control flow. For example, in the LSTM model, the

1 interface LoopUTask: NestedUTask {
2 void compute();
3 void get_input_data();
4 void control_flow();
5 vector<uTask> body_uTasks;
6 };

(a) Loop-uTask

1 interface BranchUTask: NestedUTask {
2 void compute();
3 void get_input_data();
4 void control_flow();
5 vector<uTask> then_uTasks;
6 vector<uTask> else_uTasks;
7 };

(b) Branch-uTask

Figure 6: Control flow uTasks
uTasks in the body of the loop control flow require different
values of the loop counter in different loop steps. Therefore,
the get_input_data() for control flow should prepare the
input data with consideration of the results of control flow.
Note that different control flow operations have different data
access patterns in the body_uTasks. We will discuss it in
detail in the following.

According to Section 2, there are three types of control flow
in DNN programs: loop, branch, and recursion. Therefore,
COCKTAILER defines the concepts of loop-uTask, branch-
uTask, and uTask reference correspondingly to represent the
fine-grained uTask for control flow in DNN programs.

(1) Loop-uTask. Figure 6(a) shows the uTask definition
for the loop control flow. COCKTAILER currently supports
two types of loop control flow, i.e., for loop and while loop.
The control_flow() interface implements the for loop or
the while loop condition. The body computation of a loop
represented in uTasks is implemented in body_uTasks. Note
that the body_uTasks is executed multiple times in a loop
with different input data in each loop step. For example,
in the LSTM model, the computation of a LSTM cell in
each loop step requires the same model parameter tensors
but different loop counter tensors and state tensors. The
get_input_data() interface needs to prepare the corre-
sponding tensors in each loop step.

(2) Branch-uTask. Figure 6(b) shows the uTask definition
for the branch control flow. The control_flow() interface
implements the condition computation in the branch. The
branch-uTask has then_uTasks and else_uTasks to indi-
cate the computation of two branches represented in uTasks,
respectively. The get_input_data() interface returns the
required data for a branch indexed by the condition result.

(3) Function. A function can be natively represented
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1 ScheduleOperator(op, D, unit_level, config);
2 ScheduleControlFlow(g, D, unit_level, config);
3 Config SetResource(D, unit_level, resource);

Figure 7: Scheduling interfaces

with NestedUTasks that each uTask represents the compu-
tation in the function body in the fine-grained uTasks in the
body_uTasks. The get_input_data() interface prepares
input data tensors and The compute() interface executes the
uTasks in body_uTasks sequentially.

(4) Recursion and uTask reference. Functions can be rep-
resented with uTasks. However, recursion is a special case in
functions that a function may call itself in the function body.
That is to say, a uTask may have itself in its body_uTasks.
To support recursion, COCKTAILER introduces uTask refer-
ence to reference a uTask definition. The uTask reference can
be considered as a function call to a uTask. The difference
between a reference and a uTask is that the reference is a
declaration for a uTask while a uTask defines the computation
in a function. When executing a reference, COCKTAILER will
find its uTask definition and execute this uTask.

The uTask abstraction in COCKTAILER is a general abstrac-
tion to represent control flow. We show how to represent loop,
branch, function and recursion with uTask as most of current
DNN models only contain these structures. More types of con-
trol flow can be represented by inheriting the NestedUTask.
uProgram The generated execution plan of the whole input
DNN program is represented by a uProgram. The uProgram
contains independent uTasks, each of which is the compute
logic scheduled to one processing unit of the unit_level
of the accelerator. The uTasks can be executed by compute,
and the total uTask count of the uProgram is reported by
get_utask_num.

The uTask abstraction enables COCKTAILER to represent
DNN programs with data flow operators and control flow in
a fine granularity for accelerators with massive parallelism.
This representation opens a new space for co-scheduling con-
trol flow and data flow.

3.2 uProgram Scheduling

The uTask representation for DNN programs opens a large
scheduling space for co-optimizing control flow and data flow
in a single space. Instead of the pre-defined schedule in exist-
ing frameworks that executes data flow on the accelerator side
while executes control flow on the CPU side, COCKTAILER
chooses to explore this scheduling space at compile-time. To
achieve this, COCKTAILER separates the scheduling policy
from its mechanism. On the mechanism side, COCKTAILER
provides scheduling interfaces with scheduling constraints.
On the policy side, COCKTAILER provides a traverse-based
scheduling policy. Note that the scheduling is generally de-
signed for operators of uTask representation and can be exe-
cuted automatically.

Scheduling interfaces. COCKTAILER provides three in-
terfaces ScheduleOperator, ScheduleControlFlow and
SetResource, to facilitate the scheduling process, as
shown in Figure 7. Specifically, ScheduleOperator sched-
ules an operator op, which can be either a data flow
uOperator or a solely-scheduled control flow operation,
into the target uProgram with unit_level of the acceler-
ator D. The config describes the current scheduling sta-
tus including the target uProgram and is initialized by
the SetResource. ScheduleOperator will set the target
uProgram to NULL if it fails to schedule the uOperator.
Similarly, ScheduleControlFlow schedules a control flow
operation whose body has been scheduled to the required
unit_level under the scheduling config, and returns NULL
when failing to schedule this control flow. To ensure correct-
ness, both schedule functions will add necessary barriers
to enforce the desired uTask dependency. Moreover, as con-
trol flow should control the uTasks in the body, a scheduling
constraint is shown below,.

Constraint 1 The unit_level of control flow should not
be lower than the unit_level of data flow in the body.

COCKTAILER also has a profiler that measures the exe-
cution time for a uProgram. The profiled information could
guide a policy on deciding whether to schedule a uProgram
to the unit_level of the accelerator.
Traverse-based bottom-up scheduling policy. Algorithm 1
describes a traverse-based scheduling policy to show how to
use the interfaces and the profiler to schedule control flow
and data flow in a single space to the accelerator side. This
policy takes a DNN program g represented as control flow
operations and uOperators in data flow and the accelerator
D as input and returns a list of scheduled uPrograms on this
accelerator. The policy also accepts a unit_level parameter
indicating the highest scheduled unit_level of the operators
inside the graph g or NULL if the operators inside the graph
are not scheduled yet, which is the initial case. If the input
program has multiple operators, COCKTAILER will put these
operators into a function operator before scheduling.

Initially, this policy schedules all the data flow uOperators
to uProgram (line 4 and line 21-27). The policy continues by
progressively trying to schedule more parts of the program
to the same uProgram if the profiler suggests this schedule
could reduce the overall execution time (line 5-27). Specifi-
cally, the policy will recursively traverse the program (line 7)
until it only contains a uOperator (line 3-4) and schedule
it to the uProgram via ScheduleProgram which achieves
this via ScheduleOperator. During the traverse, if all the
operations in the input program are scheduled to accelera-
tor’s units (line 21), the policy will try to schedule this pro-
gram (i.e., the control flow) to the uProgram (line 21-27) via
ScheduleProgram. ScheduleProgram implements schedul-
ing an input program g to a unit_level of the accelera-
tor D. Note that the input g is either a graph of operators
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Algorithm 1: Traverse-based Scheduling Policy
Data: g: DNN program represented with uOperator; D: accelerator
Result: uProgram

1 Function Schedule(g, D, unit_level = NULL):
2 ulevel=unit_level, ulevelmax=D.unit_levels.size()-1, uProgs=[];
3 if g ∈ D.Operators and ulevel is NULL then
4 ulevel = 0;
5 if ulevel is NULL then
6 for op ∈ g.TopoSort() do
7 gop, ulevelop = Schedule(op, D, NULL);
8 ulevel = max(ulevel, ulevelop);
9 uProgramp = uProgs[-1];

10 ulevelm = max(ulevelop, uProgramp.ulevel);
11 if ulevelm < ulevelmax then
12 gmerge = uProgramp.g + gop;
13 gmerge, ulevelmerge = Schedule(gmerge, D, ulevelm);
14 if ulevelmerge < ulevelmax then
15 uProgs[-1] = gmerge.uProgs[0];
16 ulevel = max(ulevel, ulevelmerge);
17 continue;
18 uProgs.append(gop.uProgs);
19 else
20 uProgs = g.uProgs
21 if ulevel < ulevelmax then
22 for ulevelcur ∈ range(ulevel, ulevelmax) do
23 uProgramcur = ScheduleProgram(g, D, ulevelcur);
24 if uProgramcur is not NULL then
25 if Latency(uProgramcur) < Latency(uProgs) then
26 uProgs = [uProgramcur];
27 ulevel = ulevelcur;

28 g.uProgs = uProgs;
29 return g, ulevel;
30 Function ScheduleProgram(g, D, unit_level):
31 // g is a graph of operators in uTask representation or a control

flow operation that the body has been scheduled
32 resource = GetResource(D, unit_level); // calculate resource
33 cfg = SetResource(D, unit_level, resource);
34 if g ∈ D.ControlFlow then
35 return ScheduleControlFlow(g, D, unit_level, cfg);
36 else
37 for op ∈ g.TopoSort() do
38 ScheduleOperator(op, D, unit_level, cfg);
39 return cfg.uProg;

in uTask representation (including uOperators and sched-
uled control flow) or a control flow whose body has been
scheduled as uProgram. Therefore, ScheduleProgram calls
SetResource to configure the scheduling and leverages the
config to schedule the program with ScheduleOperator
and ScheduleControlFlow. The unit_level is maintained
as Constraint 1 during scheduling.

Several optimizations can be employed to reduce the
scheduling time. For conciseness, these optimizations are not
explicitly shown in the pseudo code. For example, trials on
different unit_levels (line 22) can be performed in parallel.

Scheduling optimizations There are three optimization op-
portunities during the scheduling, depending on the inputs
and the DNN programs.

Function inline. To remove function call overhead, COCK-
TAILER converts a function control flow without recursion to
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Figure 8: Parallel execution of recursive calls

a sequence of computation. It removes the function control
flow boundary and applies DNN optimizations to a larger
program scope.

Loop unroll. COCKTAILER unrolls the loop control flow
with some steps to explore more optimization opportunities.
For example, unrolling the loops in a multi-layer RNN model
can expose parallelism between RNN cells. Loop unrolling is
applied during scheduling and is evaluated to decide whether
to enable this unroll.

Recursion unroll. It is similar to loop unroll in that the
recursion is also able to be unrolled to explicitly expose the
recursion tree structure. COCKTAILER applies this optimiza-
tion to DNN programs to unroll the recursion structure sev-
eral times to expose more optimization opportunities. For
example, the unrolled recursion tree can naturally expose
parallelism between recursive calls, which can be leveraged
for concurrent execution. Figure 8 shows an example of re-
cursion unroll. By unrolling the recursive calls, computation
without dependencies (e.g., nodes 2 and 3 in Figure 8) can
be executed concurrently. Recursion unroll is applied during
scheduling. The scheduler will evaluate the unrolled results to
decide whether to enable this unroll and schedule the unrolled
body to different computation units.

These optimizations are in ScheduleControlFlow. The
scheduler will try to enable these optimizations and evaluate
the performance with some sample data to decide whether to
enable optimizations or not.

4 Implementation

COCKTAILER is implemented by about 10000 lines of code
including Python and C++ on top of PyTorch [36] and Ram-
mer [28]. COCKTAILER does not require any effort from
model developers, who can still work on a native PyTorch
program. COCKTAILER first exports the PyTorch program
to an ONNX graph with built-in loop and branch operators
and an extended invoke operator for representing recursion.
With the converted ONNX graph, COCKTAILER automati-
cally performs the scheduling of data flow and control flow,
and applies control-flow-related optimizations described in
§3. Then, COCKTAILER wraps the generated code as a cus-
tomized PyTorch operator and replaces the PyTorch program
with a call to this operator.

We implemented COCKTAILER for NVIDIA GPUs and
AMD GPUs because they are the most popular accelerators
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1 // y = matmul(x, w); out = tanh(y);
2 __device__ void UProg<NumUTask=2>(float* x,

float* w => float* out | char* tmp,int id) {
3 if (id == 0) {
4 float *y = (float*)tmp;
5 MatmulUOp.compute(x, w => y, id=0);
6 MatmulUOp.compute(x, w => y, id=2);
7 Barrier(blocks={0,1});
8 TanhUOp.compute(y => out, id=0);
9 } else if (id == 1) {

10 float *y = (float*)tmp;
11 MatmulUOp.compute(x, w => y, id=1);
12 MatmulUOp.compute(x, w => y, id=3);
13 Barrier(blocks={0,1});
14 TanhUOp.compute(y => out, id=1);
15 }
16 }

Figure 9: Example of uTask

for DNNs. In the rest of this section, we describe the de-
tails about implementing COCKTAILER for NVIDIA CUDA
GPUs, and briefly describe our implementation on AMD
GPUs. COCKTAILER can be ported to other accelerators if
they align with the hardware abstraction described in §3 and
expose APIs to control the units (e.g., Graphcore IPUs).

4.1 COCKTAILER on NVIDIA CUDA GPUs
As described in §3, an NVIDIA GPU can be abstracted
as a 3-level hardware. COCKTAILER implements the
ScheduleOperator interface on top of Rammer [28],
AutoTVM [6], Ansor [53], Roller [57], and manually-
implemented kernels. Specifically, COCKTAILER first ob-
tains the source code of each dataflow operator on the given
unit_level by choosing from existing manual implementa-
tions of simple operators like element-wise ones or by tuning
the operator with AutoTVM, Ansor, or Roller. COCKTAILER
then leverages Rammer to covert the data flow operators’ ker-
nel source code to a uOperator with multiple uTasks. After
that, COCKTAILER schedules the program and generates the
kernel code for the control flow body.

4.1.1 Code Generation for Nested-uTask

Overall structure A list of uOperators inside a function will
be scheduled to a uProgram with multiple Nested-uTasks. It
will be converted to a function with pointers to the related
tensors. Specifically, we use (A => B | C) to represent a
function with tensor A as input, tensor B as output, and tensor
C as a buffer saving intermediate results. The function also
accepts a uTask_id parameter for indexing the uTasks in the
uProgram. Figure 9 provides an example Function-uProgram
with a matmul uOperator implemented by 4 uTasks and a
tanh uOperator implemented by 2 uTasks. This Function-
uProgram contains 2 uTasks, each of which contains 2 matmul
uTasks and 1 tanh uTasks in the body_uTasks with proper
barrier inserted (line 5-8, 11-14). The barrier can be im-
plemented by using CUDA Cooperative Groups [1] or ex-
tending a lock-free GPU synchronization technique [48].

1 for i in range(10):
2 inpi = inp[i]
3 xi = matmul(inpi, wx)
4 h = tanh(xi + h)

(a) A simplified RNN model

1 __device__ void LoopUProg(float* inp, float* wx
, float* h_in => float* h_out | float* tmp) {

2 float *inpi = tmp, *xi = tmp + 1024;
3 CopyUOp(h_in => h_out); Barrier();
4 for (int i = 0; i < 10; i++) {
5 GatherUOp(inp, &i => inpi); Barrier();
6 MatmulUOp(inpi, wx => xi); Barrier();
7 AddTanhUOp(xi, h_out => h_out); Barrier();
8 }
9 }

(b) Loop-uTask for the RNN model

Figure 10: Example of Loop-uTask

The Function-uProgram allocates the storage for Tensor y
(line 4,10) and wraps the code with function name and sig-
nature (line 2). The __device__ function qualifier is used so
that this function can be called by other uTasks. We will omit
the uTask_id in the following sections and only show the
generated code of one uTask inside the uOperator for brevity.
Block alignment One challenge of scheduling multiple
DNN operators into a single GPU kernel comes from the
variance of thread count inside each GPU block (blockDim).
The blockDim of the kernel for a uProgram have to be set
to the maximum blockDim of its uOperators, so that kernels
with a large number of GPU blocks (gridDim) and small
blockDim will execute inefficiently when they are scheduled
into the same kernel of an operator with large blockDim.
To address this problem, we re-implement the uOperators
with configurable blockDim if possible (e.g., element-wise
ones, reduction, and transpose). During schedule, COCK-
TAILER collects the fastest kernel of uOperators with pre-
defined blockDim (e.g., matmul and convolution), and config-
ure the blockDim of configurable uOperators to the maximum
blockDim of the collected uOperators. If the blockDim of the
collected uOperators varies greatly, COCKTAILER will lever-
age an extended Roller [57] to re-generate kernels with a fixed
blockDim.
Register pressure The generated long-running GPU kernel
may face register pressure. To alleviate this problem, COCK-
TAILER uses the profiling in §3.2 to detect performance drop
due to register overuse and stop enlarging the current kernel.
For control flow graph with no back edges, COCKTAILER can
also utilize the branch reclustering technique in §4.1.3 to both
schedule the control flow to the accelerator side and reduce
the kernel size.

4.1.2 Code Generation for Loop-uTask

Overall structure Figure 10(a) shows a simplified RNN
model. It is scheduled to a Loop-uProgram with several
Loop-uTasks. Each Loop-uTask in the uProgram contains
body_uTasks from three types of uOperators, i.e., gather,
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1 if (cond):
2 tmp1 = matmul(x, w1)
3 y = sigmoid(tmp1)
4 z = conv(y, w2)
5 else:
6 z = x + b

(a) A DNN model with branch

1 __device__ void BranchUProg(bool* cond, float*
x, float* w1, float* w2, float* b, float*
y_in => float* y_out, float* z_out | float*
tmp) {

2 if (*cond) {
3 float *tmp1 = tmp;
4 MatmulUOp(x, w1 => tmp1); Barrier();
5 SigmoidUOp(tmp1 => y_out); Barrier();
6 ConvUOp(y_out, w2 => z_out);
7 } else {
8 AddUOp(x, b => z_out); // no Barrier
9 CopyUOp(y_in => y_out);

10 }
11 }

(b) Branch-uTask for the DNN model

Figure 11: Example of Branch-uTask

matmul, and fused add-tanh operations. This Loop-uProgram
takes three input tensors named inp, wx, h (h_in in Fig-
ure 10(b)), and produces an updated tensor h (h_out in Fig-
ure 10(b)). The generated code of each Loop-uTask contains
a loop (line 4) and the uTasks (line 5-7) separated by barriers
for synchronization across GPU blocks.
Memory management Different from existing DNN frame-
works that allocate tensors at runtime, COCKTAILER needs to
statically allocate tensor memory to execute the control flow
operations on GPUs. The variables in the loop body can be
divided into four categories: (1) constants (wx, inp); (2) inter-
mediate results (inpi, xi); (3) iteration count (i); (4) loop-
carried dependencies (h). All these variables are represented
by pointers to the corresponding pre-allocated tensors and can
be obtained from get_input_data. Specifically, the pointer
to the constants are the corresponding function inputs, the
intermediate results are allocated from a tmp buffer (line 2 in
Figure 10(b)), and the pointer to the iteration count is &i. The
pointers to the loop-carried dependencies are a little complex
because the variable exists in both input tensors and output
tensors of the Loop-uOperator. First, some CopyUOperators
are inserted to copy the input tensors (h_in) to the corre-
sponding output tensors (h_out). Then, the body_uTasks
is generated via only visiting the output tensors. Additional
CopyUOperators and dependencies between uOperators in
the loop body are added to ensure the correctness of the over-
lapped input and output tensors.

4.1.3 Code Generation for Branch-uTask

Overall structure Figure 11(a) contains a DNN model with
two branches, The then branch takes tensors x, w1, and w2 as
inputs and produces tensors y and z; The else branch takes
tensors x and b as inputs and produces tensor z. The input
of the generated Branch-uProgram is the union of inputs of

Branch-uProgram

matmulthen:

sigmoid

conv

addelse:

copy

Branch-uProgram

matmulthen:

Branch-uProgram

sigmoidthen:

addelse: copy

Branch-uProgram

convthen:

(a) Single kernel (b) Branch reclustering

Figure 12: Optimize Branch-uProgram by branch reclustering

the two branches as well as the cond tensor. The output is
the union of the outputs of the two branches. If an output
only exists in one branch, CopyUOperators will be added to
the other branch to move the corresponding old value to the
output tensor (line 9 of Figure 11(b)). The intermediate results
are saved in tensors allocated from the tmp buffer. As only
one branch may be executed in each run, the intermediate
results of the two branches can use the same memory space.
Branch reclustering Scheduling a whole ControlFlow-
uProgram to a single GPU kernel is not always the best choice
because different operations prefer different GPU occupancy
(number of threads concurrently executed on an SM). For
example, matmul uses a large amount of shared memory and
registers for saving the tiles, resulting in limited occupancy,
while element-wise operations prefer large occupancy to im-
prove memory bandwidth. COCKTAILER also tries to sched-
ule a Branch-uProgram to multiple Branch-uPrograms with
each Branch-uProgram containing uOperators with similar
preferred occupancy and keeps the execution of branch con-
dition on the GPU. The example model in Figure 12 con-
tains limited-occupancy-uOperators matmul and conv (in
green) and large-occupancy-uOperators sigmoid, add, and
copy (in blue). These uOperators are scheduled into three
Branch-uPrograms for limited occupancy, large occupancy,
and limited occupancy, respectively. The two branches are co-
scheduled so each GPU kernel can contain uOperators from
both branches. This branch reclustering technique reduces the
kernel size, thus can also alleviate register pressure of large
GPU kernels.

4.1.4 Code Generation for uTask Reference

Overall structure uTask reference is a special case that
calls a uTask defined in another uProgram. It is designed
for recursions where a function may call its callers like Fig-
ure 13(a). To support recursion, the function declarations of all
uPrograms whose uTasks are referenced by uTask references
are generated at the start of the code (line 1 of Figure 13(b)).
Then, all uPrograms generate their function definitions. The
maximum stack depth of our recursion implementation cannot
be increased at runtime, so users need to manually set a limit
to the stack depth, or COCKTAILER will use all free memory
to save the intermediate results in the call stack. The base
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1 def Recursion(l, r, is_leaf, inp, w, root):
2 cond = is_leaf[root]
3 if cond:
4 output = inp[root]
5 else:
6 a = Recursion(l, r, is_leaf, inp, w, l[root])
7 b = Recursion(l, r, is_leaf, inp, w, r[root])
8 c = a + b
9 output = matmul(c, w)

10 return output

(a) A recursive model

1 __device__ void RecursionUProg(float* l, float*
r, bool* is_leaf, float* inp, float* w, int*
root => float* output | char* tmp);

2 __device__ void BranchUProg(float* cond, float*
l, float* r, bool* is_leaf, float* inp,
float* w, int* root => float* output | char*
tmp) {

3 if (*cond) {
4 GatherUOp(inp, root => output);
5 } else {
6 float *a = tmp, *b = tmp+256, *c = tmp+512;
7 RecursionUProg(l, r, is_leaf, inp, w, l + (*

root) => a | tmp + 768); Barrier();
8 RecursionUProg(l, r, is_leaf, inp, w, r + (*

root) => b | tmp + 768); Barrier();
9 AddUOp(a, b => c); Barrier();

10 MatmulUOp(c, w => output);
11 }
12 }
13 __device__ void RecursionUProg(float* l, float*

r, bool* is_leaf, float* inp, float* w, int*
root => float* output | char* tmp) {

14 float *cond = tmp;
15 GatherUOp(is_leaf, root => cond); Barrier();
16 BranchUProg(cond, l, r, is_leaf, inp, w, root

=> output | tmp + 256);
17 }

(b) The generated code

Figure 13: Example of recursion with uTask reference

case check is kept in the function body as a branch operation.
Simulation of GPU stack Though NVIDIA GPUs have the
built-in support of recursion, the stack is slow and with very
limited supported depth. The reason is that GPU needs to save
the registers of all threads during function calls. However, in
a DNN program, we only need to save the pointers to tensors
and the program counter of the current stack frame before
performing a function call. Moreover, the same set of tensor
pointers are shared by multiple uTasks, and only a single
copy needs to be saved. Therefore, we have the opportunity
to reduce the size of saved information to both increase the
stack depth and reduce the time for saving the stack frame.

To achieve this, COCKTAILER implements a stack in global
memory to simulate the function call behavior. As it is dan-
gerous to directly update the program counter, COCKTAILER
choose to inline all uPrograms to a single function and use
“goto” together with “labels” inserted into the inlined func-
tion to simulate the update of the program counter. The labels
are placed at the start of the function and at the end of each
function call inside the function. Instead of maintaining pro-
gram counters, the stack saves the label of each stack frame.
Each stack frame only consumes tens of bytes of memory, so
COCKTAILER can also save the stack in GPU shared memory

Model Input shape Description
LSTM 64, BS, 256 hidden 256, length 64, layer 10

NASRNN 1000, BS, 256 hidden 256, length 1000, layer 1
Attention BS, 12, 64, 64 head 12, hidden 768, length 64

Seq2seq BS, 256 hidden 256, embed 3797×256, max length: 50
dataset: tatoeba-eng-fra

BlockDrop BS, 3, 32, 32 drop layers from ResNet-32, dataset: CIFAR-10
SkipNet BS, 3, 224, 224 drop layers from ResNet-101, dataset: ImageNet

RAE 127, 512 hidden 512, dataset: Stanford Sentiment Treebank

Table 1: Model configurations. BS refers to “batch size”.

to avoid the memory fence and inter-block barrier for main-
taining a synchronized stack across different uTasks when
possible.

4.2 COCKTAILER on AMD ROCm GPUs
AMD ROCm GPUs provide a HIP programming model [2],
which is similar to CUDA and is compatible with most CUDA
statements. Besides, AMD provides a hipify tool to convert a
CUDA kernel to a HIP kernel. COCKTAILER first generates a
CUDA kernel and then leverages the hipify tool to convert it
to the HIP version. Some uOperators are re-implemented due
to the difference between CUDA and ROCm architectures.

5 Evaluation

Platform Our evaluation is on two accelerators: (1) NVIDIA
Tesla V100-PCIE-32GB GPU with 2 Intel Xeon 5218 CPUs.
The compiler is CUDA 11.5. (2) AMD Instinct MI100 GPU
with 2 Intel Xeon 6338 CPUs. The compiler is ROCM 4.3.
Baselines We compare COCKTAILER with representative
state-of-the-art deep learning frameworks including the most
popular imperative framework PyTorch [36] v1.11 for CUDA
and v1.10 for ROCM with TorchScript [3] enabled, the repre-
sentative DAG-based framework TensorFlow v1.15 [4], and
JAX v0.3.20 [11] with just-in-time compilation (JIT) enabled.
ROCM 5.3 is used in JAX due to compatibility problems.
Note that the latest TensorFlow 2 is redesigned as an impera-
tive framework like PyTorch and JAX, therefore we choose
TensorFlow v1.15 to evaluate the DAG-based framework. We
also create a baseline that accelerates each basic block of the
DNN program with Rammer [28] and relies on PyTorch for
executing the control flow operations (COCKTAILERBASE).
COCKTAILERBASE uses the same kernel implementation of
each operator and the same compilation passes excluding the
control-flow-related ones as COCKTAILER.
Benchmarks Our evaluation includes a set of representative
DNN models that covers typical architectures like CNN, RNN,
and transformers, different application domains including CV,
NLP, and speech, and different types of control flow opera-
tions including loops, branches, and recursions. LSTM [16]
is a representative RNN model for NLP and speech, and has
been manually optimized by both deep learning frameworks
and libraries. We use the built-in LSTM operators when pos-
sible, which are linked to the manually optimized LSTM im-
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(b) BS=64. RAE and SkipNet cannot be batched for execution.
Figure 14: End-to-end DNN inference on NVIDIA V100 GPU

plementation in vendor libraries like cuDNN. NASRNN [58]
is another RNN-based model created by network architecture
search (NAS) that has not been manually optimized yet. Atten-
tion [43] is a widely used architecture in NLP and CV. We use
an auto-regressive attention mechanism to continue sentences.
The above three models contain loops with fixed iteration
counts. Seq2seq [40] is a sequence-generation model that
contains a while loop for continuously generating new tokens
until an end-of-sequence (EOS) token is emitted or the maxi-
mum sequence length limit is reached. BlockDrop [47] and
SkipNet [46] are two CNN-based CV models with branches
for skipping some layers. Recursive Autoencoder (RAE) [39]
is a well-known recursive model for NLP. The configuration
of these models is listed in Table 1.

We set the batch size (BS) of the experiments to 1 and 64 to
match the requirements for online inference and offline infer-
ence. The time is measured by averaging 100 tests after 100
warm-up runs. For models using real datasets, we randomly
sample 100×BS cases from the datasets.

5.1 End-to-end Evaluation on NVIDIA GPU
Figure 14 shows the inference performance of COCKTAILER
by comparing with TorchScript, TensorFlow, and JAX with
JIT enabled. All three frameworks support control flow op-
erations by executing them on CPU. Overall, COCKTAILER
outperforms the best baseline in each model by 1.85× in
geometric mean (up to 8.22×). Specifically, COCKTAILER
outperforms TorchScript by 3.98× on average (up to 9.35×),
TensorFlow by 18.45× on average (up to 196.85×), and JAX
by 3.05× on average (up to 327.62×). The time for compiling
each model (except kernel tuning by AutoTVM and Ansor)
is several seconds to minutes.
Models with loops LSTM has been manually optimized by
many frameworks and vendor libraries, and we use the fastest
built-in implementation in the baselines. The core control
flow operations of LSTM are two loops iterating over the
input sequence and the layers respectively. TensorFlow and
TorchScript use the manually-optimized LSTM in cuDNN
library, while JAX loops over manually-optimized LSTM
cell implementation. According to profiling, TensorFlow uses

the persistent-RNN [8] to optimize the loop over the input
sequence, but it does not accelerate the loop iterating over
the layers. TensorFlow with BS=64, TorchScript, and JAX
only optimizes the operators in one LSTM cell, and does
not perform joint optimizations on LSTM cells in different
iterations. Different from these systems, COCKTAILER fully
unrolls the static loop over layers and unrolls some steps of the
loop over inputs, so that it can expose a large set of operators
to the data flow optimization passes and benefit from the inter-
operator schedule of Rammer. COCKTAILER outperforms all
framework with handly-optimized implementations by 1.75×
when BS=1 and 1.93× when BS=64.

The computation of NASRNN and Attention has not been
manually optimized. These frameworks optimize the basic
block using only passes for compiling static data flow, and
execute the loop on CPU. COCKTAILER performs some loop
optimizations and schedules the loop to thread block level.
With such optimizations, COCKTAILER achieves 2.10× on
NASRNN model and 2.82× speedup on Attention model over
the fastest baseline when BS=1. However, COCKTAILER only
achieves 1.01× speedup over COCKTAILERBASE on Atten-
tion BS=64 because control flow only take a small portion of
execution time when the body computation is large enough.

Seq2seq is implemented with a while loop, and existing
frameworks need to copy the decision from the accelerator
to the CPU to decide whether to continue the loop. By exe-
cuting the loop on GPU, COCKTAILER can both use fewer
kernels and avoid such synchronization. The speedup over the
fastest baseline is 1.61× and 1.29× when BS=1 and BS=64,
respectively.

Models with branches BlockDrop and SkipNet drop some
layers from ResNet with decisions generated at runtime. The
baselines need to copy the decision from GPU to CPU to
decide whether to launch the next layer. COCKTAILER avoids
such synchronized copy by scheduling the branch to block
level for BlockDrop BS=1, and using branch reclustering for
BlockDrop BS=64 and SkipNet BS=1. COCKTAILER acceler-
ates BlockDrop by 1.84× and 1.13× over the best baseline
when BS=1 and BS=64, respectively, and accelerates SkipNet
by 1.41×.
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Figure 15: Control flow overhead of models with loops.

Model with recursion RAE is a recursive model. Tensor-
Flow does not support recursion. PyTorch and JAX can only
run this model in Python, resulting in poor performance.
COCKTAILER schedules the recursion to block level with
parallel execution and executes the recursive calls efficiently
with the simulated stack, resulting in 9.35×, 327.62×, and
8.22× speedup over PyTorch, JAX, and COCKTAILERBASE
respectively.
Discussion Whether a model is control flow bound or data
flow bound depends on the ratio of control flow computa-
tion and data flow computation. According to the evaluation
among different models in Figure 14, it is clear that COCK-
TAILER can achieve higher speedup when model execution
has more control flow computation, e.g., NASRNN, RAE.
When the data flow occupies the most computation (e.g.,
Attention in BS=64), COCKTAILER can achieve similar per-
formance with the fastest baseline.

5.2 Control Flow Overhead Analysis

In this section, we evaluate the performance degradation
caused by control flow boundary in different systems when
BS=1. The results are shown in Figure 15, 16, and 18. For
each model, we choose an input with a typical execution trace
of the dataset. We compare the real scenario that executes con-
trol flow at runtime to executing the traced computation graph
with no control flow to evaluate the overhead. The traced
graph baseline of COCKTAILER is compiled by Rammer with
the same kernel implementations and compilation passes for
data flow as COCKTAILER.
Models with loops Figure 15 shows the control flow over-
head of models with loops. The input data of LSTM, NAS-
RNN, and Attention is a sequence with length provided in Ta-
ble 1, and the input to Seq2seq generates a 10-token-sequence
which is near to the average sequence length of the dataset.

For LSTM model, Rammer can explore the parallelism of
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TorchScript
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Cocktailer
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0 20 40
time (ms)
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no skip traced graph with control flow kernel time

Figure 16: Control flow overhead of models with branches.
"No skip" refers to running all layers of the ResNet model.

cells in different steps if all steps are unrolled. The dynamic
unrolling of COCKTAILER provides similar performance with
Rammer, but can support dynamic step count. Other systems
do not explore such parallelism and are slower than COCK-
TAILER. To expose the loop of TorchScript and TensorFlow,
we do not use their cuDNN LSTM here.

For NASRNN, Attention, and Seq2seq models, COCK-
TAILER schedules the loop to thread block level with only one
GPU kernel, and is faster than Rammer which uses a larger
number of kernels. A similar phenomenon also appeared in
the NASRNN model with JAX. JAX generates thousands of
different kernels for execution the unrolled loop and is slower
than looping over the NASRNN cell with 3 kernels for 1000
times. This indicates that an efficient implementation of con-
trol flow can sometimes be faster than running the unrolled
data flow.

For Seq2seq model, TorchScript, TensorFlow, and JAX
need to copy the decision back to CPU to decide whether
to execute the next iteration of the while loop, causing a syn-
chronization between CPU and GPU. Therefore, when control
flow is used, the increase of execution time is larger than that
of kernel time. COCKTAILER does not have such a problem
because all control flow operations are executed on GPU.
Models with branches Figure 16 shows the control flow
overhead of models with branches. The two models skip some
layers from a ResNet model, and we add a “no skip” which is a
normal ResNet without skipping layers. The ratios of executed
layers are 7/15 for BlockDrop and 23/33 for SkipNet, which
are similar to the average ratio of the models respectively.

Due to the synchronization between CPU and GPU, the
control flow operations of the baselines increase the execution
time by at least 34% over the traced version for BlockDrop,
while COCKTAILER only increases the execution time by 11%.
Therefore, though more than half of the layers are skipped, the
performance improvement of layer skipping compared with
the original ResNet model is only at most 1.44× in the base-
lines, while COCKTAILER achieves 1.79× speedup. In Skip-
Net, the network for making the skip decision is heavier and
the ratio of executed layers is larger, so the traced graph may
take longer execution time than the original ResNet model.
The slow execution of control flow makes the performance of
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Figure 18: Control flow overhead of RAE with recursion.

this model even worse in baselines, while COCKTAILER can
still provide reasonable performance.

Figure 17 shows the performance of BlockDrop and Skip-
Net at different ratios of executed layers. The results of JAX,
the fastest baseline of the two models are also included. When
the executed ratio is 0, the model executes all control flow
operations but runs no layers, and COCKTAILER achieves
3.00× and 2.68× speedup over JAX on BlockDrop and Skip-
Net, respectively. This proves the low control flow overhead
of COCKTAILER. In SkipNet, if the model is executed with
JAX, the layer-skipping can improve the performance only
when the ratio of executed layers is lower than 20%, while if
executed with COCKTAILER, this ratio becomes about 65%.

Model with recursion Figure 18 shows the control flow
overhead of the recursive RAE model. The input is a 65-node
tree from the Stanford Sentiment Treebank dataset. PyTorch
and JAX can only execute the recursion in Python and the
time is much longer than executing the traced graph. Rammer
processes nodes without dependencies in parallel with a static
schedule that only works for this tree, while COCKTAILER
executes the model by control flow operations on the GPU
side and only increases the time by 11%.

Discussion Compared with the traced graph baseline which
removes all the control flow operations in the models and can
be considered as the optimal status, COCKTAILER achieves
similar performance. Besides, the overall latency of COCK-
TAILER is similar to the kernel time, which indicates that
COCKTAILER can minimize the overheads introduced by con-
trol flow. Furthermore, the evaluations on BlockDrop and
SkipNet show that COCKTAILER also enables scenarios like
efficient computation by achieving real speedup. We hope
COCKTAILER can provide more flexibility for algorithm re-
searchers to design DNN architectures with control flow.
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5.3 Breakdown of Optimizations

Figure 19(a) provides the breakdown of optimizations applied
on models with loops. On average, scheduling the loop to
block level provides 4.95× speedup over COCKTAILERBASE
that executes the loop in PyTorch runtime. And applying the
optimizations in §3.2, especially the dynamic loop unrolling
further improves the performance of LSTM by 2.22× and
Attention by 1.17×. In LSTM, the loop is re-scheduled to
kernel level after loop unrolling.

Figure 19(b) provides the breakdown for models with
branches. The branches of the two models are executed on
GPU, with branch reclustering used in SkipNet. The schedul-
ing provides 3.01× and 1.38× speedup over COCKTAILER-
BASE on BlockDrop and SkipNet, and the optimizations fur-
ther accelerate the two models by 1.21× and 1.02×.

Figure 19(c) shows the performance of the RAE model.
Executing the recursion on GPU provides 3.54× speedup over
COCKTAILERBASE. The simulation of stack using global
memory and shared memory are 1.45× and 1.99× faster than
using the built-in GPU stack. And the parallel scheduling of
uPrograms further improves the performance by 1.17×.

5.4 End-to-end Evaluation on AMD GPU

Figure 20 compares TorchScript, TensorFlow, JAX with JIT
enabled and COCKTAILER on AMD MI100 GPU with BS=1.
COCKTAILER outperforms the three frameworks on all bench-
marks by 2.97× over TorchScript on average (up to 5.86×),
21.28× over TensorFlow on average (up to 112.34×), and
3.22× over JAX on average (up to 272.63×).
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Figure 20: End-to-end DNN inference on AMD MI100 GPU with BS=1

6 Related Work

Supporting control flow in deep learning can be divided into
two categories. The first one, represented by TensorFlow
1.x [4] and TorchScript [36], executes control flow operations
in the framework runtime on CPU. Control flow is imple-
mented as special operators (NextIteration for loops [52],
Switch for branches [52], and InvokeOp for recursions [19])
or instructions in the runtime. The second one, represented
by Chainer [42], PyTorch [36], and JAX [11], leverages the
runtime of general-purpose language like Python to support
the control flow operations. The control flow operations are
expressed with Python statements and executed by the Python
interpreter. AutoGraph [31], Janus [18], and Terra [22] show
that the control flow operations expressed by general-purpose
languages can sometimes be converted to the control flow
operators in the framework runtime. Despite different ways of
supporting control flow, the control flow operations in these
works can only be executed by CPU.

Some special forms of control flow have been deeply opti-
mized. VersaPipe [55] optimized pipelines for general GPU
programs. Cortex [10] provides interfaces to describe recur-
sion with data patterns (i.e., the recursion tree structure). It
assumes that the jump direction of all control flow only de-
pends on the input recursion tree structure, so it does not apply
to control flow depending on dynamically computed data, e.g.,
the while loop with unknown iteration count in Seq2seq [40],
and the branches whose direction is decided at runtime in
BlockDrop [47] and SkipNet [46]. COCKTAILER does not
assume the availability of such tree structures and works on
these models.

Past works on batching (e.g., DyNet [33], Cavs [49],
Tensorflow Fold [27], BatchMaker [12], Program-counter-
autobatching [37], and ORCA [51]) enable the parallelization
in different control flow operations by introducing a sched-
uler to batch the ready-to-execute operators, which is another
applicable approach and is complementary to COCKTAILER.
Specifically, COCKTAILER can compile subgraphs of a model,
and then batching can be applied to these subgraphs. Applying
batching on the more coarse-grained subgraph granularity can
also reduce the scheduling cost in the batching scheduling.

There are many deep learning compilers for optimizing a
computation graph without control flow, including TVM [6],
TASO [20], Rammer [28], DNNFusion [35], PET [44], and
AStitch [56]. These optimizations are compatible with COCK-
TAILER. COCKTAILER even enlarges their optimization scope
because the boundary of control flow has been reduced. Com-

pilation optimizations like function inline [5], loop unroll [9]
have been introduced in general-purpose language compilers
on CPU programs and have been implemented in COCK-
TAILER. COCKTAILER further introduces the new uTask ab-
straction to represent both data flow and control flow op-
erations, which aligns with the parallelism of hardware ac-
celerators, enabling analyzing and optimizing both data flow
and control flow computation over heterogeneous accelerators
(i.e., GPU). To scale DNN models on distributed architectures,
frameworks and compilers like Tofu [45], FlexFlow [21],
GSPMD [50], PipeDream [32], Tutel [17], FasterMOE [14],
FlexMoE [34], BaGuaLu [29], Alpa [54] and SuperScaler [25]
parallelize the execution of deep learning models across multi-
ple hardware devices, but only focus on models with static ar-
chitectures or specific types of dynamic models (e.g., Mixture-
of-Experts [30]). COCKTAILER exposes the parallelism of
control flow operations, which can be leveraged to support
dynamic models over distributed devices.

7 Conclusion

DNN frameworks and compilers suffer from performance
issues when supporting sophisticated dynamic DNN mod-
els. The parallelism mismatch between control flow and data
flow results in separate execution of DNNs on the CPU and
accelerator, causing not only overheads but also missed opti-
mization opportunities. COCKTAILER supports sophisticated
DNN models by co-scheduling the execution of control flow
and data flow that (1) provides the fine-grained uTask ab-
straction for control flow and data flow in DNN programs
to open a holistic scheduling space on hardware accelera-
tors; (2) designs the scheduling mechanism and a heuristic
policy to exploit this scheduling space; (3) provides control
flow optimizations in both scheduling and code generation.
Evaluations demonstrate that COCKTAILER significantly out-
performs state-of-the-arts on sophisticated DNN models. By
enabling the co-optimizing of control flow and data flow in a
single space, COCKTAILER positions itself as a new enhance-
ment to the deep learning infrastructure.
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A Artifact Appendix

Abstract
This artifact helps to reproduce the results of OSDI’23 paper:
COCKTAILER: Analyzing and Optimizing Dynamic Control
Flow in Deep Learning.

Usage
The input of COCKTAILER is a PyTorch program. COCK-
TAILER exports the PyTorch program to ONNX format with
ONNX loop and branch operators as well as an extended in-
voke operator for recursion. Then COCKTAILER generates
the code with optimizations described in the paper and wraps
the code to a PyTorch custom operator for execution.

Scope
The artifact can be used to reproduce the experiments of the
paper, including the end-to-end comparison (Figure 14 and
20), control flow overhead analysis (Figure 2, 15, 16, and 18),
performance of different ratio of executed layers (Figure 17),
and breakdown of optimizations (Figure 19).

Contents
This artifact includes the code of COCKTAILER, input data
of experiments, a guide for setting up the environment of the
experiments, and scripts for running the experiments. It helps
to reproduce the following Figures:

• Figure 2: Control flow overhead in JAX
• Figure 14: End-to-end DNN inference on NVIDIA V100

GPU
• Figure 15: Control flow overhead of models with loops
• Figure 16: Control flow overhead of models with

branches
• Figure 17: Different ratio of executed layers
• Figure 18: Control flow overhead of RAE with recursion
• Figure 19: Breakdown of models with BS=1
• Figure 20: End-to-end DNN inference on AMD MI100

GPU with BS=1

Hosting
The main contents of COCKTAILER are hosted
at https://github.com/microsoft/nnfusion/
tree/cocktailer_artifact/artifacts, branch
cocktailer_artifact.

Requirements
This artifact needs two machines:

• a machine with 8 NVIDIA V100 GPUs, with NVIDIA
driver properly installed. Users can either follow the
installation guide to setup the software environment or
install the NVIDIA Container Toolkit to reproduce the
results within the docker provided by the artifact.

• a machine with 1 AMD MI100 GPU, with ROCm driver
and docker properly installed. Users can then reproduce
the results within the dockers provided by the artifact.
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