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Abstract
SmartNICs have recently emerged as an appealing device for
accelerating distributed systems. However, there has not been
a comprehensive characterization of SmartNICs, and existing
designs typically only leverage a single communication path
for workload offloading. This paper presents the first holis-
tic study of a representative off-path SmartNIC, specifically
the Bluefield-2, from a communication-path perspective. Our
experimental study systematically explores the key perfor-
mance characteristics of communication among the client,
on-board SoC, and host, and offers insightful findings and
advice for designers. Moreover, we propose the concurrent
use of multiple communication paths of a SmartNIC and
present a pioneering guideline to expose new optimization
opportunities for various distributed systems. To demonstrate
the effectiveness of our approach, we conducted case studies
on a SmartNIC-based distributed file system (LineFS) and
an RDMA-based disaggregated key-value store (DrTM-KV).
Our experimental results show improvements of up to 30%
and 25% for LineFS and DrTM-KV, respectively.

1 Introduction
Remote Direct Memory Access (RDMA) has been widely
adopted in modern data centers [23, 71, 20], pushing network
bandwidth (towards 400 Gbps [44]) and distributed system
performance [17, 76, 75, 64, 80, 82, 77] to the next level.
However, the high-speed network requires more CPU re-
sources to saturate a fast RDMA-capable NIC (RNIC) [38],
which places a significant CPU burden on distributed sys-
tems [32]. One-sided RDMA can alleviate CPU pressures by
enabling the RNIC to directly read and write host memory
in a CPU-bypass way. However, the limited offloading capa-
bilities may cause network amplifications and thus degrade
system performance [61, 28].

The continuous improvements in RDMA [67] and the es-
sential power and memory walls of CPUs have led to the
emergence of SmartNICs—the RNICs with programmable
capabilities. These NICs offer systems the opportunity to
offload more complex computations to the NIC. Currently,
there are two main types of SmartNICs. The first one is the
on-path SmartNIC [42], which directly exposes the process-
ing units (NIC cores) for handling RDMA packets to the
systems. Unfortunately, programming low-level NIC cores
with firmware [38, 61] and isolating the offloaded program

from normal RDMA requests pose significant burdens on
developers. To simplify system development, the off-path
SmartNIC [52, 53, 9, 51] attaches a programmable multicore
SoC (with DRAM) next to the RNIC cores, which is off the
critical path of RDMA. Thanks to this separation, the SoC is
independent of normal RDMA requests and can further de-
ploy a full-fledged OS to make the developments easier [32].
Specifically, developers can treat the SoC as a separate server.
In this paper, we focus on off-path SmartNIC1 due to its
generality and programmability.

There have been valuable studies on characterizing off-path
SmartNICs [38, 37, 32, 68, 2], with a focus on their ability
to offload computation. A key finding is that the comput-
ing power of off-path SmartNICs is weaker than that of the
host [38, 37, 32]. This means that off-path SmartNICs do
not improve the speed of a single network path, such as that
between NIC and the host. For example, iPipe [38] found that
the path between the host and SoC has a relatively high la-
tency due to the support for more developer-friendly RDMA.

Although prior work has been valuable in utilizing Smart-
NICs for distributed systems, it has primarily focused on
offloading computation to the SmartNIC’s SoC. However, it
is surprising that the fundamental function of SmartNICs,
namely networking, has been overlooked despite its signifi-
cant impact on overall performance. In fact, networking on
the SmartNIC is intricate, because it provides multiple com-
munication paths. For example, SmartNICs support using
RDMA to access the memory of the host or SoC, as well as
exchanging data between the host and the SoC.

To this end, this paper conducts the first systematic study
on characterizing the performance of communication paths of
SmartNIC. Unlike previous studies that simply report basic
performance numbers [37, 32, 68], we systematically analyze
the performance implications of SmartNIC architecture on
different paths. Specifically, we investigate why and when
one path may be faster than another, identify the bottlenecks
for each path, examine how the heterogeneity of the SoC
brings performance anomalies in paths related to the SoC,
and finally explore how paths interact with each other. The
main highlights of our results are:

• Different paths exhibit diverse performance characteristics.
The RDMA path from the NIC to the SoC is up to 1.48×
faster than the path to the host.

1This paper will use “SmartNIC” (or “SNIC” for brevity) to specifically refer
to off-path SmartNICs.
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• The SoC introduces new performance anomalies to paths
related to it. The low-level hardware details of the SoC,
including the memory access path and PCIe MTU, differ
from those of the more powerful host CPU. Without con-
sidering such factors, RDMA requests involving the SoC
suffer from up to 48% bandwidth degradation.

• The paths between the SoC and the host may underutilize
the PCIe. RDMA from the SoC to the host (and vice versa)
crosses the NIC internal PCIe twice. It can only utilize half
of the PCIe bandwidth and requires processing up to 6×
more PCIe packets than the others. DMA only passes the
PCIe once, but it is not always faster than RDMA due to
the weaker SoC DMA engine (compared to the one on the
RNIC) and also suffers from packet amplifications.

Based on our performance characterization, we found that
prior approaches, which mainly optimize a single path for a
specific functionality of distributed systems, failed to fully
exploit SmartNICs. This is because a single path cannot uti-
lize the computing and networking capability of SmartNICs.
Further, only considering a single path may ignore resource
interference between different paths (e.g., the PCIe and PCIe
switches). As a result, LineFS can only utilize up to 117 Gbps
of bandwidth on a 200 Gbps SmartNIC. A similar issue ex-
ists in SmartNIC-based disaggregated key-value store: while
choosing a path to offload all key-value (KV) store operations
to the SmartNIC SoC can eliminate the network amplification
in existing RDMA-based key-value stores, the wimpier com-
puting power of SmartNIC SoC limits its overall throughput.

Based on the observations from our study, we further pro-
pose an optimization guideline to help designers smartly ex-
ploiting multiple paths of SmartNICs. Instead of optimizing
distributed systems along a single path, it holistically exploits
multiple paths for functionalities with different characteristics
and carefully considers cross-path interference. To demon-
strate the efficacy of our guideline, we conduct two case
studies by optimizing two state-of-the-art systems, namely
LineFS [32] and DrTM-KV [11, 76]. Due to the exposed new
optimization spaces, following our guideline can improve the
performance of LineFS and DrTM-KV by up to 30% and
25% accordingly.

Contributions. We summarize our contributions as follows:

• A comprehensive performance characterization of repre-
sentative off-path SmartNICs, with a particular focus on
various communication paths.

• The first optimization guideline for smartly exploiting the
multiple paths of SmartNICs with managed cross-path re-
source interference.

• Two case studies on SmartNIC-accelerated distributed sys-
tems (i.e., file system and key-value store) with notable
performance improvements, demonstrating the efficacy of
our guideline.

Assumptions and generalizability of our work. We as-
sume an off-path SmartNIC with the following architecture:
the SoC is linked with NIC cores via a PCIe switch, and
there is heterogeneity between SoC and host CPUs. We be-
lieve this is a representative architecture, as many older (e.g.,
NVIDIA Bluefield-1 [55], Broadcom Stingray [9]), current
(e.g., NVIDIA Innova2 [51], Bluefield-2 [52]), and upcom-
ing SmartNICs (e.g., Bluefield-3 [53], Marvell OCTEON 10
DPU [43]) use a similar setup. We conducted experiments
on Bluefield-2 [52]—the state-of-the-art SmartNIC with this
architecture. Meanwhile, we also confirmed that our results
hold for Bluefield-1.

However, we acknowledge that significant architectural
changes (e.g., on-path SmartNICs) may affect our findings.
Nevertheless, we argue that our methodology—first studying
the performance implications of each communication path
and then smartly exploiting multiple paths of SmartNICs—
can be generalized to other SmartNICs. Our benchmarking
code, tools, and systems are available at https://github.
com/smartnickit-project.

2 Background and Context
2.1 RDMA-capable NICs (RNICs)

RDMA (Remote Direct Memory Access) is a low-latency
(2µs) and high-bandwidth (200 Gbps) network widely
adopted in modern data centers [23]. One intuitive way to
utilize RDMA is to accelerate message passing with its
two-sided primitives (SEND/RECV), such as RDMA-based
RPC [27, 17, 12, 47, 30]. Alternatively, the one-sided prim-
itives (READ/WRITE2) allow the RNIC to access the host
memory bypassing the host CPU. Specifically, the NIC core
internally uses the direct memory access (DMA) feature of
the PCIe link to access the host memory (see Figure 1(a)).

Though RDMA has boosted the performance of many dis-
tributed systems [18, 76, 62, 29], usually by orders of magni-
tude, it still has the following two problems especially when
the RNICs scale up to higher performance.

Issue #1: Host CPU occupation. For two-sided primitives,
distributed systems need non-trivial CPUs to saturate a pow-
erful NIC. Our measurements show that a 24-core server
can only saturate 87 million packets per second (Mpps) on a
200 Gbps RNIC (ConnectX-6), while NIC cores can process
more than 195 Mpps.3 A recent work further shows that a
distributed file system requires 2.27× CPU cores to handle
network packets, when the network bandwidth scales from
25 Gbps to 100 Gbps [32]. Although deploying more power-
ful CPUs can alleviate this issue, RNIC bandwidth is also
rapidly growing, currently reaching up to 400 Gbps [44].

Issue #2: Network amplification. Using one-sided RDMA
primitives alleviates the host CPU pressure by allowing sys-

2We use READ/WRITE to indicate RDMA READ/WRITE in this paper.
3Detailed hardware setups can be found in §2.4.
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Figure 1: Architecture of different NICs: (a) RDMA-capable NIC (RNIC), (b) on-path SmartNIC, and (c) off-path SmartNIC (our focus).
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Figure 2: An illustration of a get request in a distributed in-memory
key-value store that is accelerated by using either (a) RNICs (w/
network amplification) or (b) SNICs (w/o network amplification).

tems to offload memory accesses to the RNIC. However,
the limited offloading capability constraints system perfor-
mance, as a single request may involve multiple round trips
of READs/WRITEs to complete (usually termed network am-
plification). Figure 2(a) exemplifies the execution of a get
request on a distributed in-memory key-value store with one-
sided RDMA READs. The client first uses one (or multiple)
READ(s) to query the index for a given key. Based on the
index returned by the previous READs, an additional READ
is issued to retrieve the value.

2.2 From RNICs to SmartNICs

To address the limitations of RNICs, SmartNIC adds an on-
board memory (4–64 GB) together with various computation
units (e.g., SoC) to the NIC. By exposing them to the develop-
ers, SmartNIC enables offloading customized computations
onto it. Specifically, SmartNICs can be categorized as follows.

On-path SmartNIC. As shown in Figure 1(b), the on-path
SmartNIC exposes the NIC cores to the systems with low-
level programmable interfaces, allowing them to directly ma-
nipulate the raw packets. As the name implies, the offloaded
code is on the critical path of the network processing pipeline.
Example NICs include Marvell LiquidIO [42] and Netronome
Agilio [48]. The benefit is that the offloaded code is closer
to the network packets. Therefore, inline requests that only
interact with the NIC, such as writing to the on-board memory
(Á), are extremely efficient [38, 61].

However, on-path SmartNIC has two limitations. First, the
offloaded code (Ã) competes NIC cores with the network
requests sent to the host (À). If offloading too much computa-
tion onto it, the normal networking requests sent to the host

Table 1: Hardware description of Bluefield-2 [52].

Component Hardware description

NIC cores ConnectX-6 (2× 100 Gbps RDMA ports)
SoC cores ARM Cortex-A72 processor (8 cores, 2.75 GHz)
SoC memory 1× 16 GB of DDR4-1600 DRAM
PCIe1 PCIe 4.0 ×16 (256 Gbps bandwidth)

would suffer a significant degradation [38]. Second, program-
ming on-path NICs is difficult due to its low-level interface.

Off-path SmartNIC. As shown in Figure 1(c), the off-path
SmartNIC offers an alternative: it packages additional com-
pute cores and memory in a separate SoC next to the NIC
cores. Therefore, the offloaded code is off the critical path of
the network processing pipeline. From the NIC perspective,
the SoC can be viewed as a second full-fledged host with an
exclusive network interface. To bridge the NIC cores, SoC and
host together, a PCIe switch is integrated inside the SmartNIC
to properly dispatch network packets. Example NICs include
NVIDIA Bluefield [52, 53] and Broadcom Stingray [9].

Compared to the on-path counterparts, the offloaded code
does not affect the network performance of the host as long
as it does not involve network communications (Á). Thanks
to this clear separation, the SoC can run a full-fledged kernel
(e.g., Linux) with a full network stack (i.e., RDMA), simplify-
ing system development and allowing for offloading complex
tasks [32]. However, accelerating distributed systems with
off-path SmartNICs is typically more challenging than using
the on-path counterparts. This is because the PCIe switch pro-
longs all communication paths (i.e., À, Á, and Â), causing
potential performance degradation.

2.3 Target SmartNIC: NVIDIA Bluefield-2

We conduct our study on Bluefield-2, a typical off-path Smart-
NIC optimized for offloading general-purpose computations.
Figure 1(c) illustrates its overall hardware architecture, with
detailed hardware configuration shown in Table 1.

Hardware. Bluefield-2 equips a mature RNIC (ConnectX-
6) as its NIC cores for high-speed networking. These cores
support all RDMA operations. Its programmability comes
from an integrated on-borad SoC, which has 16 GB DRAM
and an ARM Cortex-A72 (8 cores, 2.75 GHz). A PCIe 4.0
switch bridges the NIC cores, SoC and host together, enabling
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Table 2: Machine configurations in our two rack-scale RDMA-capable clusters.

Name Nodes RDMA-capable NIC Host PCIe (PCIe0) Host CPU Host Memory

SRV 3
1× ConnectX-6 (200 Gbps)
1× Bluefield-2 (200 Gbps)

PCIe 4.0 ×16 (256 Gbps) 2× Gold 5317 v4 (12 cores, 3.6 GHz) 128 GB DDR4-2933

CLI 20 1× ConnectX-4 (100 Gbps) PCIe 3.0 ×16 (128 Gbps) 2× E5-2650 v4 (12 cores, 2.2 GHz) 96 GB DDR4-1600

bi-direction data transfer of up to 256 Gbps. Note that the SoC
is linked to the PCIe switch via an internal link, rather than
through PCIe.4 Specifically, the hardware counters provided
by Bluefield [54] also imply that it has only two PCIe links:
one linking RNIC with the switch (PCIe1) and the other
linking the switch with the host (PCIe0).

Software. The SoC runs a full-fledged Linux, allowing de-
velopers to treat it as a normal ARM server. The kernel also
hosts a full RDMA stack, making it convenient for enabling
RDMA-based communication. In addition, Bluefield provides
DOCA [57] SDK for advanced usage, such as DMA.

Communication primitives: RDMA and DMA. All commu-
nication paths related to the SoC are conducted using RDMA
to simplify system development. As shown in Figure 1(c),
clients can issue one-sided or two-sided RDMA requests to
the SoC (Á), similar to a twin server on the host. Meanwhile,
the SoC can also interact with the host via RDMA, and vice
versa (Â). However, exchanging data between the SoC and
the host must pass through the RNIC (PCIe1 and NIC cores)
for RDMA support, which adds a hidden bottleneck to this
path. Fortunately, we found that Bluefield further provides
DMA support (Â∗) with DOCA [57], allowing the SoC to use
DMA to access the host memory (and vice versa), bypassing
the RNIC.

Existing state of exploring Bluefield. Previous studies [38,
37, 32, 68] have mainly focused on the computing power of
Bluefield (Ã in Figure 1), revealing the relative weakness
of the SoC cores in terms of performing offloaded tasks and
sending network requests. This is because the frequency and
number of cores are inferior to those of the host CPU. Due
the power constraints of SmartNICs, it is unlikely that the
relative performance comparison between the NIC and host
CPU will change. Hence, we take this as a premise during
our investigation.

In contrast, few studies have considered various commu-
nication patterns in Bluefield (i.e., À, Á, and Â), which are
the main focus of our work. Thostrup et al. [68] found that
accessing the SoC memory (Á) using READ is faster than
accessing the host memory (À) in the same way. iPipe [38]
shows that using RDMA to communicate between the host
and SoC (Â) has high latency due to the software overhead
of supporting RDMA. This paper systematically explores
the performance characteristics of Bluefield and summarizes
insightful lessons and advice for future system developers.

4This has been confirmed by the NIC vendor.

2.4 Notation and testbed
Notations. This paper follows Bluefield’s hardware speci-
fication when describing low-level hardware details related
to Bluefield-2. As shown in Figure 1(c), “PCIe1” refers to
the PCIe link connecting the NIC cores to the PCIe switch,
and “PCIe0” refers to the link connecting the switch and
the host’s PCIe controller. The ARM cores, along with the
on-chip memory of Bluefield-2, are collectively referred to
as “SoC.” The machine hosting Bluefield-2 is referred as the
“host.” Furthermore, we use the terms “requester” and “re-
sponder” to refer to the machine issuing the RDMA requests
and the destination hardware component, respectively. For
example, in Figure 1(c), the requesters of paths À and Á are
any RDMA-capable machines (also called clients), and the
responders are the host and SoC, respectively. For path Â, the
requester and responder are the host and SoC, respectively,
and vice versa.

Testbed. Table 2 presents the machine configurations in our
testbed. To best utilize SmartNIC, we deploy Bluefield-2 on
the servers (SRV) with matching PCIe link (PCIe 4.0) by de-
fault. These machines can replace Bluefield-2 with 200 Gbps
ConnectX-6 (RNIC) for comparisons. Other machines (CLIs)
serve as clients that issue RDMA requests to the servers. All
machines in SRV and CLIs are connected through a Mellanox
SB7890 100 Gbps InfiniBand Switch. Note that the network
performance of the evaluated 200 Gbps NIC is not limited
since they connect to the switch with two 100 Gbps ports.

Table 3: The findings and advice from our study. Claims supported
by sufficient evidence are denoted by E, while those supported by
hypotheses are denoted by H.

SNIC Paths Findings/Advice E/H

À (§3.1) Throughput of RDMA is lower than RNIC H
Latency of RDMA is higher than RNIC E

Á (§3.2) One-sided RDMA performance is better H
Avoid memory accesses to close addresses E
Avoid large READ requests H

Â/Â* (§3.3) RDMA overuses the PCIe bandwidth E
Avoid large READ/WRTIE requests H
Enable doorbell batching carefully for RDMA E
Use DMA (Â*) to improve PCIe utilization E

À+Á (§4.1) Improve throughput by using paths À and Á H
concurrently (esp. in opposite directions)

À/Á+Â (§4.1) Selectively offload traffic to Â E
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Figure 3: The end-to-end latency (upper) and peak throughput (lower) of random inbound RDMA requests on different NICs. The symbols À,
Á, and Â in the legend correspond to the communication paths listed in Figure 1.

3 Characterizing SmartNIC Performance
As mentioned in §2.3, it is well-known that the computing
power of NIC is wimpier than that of the host CPU. There-
fore, we focus on analyzing the communication efficiency of
SmartNIC. Figure 3 shows the end-to-end latency and peak
throughput of sending different RDMA requests (e.g., READ,
WRTIE, and SEND/RECV) using either RNIC or SmartNIC
through different communication paths.

Evaluation setup. We conducted our experiments on the
clusters described in Table 2, using a state-of-the-art RDMA
communication framework [76]. For one-sided operations
(READ and WRITE), the requester communicates with one
responder using RDMA’s reliable connection (RC) queue
pairs (QPs). The responder addresses are randomly chosen
from a 10 GB address space by default. For two-sided op-
erations (SEND/RECV), the responder implements an echo
server that utilizes all available cores for handling messages,
and the requester communicates with it via unreliable data-
gram (UD) QPs for better performance [29, 76, 30]. For end-
to-end latency, we deploy one requester machine to prevent
interferences from queuing effects. For peak throughput, we
use up to eleven requester machines to saturate the responder.
Finally, we enable all well-known optimizations, including
address alignment [81], unsignaled requests [27] and huge
pages [17] to prevent side effects from misusing RDMA.

3.1 Communication from Client to Host (path À)

Latency. To compare communication with the host, we
conduct an apple-to-apple comparison between Bluefield-
2 (SNIC À) with ConnectX-6 (RNIC À), as they share the
same NIC cores [52]. Their performance gap best illustrates
the “performance tax” paid by the SmartNIC architecture.
As shown in Figure 3, SNIC À has 15–30%, 15–21%, and

SN
IC RNIC

RNIC

Switch

Host

PCIe1

PCIe0

READ WRITE

RNIC

RNIC

Host

PCIe 0

READ WRITE

Figure 4: The exec. flow of READ/WRITE on SNIC and RNIC.

6–9% higher latency than RNIC À for READ, WRITE, and
SEND/RECV, respectively. The increased latency on SNIC
comes mainly from the PCIe switch and PCIe1 between the
host and NIC cores. The one-way PCIe latency is approxi-
mately 300 ns, which is non-trivial for small RDMA requests
(1–2µs). Note that the result is measured indirectly. Specif-
ically, the end-to-end read latency on SNIC and RNIC is
2.6µs and 2.0µs, respectively. Compared to RNIC, READ
on SNIC passes through the PCIe switch twice (see Figure 4).
Thus, the cost of each pass is around 300 ns, which matches
the number reported in recent literature [69]. Furthermore,
the increased latency of WRITE on SNIC is lower than that
of READ, because it omits one pass through PCIe switch
for completion [49]. The latency of SEND/RECV on SNIC
also increases, but mainly due to the larger CPU costs at the
responder; the latency to post a request (via MMIO) on SNIC
is higher than RNIC (399 cycles vs. 279 cycles).

Throughput. As shown in Figure 3, for READ, WRITE,
and SEND/RECV, SNIC À has 19–26%, 15–22%, and 3–
36% lower throughput than RNIC À for payloads less than
512 bytes, respectively. We suspect the lower throughput
is due to the longer latency in processing RDMA requests
caused by PCIe switch. However, for larger requests, the re-
sults are similar to using RNIC as both are bottlenecked by
the network bandwidth.
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Bottleneck. The lowest bandwidth limit of NIC, PCIe1, and
PCIe0 will first become the bottleneck for communication
from client to host. On our testbed, the bottleneck is the net-
work: 200 Gbps. On the other hand, we find an interesting phe-
nomenon: the total inbound bandwidth of the requester can
approach twice the limit—400 Gbps—because the links are
bi-directional [58]. Specifically, if packets flow in opposite
directions, e.g., the READ and WRITE packets in Figure 5(a),
they can be multiplexed on the same link. To illustrate this,
we dedicate two requesters (each with 12 threads to saturate
the one-way bandwidth) to issue 4 KB packets. As shown in
Figure 5(b), if two clients send READ and WRITE requests
separately, a total of 364 Gbps bandwidth is measured on a
200 Gbps NIC (see READ+WRITE of SNIC À). In contrast,
if both clients send the same type of requests (either READ or
WRITE), only about 190 Gbps is measured. Note that though
this phenomenon is widely known in traditional networking
(i.e., messaging), where the messages are typically two-sided,
it is largely ignored by many RDMA-based systems, because
RDMA request can be one-sided.

Takeaways. Being “smart” incurs performance degradation
for communicating with the host for small requests. For small
requests, we demonstrate that extending RNIC (ConnectX-6)
to SNIC (Bluefield-2) causes performance degradation by
up to 36% and 30% in throughput and latency, respectively.
In general, for distributed systems that only use the path
À, it is recommended to use RNIC. Although the overhead
may be negligible for large requests or for networking with
longer latency, RNIC is cheaper and more energy-efficient
than SNIC.

3.2 Communication from Client to SoC (path Á)

Latency. For sending requests from the client to SoC (SNIC
Á in Figure 3), the latency of READ decreases by up to
14% compared to the host (SNIC À). The reason is that it
skips PCIe0. Yet, it is still 4–15% higher than RNIC, because
requests still must go through the PCIe switch at PCIe1. For
WRITE, SNIC Á provides similar performance as SNIC À
due to the asynchronous completion of cores (see Figure 4).
For SEND/RECV, SNIC Á has 21–30% higher latency than
SNIC À due to the weaker computing power of SoC.

SmartNIC

PCIe 

Host memory 

SoC memory

LLC

LLCRNIC
RDMA
PCIe 
w/ DDIO

PCIe 
w/o DDIO Host CPU

Figure 6: Different paths to access host and SoC memories.

Throughput. SNIC Á has better throughput than SNIC À,
reaching 1.08–1.48× for payloads less than 512 bytes. Inter-
estingly, the READ of SNIC Á is even higher than that of
RNIC À before reaching the peak network bandwidth. For
this undocumented results, we suspect that it is due to the
closer packaging of SoC memory and the PCIe switch. Specif-
ically, the SoC is linked to the PCIe switch via an internal link,
rather than through PCIe. Note that a confident analysis relies
on the hardware details of Bluefield, which unfortunately are
not available now. For WRITE, SNIC Á is still lower than that
of the RNIC À. Our hypotheses are twofolds. First, SoC has
fewer DRAM channels compared to the host (1 vs. 4), limit-
ing the concurrency of write accesses. Nevertheless, READ
is not affected because read accesses on DRAM are faster
than write accesses [25, 73]. Second, SoC can only utilize a
portion of NIC cores (see §4.1). Finally, SEND/RECV has
a poor performance on Á: it just achieves up to 64% of the
host (SNIC À). This is due to the wimpy computing power
of SoC, since the throughput of SEND/RECV is bottlenecked
by the responder CPU to send the reply.

Bottleneck. As shown in Figure 1(c), since SNIC Á only
flows through NIC and PCIe1, the bottleneck is their lower
bandwidth limit, which is still Bluefield-2’s 200 Gbps NIC.
Therefore, as shown in Figure 5(b), the performance of SNIC
Á is the same as that of SNIC À, namely the total of 400 Gbps
and 200 Gbps bandwidth for opposite direction and same
direction communication, respectively.

In addition to the basic RDMA performance of the SNIC,
we found several factors that could also prevent distributed
systems from achieving the aforementioned performance.

Advice #1: Avoid memory accesses to close addresses. The
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Figure 7: The peak throughput of accessing host memory and SoC
memory via SNIC, READ (a) and WRITE (b).

Figure 8: The bandwidth (a) and PCIe packet throughput (b) for
accessing (READ and WRITE) the host (SNIC À) and SoC (SNIC
Á) via SmartNIC. For brevity, we omit the result of SEND/RECV
since it is the same as WRITE for large payloads [27].

wimpy SoC cores may impact the memory access behavior
of one-sided RDMA primitives, because it usually supports
fewer features compared to the more powerful host CPU cores.
Specifically, Data Direct I/O (DDIO) [26] is widely supported
by the host CPUs, which allows the NIC to directly read/write
data from/to its last level cache (LLC), as shown in Figure 6.
SoC cores may also equip with similar features (e.g., ARM
CCI [5]), but whether to do so is vendor-specific. The SoC
cores of our hardware (ARM Cortex-A72 in Bluefield-2) do
not support DDIO. We find that one-sided RDMA without
DDIO suffers performance drop if the requested memory
addresses fall into a small range (i.e., they are close together).
This is because DRAM requires a (not-too-small range) to
utilize all memory modules concurrently. LLC is faster than
DRAM, so we suspect the impact is smaller.

Figure 7 shows the peak throughput of accessing host mem-
ory and SoC memory via SNIC with the increase of address
ranges.5 For WRITE, the throughput of SNIC Á using SoC
drops to 22.7 M reqs/s (from 77.9 M reqs/s) when address
range decreases to 1.5 KB (from 48 KB). In contrast, the per-
formance of SNIC À using Host CPU is hardly affected when
DDIO is enabled. For READ, the degradation is relatively
smaller. The throughput of SNIC Á drops from 85 M reqs/s
to 50 M reqs/s when decreasing the range from 48 KB to
1.5 KB. This is because DRAM can serve reads faster than
writes [25, 73]. Finally, we also plot the RNIC results as a
reference. When requests addresses are close, we can see
that À also suffers a significant performance drop on WRITE
when DDIO is disabled.
5Note that we attach Bluefield to CLI machines for the evaluation because
we are unable to disable DDIO on the SRV machines.

Table 4: PCIe Maximum Transfer Unit (MTU) on our testbed, and
the number of PCIe packets required to transferN bytes via different
communication paths of Bluefield-2. Our simplified model omits
control-path packets (e.g., two-sided message arrival notification).

Host CPU cores (HMTU ) SoC cores (SMTU )

PCIe MTU 512 B 128 B

SNIC À SNIC Á SNIC Â

PCIe1 dN/HMTUe dN/SMTUe dN/HMTUe+ dN/SMTUe
PCIe0 dN/HMTUe – dN/HMTUe

Advice #2: Avoid large READ requests. It is common prac-
tice to use requests with large payloads to fully exploit net-
work bandwidth. For example, using requests with payloads
larger than 16 KB is enough to saturate a 200 Gbps RNIC
even using a few threads. Unfortunately, we observed that
the READ performance of SNIC Á collapses with request
payload larger than 9 MB, as shown in Figure 8(a). We sus-
pect that NIC cores suffer from head-of-line blocking when
processing large READ requests. For a READ request, the
NIC issues a PCIe read transaction to fetch the data, which is
further segmented into multiple PCIe packets. The maximum
size of a PCIe packet is determined by the PCIe Maximum
Transfer Unit (MTU), negotiated by the linked hardware de-
vices during bootstrap [49]. Table 4 lists the PCIe MTU on
our testbed. SoC cores (the endpoint of SNIC Á) use a smaller
PCIe MTU (128 B) due to its weaker CPU. As a result, NIC
core that processes a large DMA read sent to SoC memory
(SNIC Á) must wait for more PCIe packets to arrive, resulting
in lengthy processing stalls. Since the overall NIC packet pro-
cessing power is not the bottleneck: as shown in Figure 8(b),
the requests with payloads smaller than 9 MB still can achieve
a high processing rate while it collapses for the others, so we
suspect some blocking happens at the NIC core. Note that
WRITE requests are not affected since DMA does not wait
for the completion [83, 49].

On the contrary, the host uses a larger PCIe MTU (512 B),
so it does not suffer from bandwidth degradation (SNIC À).
As shown in Figure 8(b), the NIC can issue 46.7 million PCIe
packets per second to the host (SNIC À). The aggregated
bandwidth reaches 191 Gbps, bottlenecked by the network.

Takeaways. For READ and WRITE, sending requests to SoC
is typically faster than that to the host (or even faster than via
RNIC) because SoC is “closer” to the NIC (without PCIe0).
In contrast, using SEND/RECV to communicate with SoC is
slower due to weak SoC cores. Furthermore, designers still
need to carefully consider the heterogeneity between host
CPU cores and SoC cores to avoid performance anomalies.
Specifically, memory accesses to a small address range may
suffer performance degradation due to the lack of DDIO sup-
port on SoC cores. In addition, sending large READ requests
to SoC may underutilize the bandwidth so the request should
be proactively segmented into smaller ones.
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Figure 9: The bandwidth (a) and PCIe packets throughput (b) for
sending (R)EAD/(W)RITE requests between the host and SoC.

3.3 Communication between SoC and Host (path Â)

We first describe our measurements and findings of RDMA
and then compare RDMA (Â) with DMA (Â*).

Latency. As shown in Figure 3, the latency of sending re-
quests from SoC to the host (SNIC Â S2H) is very high,
especially for READ, since the requester (SoC) takes longer
to issue an RDMA request to the NIC. The latency in the
opposite direction (from the host ot SoC, SNIC Â H2S) is
reduced but still 4–17% higher than SNIC Á. Although the
intra-machine communication saves one network round-trip,
it adds additional PCIe transfers. Specifically, the request on
SNIC Á flows the requester-side PCIe (not shown in Fig-
ure 1(c)), the network, PCIe1, and the PCIe switch, while
the request on SNIC Â (H2S) flows PCIe0, the PCIe switch,
PCIe1 twice (in and out), and the PCI switch (again).

Throughput. For requests with payloads less than 512 bytes,
the throughput of SNIC Â (both S2H and H2S) is dominated
by the requester’s capability to post networking requests. This
is because a single requester machine (either SoC or the host)
cannot saturate the NIC with small requests6, the READ
throughput of SNIC Â only reaches 29 M reqs/s and 51.2 M
reqs/s for S2H and H2S, respectively, still far from its limit.
For WRITE and SEND/RECV, the results are similar. For
larger requests, they are bottlenecked by the PCIe bandwidth,
which will be discussed in more detail next.

Bottleneck. As shown in Figure 5(b), for packets flowing in
a single direction, communication between host and SoC is
bottlenecked by PCIe bandwidth (256 Gbps) rather than the
uninvolved NIC (200 Gbps). Therefore, the peak bandwidth
of SNIC Â is slightly higher than SNIC À and Á (204 Gbps
vs. 191 Gbps). Readers might be interested in why the results
of SNIC Â cannot be close to 256 Gbps. We suspect that it
requires much more PCIe packets than the others. For packets
flowing in opposite directions, SNIC Â can not utilize twice
the limit as the other paths (i.e., SNIC À and Á). This is be-
cause RDMA overuses the PCIe: each request passes through
PCIe1 twice (in and out), exhausting the bi-directional link.

Advice #3: Avoid large READ/WRTIE requests. Communi-
cations between the host and SoC (SNIC Â) also suffers from
bandwidth degradation for large READ requests like SNIC Á,
6We use up to eleven requester machines for SNIC À and SNIC Á.

Figure 10: The latency of posting requests to NICs (a) and the
impact of doorbell batching (DB) on the requester.

possibly due to the head of line blocking as we have discussed
before. Moreover, this issue appears with large WRITE re-
quests because the SmartNIC must first read data from the
requester and then write it to the responder. As shown in
Figure 9(a), the READ/WRITE performance of SNIC Â col-
lapses to about 100 Gbps for large requests. Table 4 shows the
number of PCIe packets required to transfer N bytes via dif-
ferent communication paths. For SNIC Â, the NIC generates
more packets due to passing through PCIe1 twice. Further, the
performance of S2H collapses earlier than H2S as it will pass
through PCIe1 first. Suppose we transfer data at 200 Gbps
from SoC to the host. The SoC cores first transfer 195 M
PCIe packets per second (pps) to the NIC (PCIe1), then the
NIC forwards data back to the PCIe switch via PCIe1 again
with 49 Mpps (the host supports 512 B MTU), and finally, the
switch forwards 49 Mpps through PCIe0. Therefore, Smart-
NIC should process at least 293 Mpps for transferring data
at 200 Gbps, which is 3× and 1.5× higher than SNIC À and
SNIC Á, respectively. This is further confirmed by our mea-
surements of the hardware counters. As shown in Figure 9(b),
for sending 256 KB READ requests from SoC to the host,
the bandwidth reaches 204 Gbps, and the NIC transfers about
320 M PCIe packets per second.

Advice #4: Enable doorbell batching carefully. The time
of posting each request to the NIC is dominated by Memory-
Mapped IO (MMIO) [76, 28]. The SoC suffers a high MMIO
latency when communicating with the host (see Figure 10(a)).
A known optimization is doorbell batching (DB) [28]: to
send a batch of B requests, the requester first chains them
together in memory, then use one MMIO to ask the NIC to
read these requests with DMA in a CPU-bypass way. DB
reduces the number of MMIOs required from B to 1. Thus,
for RNIC À and SNIC Á, DB is always helpful and can bring
2–30% performance improvement (see Figure 10(b)). For
the communication between host and SoC (SNIC Â), DB
is still helpful at the SoC-side. As shown in Figure 10(b),
when sending a batch of READs to the host, DB improves
the SoC performance by 2.7–4.6× for batch sizes 16–80. The
huge improvement is partly due to the CPU-bypass feature of
DMA, and also because the NIC is faster in using DMA to
read requests stored on SoC memory (see §3.2). However, DB
is not always helpful at the host-side, because it is slower to
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Figure 11: The throughput and bandwidth comparisons of using
RDMA (Â) and DMA (Â*) when communicating from SoC to the
host, the only supported primitive of DMA of our SNIC.

read host memory using NIC DMA (see §3.1). For batch sizes
of 16, 32, and 48, DB decreases the throughput of host-SoC
communication by 9%, 7%, and 6%, respectively.

RDMA (Â) vs. DMA (Â*). Besides RDMA, SoC can use
DMA (Â*) to read/write data from the host (and vice versa)
via the DMA engine inside the SoC. It has the benefits of
reducing two PCIe passes (PCIe1) and bypassing RNIC com-
pared to RDMA (see Figure 1), resulting in a lower latency,
e.g., 1.9µ vs. 2.6µ for 64 B SoC to host READ. However,
we find the SoC DMA engine has a weaker processing power
than RNIC (RDMA). For brevity, we only present results on
SoC to host. The results of host to SoC is the same as SoC to
host since host DMAs are offloaded to SoC for execution [56].
As shown in Figure 11, for WRITE, the peak throughput of
DMA is only 47–59% of that of RDMA for requests with
payload less than 4 KB. The results of READ is similar. DMA
WRITE even fails to saturate the PCIe limit (256 Gbps) for
payloads between 16 KB and 1 MB. We suspect it is due to the
poor processing capability of the SoC’s DMA engine, yet we
cannot confirm this without knowing the confidential internal
design of the SoC. Another observation from the bandwidth
results is that DMA also suffers from the anomalies of RDMA
(see Advice #3): For payloads larger than 1 MB, there is a
significant performance drop for both READ and WRITE.

For bandwidth, Â* has a higher theoretical upper bound
than Â: it is bottlenecked by the bidirectional bandwidth of
PCIe, as it bypasses the PCIe1. However, Figure 5 shows that
it fails to achieve so (only 178 Gbps for READ + WRITE).
This suggests that the slow DMA engine will first become
the bottleneck. Nevertheless, bypassing PCIe1 still has the
benefits of reducing interferences to other paths. We will
discuss them in §4 in detail.

Takeaways. First, enabling doorbell batching is critical for
SNIC Â at the SoC side, because SoC has wimpy computa-
tion power. Yet, it is negatively impacted at the host side for
small batch sizes. Second, SNIC Â has a different bottleneck
than SNIC À and SNIC Á. It is always bottlenecked by the
uni-directional bandwidth of PCIe, while others are limited
by the minimal bi-directional bandwidth of network and PCIe.

Figure 12: Throughput for (a) READ and (b) WRITE with the
increases of requester machines.

If this factor is not adequately considered, distributed systems
will underutilize the NIC bandwidth (see §5.1). Third, though
DMA utilizes PCIe better than RDMA for SoC to communi-
cate with the host, it has a lower throughput due to the weaker
DMA engine at the SoC. Finally, we should avoid transferring
large requests between the host and SoC, for both RDMA and
DMA and for both READ and WRITE.

4 A Guideline for Smartly Exploiting Multiple
Paths of SmartNIC

Previous approaches mainly leverage a single path of Smart-
NIC to optimize a specific functionality of distributed systems.
However, this cannot fully exploit the computing and network-
ing capabilities of SmartNICs. Furthermore, only considering
a single path may ignore interference on resources (e.g., PCIe
and PCIe switch) between different paths. Therefore, we first
holistically study the performance characteristics of concur-
rently using multiple paths, and then lay out an optimization
guideline for designers to smartly use SmartNICs.

4.1 Characterizing concurrent communication paths
Concurrent communication with the host and the SoC
(À+Á). We focus on the throughput results (see the lower
part of Figure 3) since the latency results are roughly the
average of the two paths. We evaluate the peak throughput by
assigning half of the clients to send requests to the host while
the others to send to the SoC. We can see that the total peak
throughput of concurrently using À and Á (SNIC À+Á) is
typically faster than each of them. For READ, WRITE, and
SEND/RECV, SNIC À+Á outperforms the lower of them by
up to 1.45×, 1.50×, and 3.3×, respectively.

For SEND/RECV, a concurrent path utilize both of the
host and SoC to process the requests, so the performance
improvement is clear. However, the READ/WRITE perfor-
mance improvement is non-intuitive and undocumented, since
two paths should compete for NIC cores. Our suspicion is
that the SmartNIC internally reserves some NIC cores for
each endpoint. Therefore, sending requests to the host and
the SoC concurrently can further increase peak throughput
by enabling more NIC cores. To quantify this, we design a
microbenchmark that first increases the requester machines to
saturate the NIC and then changes the responder, as shown in
Figure 12. All requests use 0 B payload to avoid interference
of DMA, i.e., the request will return before passing PCIe1 [6].
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For READ, five requester machines are sufficient to saturate
NIC cores when using SNIC À or SNIC Á alone. Therefore,
for concurrently using SNIC À and SNIC Á, we first dedi-
cate five requester machines for one responder, and then add
requesters for the other responder. Both cases (SNIC À+Á
and SNIC Á+À) offer similar performance, with 4–13% and
5–10% higher throughput than using SNIC À or SNIC Á
alone. For WRTIE, all results are almost the same.

Finally, as expected, the aggregated throughput of the two
paths (SNIC À and SNIC Á) is much higher than concurrently
using them (352 Mpps vs. 195 Mpps), indicating that most
NIC cores are still shared, i.e., each can communicate with
two endpoints, and only a few is dedicated. This also implies
that concurrently using multiple resources of SmartNIC is
non-trivial.

Concurrent inter- and intra-machine communication
(À/Á+Â). There exist four concurrent combinations of inter-
and intra-machine communication. For brevity, we focus on
the results of SNIC À+Â/H2S, other combinations are simi-
lar. To study the concurrent usage of the two paths, we first
deploy sufficient clients (five requester machines) to saturate
the network for SNIC À. Afterward, we start the requester
on the host (one machine with 24 threads) sending RDMA
requests to the SoC (SNIC Â/H2S). Our measurements re-
veal that concurrently enabling intra-machine communication
degrades the performance of inter-machine communication.
As shown in Figure 3, for READ, WRITE, and SEND/RECV,
the throughput of small requests (less than 512 bytes) drops 7–
15%, 4–27%, and 9–14%, by comparing SNIC À and SNIC
À+Â(H2S). For large requests, the performance is always
bottlenecked by the network bandwidth, so the degradation is
negligible.

The SNIC Â affects other communication paths of Smart-
NIC, because it relies on the NIC (PCIe1 and the PCIe switch)
for RDMA support. In comparison, SNIC Â* communication
can leverage DMA to reduce such interferences. For example,
for READ with payloads 16–64 B, we only observe a 5–6%
throughput drop, after adding SNIC Â* to À.

Bottleneck. Assuming each path has only one type of request,
e.g., either READ or WRITE. For SNIC À+Á, each part
has the same bottleneck (the NIC), so the bandwidth limit is
400 Gbps (bi-directional). For SNIC À+Â, it is bottlenecked
by SNIC Â, which is limited on the uni-direction of PCIe
(256 Gbps) since it occupies both directions of PCIe1 (see
Figure 5(b)). Nevertheless, if SNIC À is used in opposite
directions (i.e., READ and WRITE), SNIC À+Â can reach
a higher limit. For example, the aggregated bandwidth can
achieve 456 Gbps (in theory) if we restrict the bandwidth
of data transfer on SNIC Â to 56 Gbps. This suggests that
selectively offloading small portion of data to SoC may be
optimal. Finally, if possible, it is usually better to combine
SNIC À or Á with DMA (À/Á+Â*) despite DMA being
slower than RDMA (see §3.3). This is because DMA has

better PCIe utilization (without passing PCIe) and RNIC
utilization (without using RNIC).

Takeaways. Sending requests from clients to the host and the
SoC concurrently (SNIC À+Á) can better utilize NIC cores to
handle small RDMA requests, especially when used in oppo-
sition directions (e.g., one for READ and one for WRITE). On
the contrary, uncontrolled use of intra-machine (host-SoC)
communications (SNIC Â) may harm inter-machine com-
munications, which is the intrinsic purpose of using Smart-
NIC. Specifically, if the uni-directional bandwidth of PCIe is
smaller than the bi-directional bandwidth of the NIC, using
SNIC Â can introduce a hidden bottleneck. Therefore, we
should always consider using SNIC Â only when spare re-
sources are made available. Specifically, if the inter-machine
communication saturates the NIC, the bandwidth used by
SNIC Â should no larger than P −N , where P andN are the
limit of the PCIe and the network, respectively. For example,
it should be 56 Gbps on our testbed. Using SNIC Â* can
reduce the interference between paths, but SNIC Â* also has
limitations: it is slower than SNIC Â.

Finally, in real-world distributed systems, it is common
that a single communication path cannot fully saturate all
resources of SmartNIC. For example, SNIC Á is the fastest
but limited by small memory and wimpy cores on the SoC.
On the other hand, only using SNIC À as RNIC would waste
all resources on the SoC. Therefore, we should concurrently
use multiple paths provided by the SmartNIC, but carefully
avoid interference between them.

4.2 An optimization guideline

This section presents our optimization guideline for smartly
utilizing multiple communication paths of SmartNIC to
improve the performance of distributed systems. Specifically,
given the functionality (e.g., file replication in a distributed
file system) of a target distributed system that needs to be
accelerated by SmartNIC, we recommend designers consider
the following steps:

1. Devise potential alternatives for SmartNIC to support
the given functionality, and optimize them based on
performance characteristics uncovered by our study.

2. Evaluate and rank alternatives based on system-specific
criteria.

3. Select and combine alternatives in turn until the resource
of SmartNIC is saturated.

System-specific criteria. The criteria can be the desirable
properties that the system designer aims to achieve, or the
restrictions of the systems. For replication in a distributed file
system, the properties include low host CPU overhead and
high network bandwidth utilization [32]. For a disaggregated
key-value store, the properties include less network amplifi-
cation, low latency and high throughput. The restriction the
host has little or no CPU that we can use [86].
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Figure 13: The host CPU usage breakdown of different alternatives when replicate 8 MB data (a). Write bandwidth when the host is idle (b)
and busy (c) for A1, A2 and A2 + A3.

Discussion. We currently only consider the combination of
alternatives in a greedy way, which is sufficient for most net-
worked functions in real-world distributed systems. Further,
SmartNIC usually offers a limited number of available op-
tions. Note that efficiently combining alternatives is challeng-
ing. For different systems, different alternatives may consume
different resources on the SmartNIC, while a combination
of them may involve different levels of resource contentions.
Our previous analysis—including the bottleneck of differ-
ent communication paths and concurrently utilizing multiple
paths on the SmartNIC—will guide designers to avoid most
performance contention. Nevertheless, how to systematically
choose and combine different paths is our future work.

5 Case Studies
To demonstrate the efficacy of our study and the optimization
guideline, this section presents two detailed case studies.

5.1 Distributed file system
Overview. File replication is a key pillar in distributed file
systems for fault tolerance. With the emergence of RDMA
and non-volatile memory (NVM), an appealing trend is to use
RDMA to directly replicate file updates on remote NVM for
better performance [32, 3, 40, 4], i.e., RDMA primitives can
directly write NVM just like DRAM, with network and NVM
bandwidth fully utilized [81].

Devise alternatives. The desirable properties of file replica-
tion are high performance, high network utilization and low
host CPU overhead. There are three alternatives to implement
file replications on our SmartNIC, as illustrated in Figure 14.

1. Alternative (A1). It comes from the state-of-the-art
distributed file system on SmartNIC, LineFS [32], which
completely offloads the file replication to SoC. The
SoC will compress and replicate the file to reduce data
transferred through the network with low host CPU usage.
After receiving a replication request, the primary SoC
reads the file from host (Â), compresses it (Ã), and writes
the file to remote backups with chain replication [72] (Á).
Specifically, if there are multiple backups, the second
backup will further re-replicate the log to the next backup
on the chain and so on.

2. Alternative (A2). Guided by our study, we can replace

the Â in A1 with Â* to reduce interference on the PCIe
bandwidth, specifically, PCIe1 on the SmartNIC.

3. Alternative (A3). The host can directly write the file
from the host to the remote backup with WRITE (À) [40].
Note that this approach typically skips file compression to
prevent non-trivial host CPU overhead (see Figure 13 (a)).

Baseline. LineFS [32] is a state-of-the-art distributed file sys-
tem based on NVM and SmartNIC. It adopts A1 to replicate
the files. We further implement A2 and A3 on its open-source
codebase7, and rewrite its backend with more efficient RDMA
implementation to scale to 200 Gbps networking, e.g., with
asynchronous and batched RDMA operations.

Optimization on each alternative. By default, LineFS adopts
a chunk size of 16 MB in its open-source codebase for A1.
Based on our Advice #3 described in §3.3, we shrink it to
256 KB for a better performance over Â. This optimization
further applies to A2 and A3.

Analyse alternatives. A1 is the most straightforward way to
offload file replication, reducing the data transferred through
the network (d vs. d× ratio). Thus, the ideal peak bandwidth
is N/ratio, where N is the bandwidth limit of SmartNIC.
However, A1 does not consider the costly PCIe occupation of
Â (§3.3), which even fails to saturate the network bandwidth
for file transfer. Denote the primary’s PCIe limit (uni) as P .
A1’s file transfer bandwidth d is limited by P

1+ratio , because
each data packet must pass the PCIe1 out link twice. As shown
in Figure 14, one is from SoC to RNIC (d bytes) and another
from SoC to the remote (d× ratio bytes). On our platform
(p = 256Gbps), so A1 is only better than file is not com-
pressed (whose performance is bottlenecked by the network
N = 200Gbps) when the compression ratio is lower than
28%. Worse even, A1 cannot saturate the network bandwidth
of SmartNIC when encountering a bad compression ratio (≥
28%). For example, without compression (ratio = 1), the
peak of A1 is only 128 Gbps.

Figure 13 (b) presents the results of A1 on the file write
benchmark of LineFS. This benchmark does not compress
the file. We can see that A1 only achieves 117 Gbps with 8
clients when the host is idle.

A2 addresses the poor PCIe utilization of A1 by replacing
Â with Â*. As shown in Figure 13 (b), A2 is 1.01–1.13×
7https://github.com/casys-kaist/LineFS
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Figure 14: Overview of alternatives for file replication with Smart-
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size. We omit the control path messages as they are trivial.

faster than A1 under different number of clients. However, A2
fails to achieve a close to 200 Gbps result (peak at 133 Gbps)
due to the following two reasons. First, the WRITE of Â* can-
not fully utilize the full PCIe bandwidth on our platform (see
Figure 11). Second, the poor computation power of SoC may
also become the performance bottleneck of file replication.

A3 bypasses the PCIe occupation problem of A1, and
the slow DMA WRITE and weak SoC issues of A2. Mean-
while, its data path is shorter (see Figure 14). As shown in
Figure 13(a), it takes 40% shorter time to wait for the log
acknowledgment compared to A2. As a result, A3’s repli-
cation bandwidth is 5–41% faster than A2 under different
client setups. The drawback is that A3 takes more CPU cy-
cles even without considering compression (Filesystem), see
Figure 13(a). This is because A1 and A2 can digest the file
log on the SoC. Thus, the overall process time reduction of
A3 is 8% (decreased from 40%) compared to A2.

Select and combine alternatives. Since A2 is always better
than A1, we will only consider combining A2 with A3. As
we have analyzed before, A3 is faster than A2. Therefore,
increasing the ratio of A3 in a combined path (A2 + A3)
always improves the performance, as shown in Figure 15.
However, if file compression for high network utilization
is enabled, it has high host CPU utilization, as shown in
Figure 13 (a). Disabling compression for A3 will lower the
network utilization, also illustrated in Figure 15. Specifically,
when increasing the percentage of path A3 in clients, the
network utilization is reduced from 50% to 0% considering a
fixed 50% compression ratio.

Considering A2 has better network utilization, we follow
a greedy approach that first saturate the SoC with A2 for
better network utilization. Afterward, clients use A3 to do the
file replication. This approach can achieve the best of both
worlds: the combined path is faster than A2 with network
better utilized than A3.

Evaluation results. Figure 13 (b) and (c) further present
the file replication benchmark results of A2 + A3 when the
host CPU is idle and busy, respectively. We follow the same
setup as LineFS [32]’s benchmark and add a CPU-intensive

Figure 15: Analysis of the network utilization and performance
when combining A2 and A3.

workload (streamcluster [7]) to the host CPU to emulate a
busy experimental setup. A2 + A3 is 7–30% and 4–21% faster
than original LineFS when CPU is idle and busy, respectively,
thanks to the more efficient usage of SmartNIC and a smart
utilization of multiple execution paths.

5.2 Disaggregated key-value store
Overview. RDMA-based disaggregated key-value stores (R-
KVS) are prevalent in modern data centers [75, 70, 17, 86].
In R-KVS, one or more memory servers store both indexes
(usually hash table) and values. Clients on other machines use
READs to traverse the index and retrieve the corresponding
value to handle requests (i.e., get), see A1 in Figure 16.

Devise alternatives. The desired properties are high
throughput, low latency and minimal network amplification.
The restriction is that we can barely use the host CPU (i.e.,
disable SEND/RECV for path À). SmartNIC enables five
alternatives for R-KVS, as illustrated in Figure 16.

1. Alternative (A1). The client treats SmartNIC as a normal
RNIC and uses READs to handle the get request (À).
This approach suffers from network amplification.

2. Alternative (A2). One intuitive approach for offloading is
to send the get request to the SoC using SEND/RECV (Á).
The SoC can then traverse the index and read the value
on the host via RDMA or DMA READ. This approach
effectively eliminates network amplification.

3. Alternative (A3). One drawback of A2 is that reading
data from SoC to the host is slower reading from the
host’s local memory. An optimization is to offload the
indexes to the SoC memory (Ã). This approach is similar
to index caching at the clients [11, 62, 75], but caching the
indexes at the SmartNIC is more effective. Each client has
a small memory that can only cache hundreds of entries
in a disaggregated setting [86], while SmartNIC has a
relatively large SoC memory (e.g., 16 GB on Bluefield-2)
that can cache all the indexes.

4. Alternative (A4). Accessing the index on the SoC
using SEND/RECV (Á) cannot fully utilize the NIC
cores of SmartNIC, because the peak throughput of
SEND/RECV is only 21.6 M reqs/s. Therefore, we can
use READs to traverse the index on the SoC (Á), and
another READ to retrieve the value on the host (À).
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Figure 16: Alternatives (A1–A5) for offloading a get request of RDMA-based disaggregated key-value store to off-path SmartNIC.

Figure 17: (a) Latency and (b) throughput comparisons between
different alternatives on YCSB C. For A5, we restricted the selection
of clients keys to always hit the cached values on SmartNIC.

This approach still has network amplification, but can
utilize the fast path (Á) to improve performance (see §3.2).

5. Alternative (A5). Similar to index caching, SoC memory
can further cache a portion of values (e.g., the values
of hot keys). This approach avoids using the costly
communication path (Â) of the previous alternatives.

Baseline. DrTM-KV [11] is a state-of-the-art KV store opti-
mized for RDMA: it adopts cluster-chaining hash index such
that the client typically finds the value position of a given key
in one READ. Specifically, for a get request, the client first
READs a 64 B bucket (based on the hash of the key), finds
the remote address of the corresponding value in it, and then
fetches the value with another READ. DrTM-KV supports
index caching at the client to skip the first READ [80], but it
may not be always feasible in a disaggregated environment
due to memory constraints [86], so we disable it.

Optimization on each alternative. We implement A1–A5
on DrTM-KV guided by our study (§3). Specifically, we care-
fully enabled doorbell batching for alternatives related to the
SoC CPU (A2, A3 and A5). Besides, we apply Advice #1 for
A4 and A5, which replicate a few hot keys to multiple repli-
cations to avoid sending requests to a small range of memory.
We use DMA (Â∗) instead of RDMA (Â) to implement A2
and A3 as it is always faster due to lower latency. For example,
A2 throughput is improved by up to 79% with Â*. A2 and
A3 does not suffer from the low DMA throughput discovered
in §3.3 because the SoC will first become the bottleneck.

Analyse alternatives. We use YCSB C [16] (100% get) with
default Zipfian request distribution (θ = 0.99) for all the
experiments. The payload sizes of keys and values are 8 B

and 64 B, respectively, similar to prior work [41, 45, 30, 66,
75]. Following the microbenchmark setup, we use one client
machine to measure the latency and deploy up to eleven client
machines to measure the peak throughput.

Figure 17 demonstrates that none of the path can achieve
both high throughput and low latency. A5 (SEND/RECV)
achieves the lowest latency (4.6µs) because it completely
eliminates the network amplifications problem and costly
host-SoC communications (Â). However, its peak throughput
(17.6 M reqs/s) is significantly lower than some other alterna-
tives. Specifically, the peak throughput of A5 (READ) and
A4 reach 70 M reqs/s and 58.3 M reqs/s, respectively. They
have a higher throughput because the RDMA path to SoC
(À) is faster (§3.2). Note that A5 is not always achievable,
which requires caching all the key-values at the SoC memory.
Therefore, A4 is a suitable design if the SoC cores become the
bottleneck (Ã). A1 has a higher latency and lower throughput
than A4, since RDMA to the host (À) is relatively slow. A2
and A3 are bottlenecked by the slow host-SoC communica-
tion (Â, see §3.3), which is not suitable for offloading KV
store requests.

Select and combine alternatives. Our analysis suggests that
the optimal combination is A4 and A5. Initially, the first few
clients use A5, whereas the later clients use A4. The exact
switch point can be estimated by using queuing theory [24]
to model the capacity of SoC and the capability of RNIC, as
in prior work [46].

In addition, using A5 presents a challenge as clients are
unaware of which values are cached at SoC. Although A3
can be used as a fallback path for cache misses, it will result
in significant performance degradation (see Figure 17). To
tackle this issue, we provide a simple solution: when a cache
miss occurs, the SoC returns the address of the value to the
client, which then issues a READ to retrieve the value accord-
ingly, similar to A4. In real-world skewed workloads (e.g.,
YCSB [16]), cache misses are rare.

Evaluation results. Figure 18 shows the latency and through-
put results on YCSB C. We plotted the graph by increasing
the number of client machines. The combination of A4 + A5
achieves a peak throughput of 68 M reqs/s, which is 25%,
36%, and 12% higher than RNIC, A1, and A4, respectively.
Note that we omit A2 and A3 as they are bottlenecked by SoC
cores and have extremely low peak throughput. The benefits
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Figure 18: Performance of YCSB C using different alternatives.
Note that A5 cannot run a full workload alone, since SoC memory
is not large enough to cache all values. For A4 + A5, one client uses
A5, and the rest use A4.

of A4 + A5 mainly come from utilizing faster SoC RDMA
and SoC cores for reducing network amplifications.

6 Discussion
Generalizability. Although our study primarily focuses on
one particular SmartNIC, Bluefield-2 [52], we believe that
our findings and advice can be applied to other off-path
SmartNICs that share a similar hardware architecture. These
SmartNICs extend RDMA-capable NICs, such as Stingray
PS225 [9] (which extends NetXtreme 100 Gbps RNIC [8]), by
attaching a heterogeneous SoC and bridging SoC and RNIC
together with a PCIe switch. We have confirmed that all our re-
sults hold on Bluefield-1 [55]. Moreover, the next generation
of Bluefield (Bluefield-3) still follows the same architecture,
except for using faster RNIC (400 Gbps ConnectX-7), PCIe
(5.0), and SoC (ARMv8.2+ A78). Even though other Smart-
NICs may have different parameters than Bluefield-2, our
methodology, analysis tools (open-sourced), and performance
models (e.g., Table 4) also apply to them.

Furthermore, DPDK [1] is another popular communication
primitive over SmartNIC. From a NIC’s perspective, DPDK
is similar to SEND/RECV over UD. Therefore, we believe
that most of our findings are still applicable to DPDK as well.
Unfortunately, we do not have an Ethernet-based testbed to
confirm this further.

Suggestions for hardware vendors. Our study has uncov-
ered several anomalies that can be mitigated through hardware
improvements, which we suggest vendors consider. For ex-
ample, current host to SoC DMA must offload to SoC for
execution [56], while supporting CXL [15] can utilize the
more powerful host CPU DMA engine for it. However, doing
so in a programmer-friendly way [21] will require strong co-
operation between the SoC OS and host OS. To the best of
our knowledge, no SmartNIC supports CXL yet. Moreover,
supporting CCI [5] can mitigate the performance degradation
problem described in Advice #1. Furthermore, aligning the
SoC PCIe MTU with the host is likely to improve PCIe perfor-
mance when transferring large payloads. Finally, we encour-
age vendors to disclose more hardware details of SmartNICs
to help explain and confirm the findings of our study.

7 Other Related Work
SmartNIC offloading. Offloading computation to SmartNICs
has attracted significant attention in academia and industry.
The offloaded tasks include network functions [59, 34, 19],
microservices [14, 39], and others [33, 36, 22, 35, 61, 74, 65].
We share the same vision—improving the performance of
distributed systems by offloading computation and communi-
cation to SmartNICs, but further exploit the multiple commu-
nication paths of SmartNICs. In addition, most prior work has
focused on leveraging a single path of on-path SmartNICs, so
our work can inspire future research on multi-path offloading
for on-path SmartNICs.

RDMA offloading. Before the emergence of SmartNICs,
many distributed systems offloaded remote memory accesses
to one-sided RDMA primitives [75, 64, 17, 63, 46, 50, 13,
76, 82, 79, 84, 40, 85, 86]. However, prior work has observed
the poor semantics of one-sided RDMA and has therefore
leveraged advanced RDMA features (e.g., WAIT [60, 31],
DCT [77, 78]) or introduced new RDMA primitives [65, 10].
These efforts are orthogonal to our work and could also benefit
from our findings when using SmartNICs in the future.

8 Conclusion
Designing high-performance distributed systems with Smart-
NICs requires an in-depth understanding of low-level hard-
ware details. This paper presents a comprehensive study of
off-path SmartNIC. Unlike prior work, we explore how the
SmartNIC architecture and the heterogeneity of its compu-
tation units can impact communication performance related
to its components. We further propose the first optimization
guideline for designers to smartly exploit multiple commu-
nication paths of SmartNICs for distributed systems, and
demonstrate our guideline by improving two distributed sys-
tems. In general, our study can help system designers develop
a better understanding of SmartNICs before applying them in
high-performance distributed systems.

Acknowledgment
We sincerely thank our shepherd, Rachit Agarwal, and the
anonymous reviewers for their comments and suggestions
to improve the paper. We also thank Zhuobin Huang for dis-
cussing DPDK on SmartNIC, Jun Lu and Dong Du for pro-
viding the Bluefield-1 hardware, Dingji Li, Erhu Feng, Jinyu
Gu, and Fangming Lu for their valuable feedback on earlier
versions of the paper. This work was supported in part by the
National Key Research & Development Program of China
(No. 2022YFB4500700), the Fundamental Research Funds
for the Central Universities, the National Natural Science
Foundation of China (No. 62202291, 62272291, 61925206),
as well as research grants from Huawei Technologies and
Shanghai AI Laboratory. Corresponding author: Rong Chen
(rongchen@sjtu.edu.cn).

1000    17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

rongchen@sjtu.edu.cn


References
[1] Data plane development kit. https://www.dpdk.org/,

2023.

[2] AMARO, E., LUO, Z., OUSTERHOUT, A., KRISHNAMURTHY,
A., PANDA, A., RATNASAMY, S., AND SHENKER, S. Remote
memory calls. In HotNets ’20: The 19th ACM Workshop on
Hot Topics in Networks, Virtual Event, USA, November 4-6,
2020 (2020), B. Y. Zhao, H. Zheng, H. V. Madhyastha, and
V. N. Padmanabhan, Eds., ACM, pp. 38–44.

[3] ANDERSON, T. E., CANINI, M., KIM, J., KOSTIC, D.,
KWON, Y., PETER, S., REDA, W., SCHUH, H. N., AND

WITCHEL, E. Assise: Performance and availability via client-
local NVM in a distributed file system. In 14th USENIX
Symposium on Operating Systems Design and Implementa-
tion, OSDI 2020, Virtual Event, November 4-6, 2020 (2020),
USENIX Association, pp. 1011–1027.

[4] ANDERSON, T. E., CANINI, M., KIM, J., KOSTIC, D.,
KWON, Y., PETER, S., REDA, W., SCHUH, H. N., AND

WITCHEL, E. Assise: Performance and availability via client-
local NVM in a distributed file system. In 14th USENIX
Symposium on Operating Systems Design and Implementa-
tion, OSDI 2020, Virtual Event, November 4-6, 2020 (2020),
USENIX Association, pp. 1011–1027.

[5] ARM. Corelink CCI-550. https://developer.arm.
com/Processors/CoreLink%20CCI-550, 2022.

[6] ASSOCIATION., I. T. Infiniband architecture specifica-
tion. https://cw.infinibandta.org/document/
dl/7859, 2022.

[7] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The
PARSEC benchmark suite: characterization and architectural
implications. In 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT 2008, Toronto,
Ontario, Canada, October 25-29, 2008 (2008), A. Moshovos,
D. Tarditi, and K. Olukotun, Eds., ACM, pp. 72–81.

[8] BROADCOM. Bcm57504 - 100gbe. https:
//en.broadcom.com/products/ethernet-
connectivity/network-adapters/bcm57504-
100g-ic, 2022.

[9] BROADCOM. Product Brief: Stingray PS225. https://
docs.broadcom.com/doc/PS225-PB, 2022.

[10] BURKE, M., DHARANIPRAGADA, S., JOYNER, S., SZEK-
ERES, A., NELSON, J., ZHANG, I., AND PORTS, D. R. K.
PRISM: rethinking the RDMA interface for distributed sys-
tems. In SOSP ’21: ACM SIGOPS 28th Symposium on Oper-
ating Systems Principles, Virtual Event / Koblenz, Germany,
October 26-29, 2021 (2021), R. van Renesse and N. Zeldovich,
Eds., ACM, pp. 228–242.

[11] CHEN, H., CHEN, R., WEI, X., SHI, J., CHEN, Y., WANG,
Z., ZANG, B., AND GUAN, H. Fast in-memory transaction
processing using RDMA and HTM. ACM Trans. Comput. Syst.
35, 1 (2017), 3:1–3:37.

[12] CHEN, Y., LU, Y., AND SHU, J. Scalable RDMA RPC on
reliable connection with efficient resource sharing. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019, Dresden,
Germany, March 25-28, 2019 (2019), G. Candea, R. van Re-
nesse, and C. Fetzer, Eds., ACM, pp. 19:1–19:14.

[13] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast
and general distributed transactions using RDMA and HTM.
In Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys 2016, London, United Kingdom, April
18-21, 2016 (2016), C. Cadar, P. R. Pietzuch, K. Keeton, and
R. Rodrigues, Eds., ACM, pp. 26:1–26:17.

[14] CHOI, S., SHAHBAZ, M., PRABHAKAR, B., AND ROSEN-
BLUM, M. λ-nic: Interactive serverless compute on pro-
grammable smartnics. In 40th IEEE International Conference
on Distributed Computing Systems, ICDCS 2020, Singapore,
November 29 - December 1, 2020 (2020), IEEE, pp. 67–77.

[15] CONSORTIUM, C. Cxl specification. https:
//www.computeexpresslink.org/download-
the-specification, 2022.

[16] COOPER, B. F. YCSB Core Workloads. https:
//github.com/brianfrankcooper/YCSB/wiki/
Core-Workloads, 2021.

[17] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND

HODSON, O. FaRM: Fast remote memory. In Proceedings
of the 11th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2014, Seattle, WA, USA, April
2-4, 2014 (2014), R. Mahajan and I. Stoica, Eds., USENIX
Association, pp. 401–414.

[18] DRAGOJEVIC, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CAS-
TRO, M. No compromises: distributed transactions with con-
sistency, availability, and performance. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015 (2015), E. L. Miller
and S. Hand, Eds., ACM, pp. 54–70.

[19] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU,
V., CAULFIELD, A. M., CHUNG, E. S., CHANDRAPPA, H. K.,
CHATURMOHTA, S., HUMPHREY, M., LAVIER, J., LAM, N.,
LIU, F., OVTCHAROV, K., PADHYE, J., POPURI, G., RAIN-
DEL, S., SAPRE, T., SHAW, M., SILVA, G., SIVAKUMAR, M.,
SRIVASTAVA, N., VERMA, A., ZUHAIR, Q., BANSAL, D.,
BURGER, D., VAID, K., MALTZ, D. A., AND GREENBERG,
A. G. Azure accelerated networking: Smartnics in the public
cloud. In 15th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2018, Renton, WA, USA, April
9-11, 2018 (2018), S. Banerjee and S. Seshan, Eds., USENIX
Association, pp. 51–66.

[20] GAO, Y., LI, Q., TANG, L., XI, Y., ZHANG, P., PENG, W.,
LI, B., WU, Y., LIU, S., YAN, L., FENG, F., ZHUANG, Y.,
LIU, F., LIU, P., LIU, X., WU, Z., WU, J., CAO, Z., TIAN,
C., WU, J., ZHU, J., WANG, H., CAI, D., AND WU, J. When
cloud storage meets RDMA. In 18th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2021,
April 12-14, 2021 (2021), J. Mickens and R. Teixeira, Eds.,
USENIX Association, pp. 519–533.

[21] GOUK, D., LEE, S., KWON, M., AND JUNG, M. Direct
access, High-Performance memory disaggregation with Di-
rectCXL. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22) (Carlsbad, CA, July 2022), USENIX Asso-
ciation, pp. 287–294.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation    1001

https://www.dpdk.org/
https://developer.arm.com/Processors/CoreLink%20CCI-550
https://developer.arm.com/Processors/CoreLink%20CCI-550
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://en.broadcom.com/products/ethernet-connectivity/network-adapters/bcm57504-100g-ic
https://en.broadcom.com/products/ethernet-connectivity/network-adapters/bcm57504-100g-ic
https://en.broadcom.com/products/ethernet-connectivity/network-adapters/bcm57504-100g-ic
https://en.broadcom.com/products/ethernet-connectivity/network-adapters/bcm57504-100g-ic
https://docs.broadcom.com/doc/PS225-PB
https://docs.broadcom.com/doc/PS225-PB
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads


[22] GRANT, S., YELAM, A., BLAND, M., AND SNOEREN, A. C.
Smartnic performance isolation with fairnic. In SIGCOMM

’20: Proceedings of the 2020 Annual conference of the ACM
Special Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for com-
puter communication, Virtual Event, USA, August 10-14, 2020
(2020), H. Schulzrinne and V. Misra, Eds., ACM, pp. 681–693.

[23] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE,
J., AND LIPSHTEYN, M. RDMA over commodity ethernet at
scale. In Proceedings of the ACM SIGCOMM 2016 Confer-
ence, Florianopolis, Brazil, August 22-26, 2016 (2016), M. P.
Barcellos, J. Crowcroft, A. Vahdat, and S. Katti, Eds., ACM,
pp. 202–215.

[24] HARCHOL-BALTER, M. Performance modeling and design
of computer systems: queueing theory in action. Cambridge
University Press, 2013.

[25] HASSAN, H., VIJAYKUMAR, N., KHAN, S. M., GHOSE, S.,
CHANG, K. K., PEKHIMENKO, G., LEE, D., ERGIN, O.,
AND MUTLU, O. Softmc: A flexible and practical open-source
infrastructure for enabling experimental DRAM studies. In
2017 IEEE International Symposium on High Performance
Computer Architecture, HPCA 2017, Austin, TX, USA, Febru-
ary 4-8, 2017 (2017), IEEE Computer Society, pp. 241–252.

[26] INTEL. Intel® data direct i/o technology. https://
www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html, 2022.

[27] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
RDMA efficiently for key-value services. In ACM SIGCOMM
2014 Conference, SIGCOMM’14, Chicago, IL, USA, August
17-22, 2014 (2014), F. E. Bustamante, Y. C. Hu, A. Krishna-
murthy, and S. Ratnasamy, Eds., ACM, pp. 295–306.

[28] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design
guidelines for high performance RDMA systems. In 2016
USENIX Annual Technical Conference, USENIX ATC 2016,
Denver, CO, USA, June 22-24, 2016 (2016), A. Gulati and
H. Weatherspoon, Eds., USENIX Association, pp. 437–450.

[29] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
Fast, scalable and simple distributed transactions with two-
sided (RDMA) datagram rpcs. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016 (2016), K. Keeton
and T. Roscoe, Eds., USENIX Association, pp. 185–201.

[30] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Data-
center rpcs can be general and fast. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI
2019, Boston, MA, February 26-28, 2019 (2019), J. R. Lorch
and M. Yu, Eds., USENIX Association, pp. 1–16.

[31] KIM, D., MEMARIPOUR, A. S., BADAM, A., ZHU, Y., LIU,
H. H., PADHYE, J., RAINDEL, S., SWANSON, S., SEKAR, V.,
AND SESHAN, S. Hyperloop: group-based nic-offloading to ac-
celerate replicated transactions in multi-tenant storage systems.
In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2018, Bu-
dapest, Hungary, August 20-25, 2018 (2018), S. Gorinsky and
J. Tapolcai, Eds., ACM, pp. 297–312.

[32] KIM, J., JANG, I., REDA, W., IM, J., CANINI, M., KOS-
TIC, D., KWON, Y., PETER, S., AND WITCHEL, E. Linefs:

Efficient smartnic offload of a distributed file system with
pipeline parallelism. In SOSP ’21: ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021 (2021), R. van Renesse and
N. Zeldovich, Eds., ACM, pp. 756–771.

[33] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM,
A., CHEN, E., AND ZHANG, L. Kv-direct: High-performance
in-memory key-value store with programmable NIC. In Pro-
ceedings of the 26th Symposium on Operating Systems Prin-
ciples, Shanghai, China, October 28-31, 2017 (2017), ACM,
pp. 137–152.

[34] LI, B., TAN, K., LUO, L. L., PENG, Y., LUO, R., XU, N.,
XIONG, Y., AND CHENG, P. Clicknp: Highly flexible and high-
performance network processing with reconfigurable hardware.
In Proceedings of the ACM SIGCOMM 2016 Conference, Flo-
rianopolis, Brazil, August 22-26, 2016 (2016), M. P. Barcellos,
J. Crowcroft, A. Vahdat, and S. Katti, Eds., ACM, pp. 1–14.

[35] LI, J., LU, Y., WANG, Q., LIN, J., YANG, Z., AND SHU,
J. Alnico: Smartnic-accelerated contention-aware request
scheduling for transaction processing. In 2022 USENIX An-
nual Technical Conference, USENIX ATC 2022, Carlsbad, CA,
USA, July 11-13, 2022 (2022), J. Schindler and N. Zilberman,
Eds., USENIX Association, pp. 951–966.

[36] LIN, J., PATEL, K., STEPHENS, B. E., SIVARAMAN, A., AND

AKELLA, A. PANIC: A high-performance programmable NIC
for multi-tenant networks. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020,
Virtual Event, November 4-6, 2020 (2020), USENIX Associa-
tion, pp. 243–259.

[37] LIU, J., MALTZAHN, C., ULMER, C. D., AND CURRY, M. L.
Performance characteristics of the bluefield-2 smartnic. CoRR
abs/2105.06619 (2021).

[38] LIU, M., CUI, T., SCHUH, H., KRISHNAMURTHY, A., PE-
TER, S., AND GUPTA, K. Offloading distributed applications
onto smartnics using ipipe. In Proceedings of the ACM Spe-
cial Interest Group on Data Communication, SIGCOMM 2019,
Beijing, China, August 19-23, 2019 (2019), J. Wu and W. Hall,
Eds., ACM, pp. 318–333.

[39] LIU, M., PETER, S., KRISHNAMURTHY, A., AND

PHOTHILIMTHANA, P. M. E3: energy-efficient microservices
on smartnic-accelerated servers. In 2019 USENIX Annual Tech-
nical Conference, USENIX ATC 2019, Renton, WA, USA, July
10-12, 2019 (2019), D. Malkhi and D. Tsafrir, Eds., USENIX
Association, pp. 363–378.

[40] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus: an rdma-
enabled distributed persistent memory file system. In 2017
USENIX Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017 (2017), D. D. Silva
and B. Ford, Eds., USENIX Association, pp. 773–785.

[41] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache craftiness
for fast multicore key-value storage. In European Conference
on Computer Systems, Proceedings of the Seventh EuroSys
Conference 2012, EuroSys ’12, Bern, Switzerland, April 10-13,
2012 (2012), P. Felber, F. Bellosa, and H. Bos, Eds., ACM,
pp. 183–196.

1002    17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html


[42] MARVELL. Marvell liquidio iii. https://www.marvell.
com/content/dam/marvell/en/public-
collateral/embedded-processors/marvell-
liquidio-III-solutions-brief.pdf, 2022.

[43] MARVELL. Marvell® octeon 10 dpu platform.
https://www.marvell.com/content/dam/
marvell/en/public-collateral/embedded-
processors/marvell-octeon-10-dpu-
platform-product-brief.pdf, 2023.

[44] MELLANOX. ConnectX-7 product brief. https://www.
nvidia.com/content/dam/en-zz/Solutions/
networking/ethernet-adapters/connectx-7-
datasheet-Final.pdf, 2022.

[45] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND LI, J. Balancing CPU and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016
(2016), A. Gulati and H. Weatherspoon, Eds., USENIX Asso-
ciation, pp. 451–464.

[46] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND LI, J. Balancing CPU and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016
(2016), A. Gulati and H. Weatherspoon, Eds., USENIX Asso-
ciation, pp. 451–464.

[47] MONGA, S. K., KASHYAP, S., AND MIN, C. Birds of a
feather flock together: Scaling RDMA rpcs with flock. In SOSP

’21: ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October 26-29,
2021 (2021), R. van Renesse and N. Zeldovich, Eds., ACM,
pp. 212–227.

[48] NETRONOME. Netronome agilio.
NetronomeAgilioSmartNICs.https://
www.netronome.com/products/smartnic/
overview/, 2022.

[49] NEUGEBAUER, R., ANTICHI, G., ZAZO, J. F., AUDZEVICH,
Y., LÓPEZ-BUEDO, S., AND MOORE, A. W. Understanding
pcie performance for end host networking. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM 2018, Budapest, Hungary,
August 20-25, 2018 (2018), S. Gorinsky and J. Tapolcai, Eds.,
ACM, pp. 327–341.

[50] NOVAKOVIC, S., SHAN, Y., KOLLI, A., CUI, M., ZHANG, Y.,
ERAN, H., PISMENNY, B., LISS, L., WEI, M., TSAFRIR, D.,
AND AGUILERA, M. K. Storm: a fast transactional dataplane
for remote data structures. In Proceedings of the 12th ACM
International Conference on Systems and Storage, SYSTOR
2019, Haifa, Israel, June 3-5, 2019 (2019), M. Hershcovitch,
A. Goel, and A. Morrison, Eds., ACM, pp. 97–108.

[51] NVIDIA. Innova-2 flex. https://www.nvidia.com/
en-us/networking/ethernet/innova-2-flex/,
2022.

[52] NVIDIA. Nvidia bluefield dpu-2. https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-
bluefield-2-dpu.pdf, 2022.

[53] NVIDIA. Nvidia bluefield dpu-3. https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-
bluefield-3-dpu.pdf, 2022.

[54] NVIDIA. Performance Monitoring Counters, BlueField SW
Manual v2.4.0.11082. https://docs.nvidia.com/
networking/display/BlueFieldSWv24011082/
Performance+Monitoring+Counters, 2022.

[55] NVIDIA. Nvidia bluefield dpu-1. https:
//docs.nvidia.com/networking/display/
BFVPIDPU/Specifications, 2023.

[56] NVIDIA. Nvidia doca dma programming guide.
https://docs.nvidia.com/doca/sdk/dma-
programming-guide/index.html, 2023.

[57] NVIDIA. Nvidia doca software framework. https://
developer.nvidia.com/networking/doca, 2023.

[58] OLUMIDE OLUSANYA AND MUNIRA HUSSAIN. Need
for Speed: Comparing FDR and EDR InfiniBand
(Part 1). https://dl.dell.com/manuals/all-
products/esuprt_software/esuprt_it_ops_
datcentr_mgmt/high-computing-solution-
resources_white-papers77_en-us.pdf, 2022.

[59] PHOTHILIMTHANA, P. M., LIU, M., KAUFMANN, A., PE-
TER, S., BODÍK, R., AND ANDERSON, T. E. Floem: A pro-
gramming system for nic-accelerated network applications. In
13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018 (2018), A. C. Arpaci-Dusseau and G. Voelker, Eds.,
USENIX Association, pp. 663–679.

[60] REDA, W., CANINI, M., KOSTIC, D., AND PETER, S. RDMA
is turing complete, we just did not know it yet! CoRR
abs/2103.13351 (2021).

[61] SCHUH, H. N., LIANG, W., LIU, M., NELSON, J., AND KR-
ISHNAMURTHY, A. Xenic: Smartnic-accelerated distributed
transactions. In SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz, Ger-
many, October 26-29, 2021 (2021), R. van Renesse and N. Zel-
dovich, Eds., ACM, pp. 740–755.

[62] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-
ZOPOULOS, G., DRAGOJEVIC, A., NARAYANAN, D., AND

CASTRO, M. Fast general distributed transactions with opac-
ity. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019 (2019), P. A. Boncz,
S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, Eds.,
ACM, pp. 433–448.

[63] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-
ZOPOULOS, G., DRAGOJEVIC, A., NARAYANAN, D., AND

CASTRO, M. Fast general distributed transactions with opac-
ity. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019 (2019), P. A. Boncz,
S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, Eds.,
ACM, pp. 433–448.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation    1003

https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
 Netronome Agilio SmartNICs. https://www.netronome.com/products/smartnic/overview/
 Netronome Agilio SmartNICs. https://www.netronome.com/products/smartnic/overview/
 Netronome Agilio SmartNICs. https://www.netronome.com/products/smartnic/overview/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://docs.nvidia.com/networking/display/BlueFieldSWv24011082/Performance+Monitoring+Counters
https://docs.nvidia.com/networking/display/BlueFieldSWv24011082/Performance+Monitoring+Counters
https://docs.nvidia.com/networking/display/BlueFieldSWv24011082/Performance+Monitoring+Counters
https://docs.nvidia.com/networking/display/BFVPIDPU/Specifications
https://docs.nvidia.com/networking/display/BFVPIDPU/Specifications
https://docs.nvidia.com/networking/display/BFVPIDPU/Specifications
https://docs.nvidia.com/doca/sdk/dma-programming-guide/index.html
https://docs.nvidia.com/doca/sdk/dma-programming-guide/index.html
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://dl.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf
https://dl.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf
https://dl.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf
https://dl.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf


[64] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and
concurrent RDF queries with rdma-based distributed graph ex-
ploration. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016 (2016), K. Keeton and T. Roscoe, Eds.,
USENIX Association, pp. 317–332.

[65] SIDLER, D., WANG, Z., CHIOSA, M., KULKARNI, A., AND

ALONSO, G. Strom: smart remote memory. In EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020 (2020), A. Bilas, K. Magoutis, E. P. Markatos,
D. Kostic, and M. I. Seltzer, Eds., ACM, pp. 29:1–29:16.

[66] TANG, C., WANG, Y., DONG, Z., HU, G., WANG, Z., WANG,
M., AND CHEN, H. Xindex: A scalable learned index for mul-
ticore data storage. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (New York, NY, USA, 2020), PPoPP ’20, Association
for Computing Machinery, p. 308–320.

[67] THOMAS, S., VOELKER, G. M., AND PORTER, G.
Cachecloud: Towards speed-of-light datacenter communica-
tion. In 10th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud 2018, Boston, MA, USA, July 9, 2018
(2018), G. Ananthanarayanan and I. Gupta, Eds., USENIX
Association.

[68] THOSTRUP, L., FAILING, D., ZIEGLER, T., AND BINNIG, C.
A dbms-centric evaluation of bluefield dpus on fast networks.
In 13th International Workshop on Accelerating Analytics and
Data Management Systems Using Modern Processor and Stor-
age Architectures (2022).

[69] TIMOTHY PRICKETT MORGAN. Pushing PCI-express fabrics
up to the next level. https://www.nextplatform.
com/2020/03/27/pushing-pci-express-
fabrics-up-to-the-next-level/, 2022.

[70] TSAI, S., SHAN, Y., AND ZHANG, Y. Disaggregating persis-
tent memory and controlling them remotely: An exploration
of passive disaggregated key-value stores. In 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17,
2020 (2020), A. Gavrilovska and E. Zadok, Eds., USENIX
Association, pp. 33–48.

[71] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for
datacenter applications. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA, 2017),
SOSP ’17, ACM, pp. 306–324.

[72] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain replication
for supporting high throughput and availability. In 6th Sympo-
sium on Operating System Design and Implementation (OSDI
2004), San Francisco, California, USA, December 6-8, 2004
(2004), E. A. Brewer and P. Chen, Eds., USENIX Association,
pp. 91–104.

[73] WANG, X., KOTRA, J. B., AND JIAN, X. Eager memory
cryptography in caches. In 55th IEEE/ACM International
Symposium on Microarchitecture, MICRO 2022, Chicago, IL,
USA, October 1-5, 2022 (2022), IEEE, pp. 693–709.

[74] WANG, Z., HUANG, H., ZHANG, J., WU, F., AND ALONSO,
G. Fpganic: An fpga-based versatile 100gb smartnic for
gpus. In 2022 USENIX Annual Technical Conference, USENIX
ATC 2022, Carlsbad, CA, USA, July 11-13, 2022 (2022),
J. Schindler and N. Zilberman, Eds., USENIX Association,
pp. 967–986.

[75] WEI, X., CHEN, R., AND CHEN, H. Fast rdma-based ordered
key-value store using remote learned cache. In 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 20) (Nov. 2020), USENIX Association, pp. 117–135.

[76] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Deconstruct-
ing RDMA-enabled distributed transactions: Hybrid is better!
In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18) (Carlsbad, CA, Oct. 2018),
USENIX Association, pp. 233–251.

[77] WEI, X., LU, F., CHEN, R., AND CHEN, H. KRCORE: A
microsecond-scale RDMA control plane for elastic computing.
In 2022 USENIX Annual Technical Conference (USENIX ATC
22) (Carlsbad, CA, July 2022), USENIX Association, pp. 121–
136.

[78] WEI, X., LU, F., WANG, T., GU, J., YANG, Y., CHEN, R.,
AND CHEN, H. No provisioned concurrency: Fast rdma-
codesigned remote fork for serverless computing. In 17th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 23) (Boston, MA, July 2023), USENIX
Association.

[79] WEI, X., SHEN, S., CHEN, R., AND CHEN, H. Replication-
driven live reconfiguration for fast distributed transaction pro-
cessing. In Proceedings of the 2017 USENIX Annual Techni-
cal Conference (Santa Clara, CA, 2017), USENIX ATC’17,
USENIX Association, pp. 335–347.

[80] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015
(2015), E. L. Miller and S. Hand, Eds., ACM, pp. 87–104.

[81] WEI, X., XIE, X., CHEN, R., CHEN, H., AND ZANG, B.
Characterizing and optimizing remote persistent memory with
RDMA and NVM. In 2021 USENIX Annual Technical Confer-
ence, USENIX ATC 2021, July 14-16, 2021 (2021), I. Calciu
and G. Kuenning, Eds., USENIX Association, pp. 523–536.

[82] XIE, X., WEI, X., CHEN, R., AND CHEN, H. Pragh: Locality-
preserving Graph Traversal with Split Live Migration. In 2019
USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019 (2019), pp. 723–738.

[83] XILLYBUS. Down to the tlp: How pci express devices
talk. http://xillybus.com/tutorials/pci-
express-tlp-pcie-primer-tutorial-guide-1,
2022.

[84] ZAMANIAN, E., BINNIG, C., KRASKA, T., AND HARRIS, T.
The end of a myth: Distributed transaction can scale. Proc.
VLDB Endow. 10, 6 (2017), 685–696.

[85] ZHANG, Y., CHEN, R., AND CHEN, H. Sub-millisecond state-
ful stream querying over fast-evolving linked data. In Proceed-
ings of the 26th Symposium on Operating Systems Principles
(New York, NY, USA, 2017), SOSP’17, ACM, pp. 614–630.

[86] ZUO, P., SUN, J., YANG, L., ZHANG, S., AND HUA, Y.
One-sided rdma-conscious extendible hashing for disaggre-
gated memory. In 2021 USENIX Annual Technical Conference,
USENIX ATC 2021, July 14-16, 2021 (2021), I. Calciu and
G. Kuenning, Eds., USENIX Association, pp. 15–29.

1004    17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1
http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1

	Introduction
	Background and Context
	RDMA-capable NICs (RNICs)
	From RNICs to SmartNICs
	Target SmartNIC: NVIDIA Bluefield-2
	Notation and testbed

	Characterizing SmartNIC Performance
	Communication from Client to Host (path ➀)
	Communication from Client to SoC (path ➁)
	Communication between SoC and Host (path ➂)

	A Guideline for Smartly Exploiting Multiple Paths of SmartNIC
	Characterizing concurrent communication paths
	An optimization guideline

	Case Studies
	Distributed file system
	Disaggregated key-value store

	Discussion
	Other Related Work
	Conclusion

