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Abstract

Combining persistent memory (PM) with RDMA is a
promising approach to performant replicated distributed
key-value stores (KVSs). However, existing replication ap-
proaches do not work well when applied to PM KVSs: 1)
Using RPC induces software queueing and execution at back-
ups, increasing request latency; 2) Using one-sided RDMA
WRITE causes many streams of small PM writes, leading to
severe device-level write amplification (DLWA) on PM.

In this paper, we propose Rowan, an efficient RDMA ab-
straction to handle replication writes in PM KVSs; it aggre-
gates concurrent remote writes from different servers, and
lands these writes to PM in a sequential (thus low DLWA)
and one-sided (thus low latency) manner. We realize Rowan
with off-the-shelf RDMA NICs. Further, we build Rowan-KV,
a log-structured PM KVS using Rowan for replication. Evalu-
ation shows that under write-intensive workloads, compared
with PM KVSs using RPC and RDMA WRITE for replication,
Rowan-KV boosts throughput by 1.22× and 1.39× as well as
lowers median PUT latency by 1.77× and 2.11×, respectively,
while largely eliminating DLWA.

1 Introduction
Replicated distributed key-value stores (KVSs) support many
applications by providing durability and high availability [28,
56, 76]. The recent commercialization of persistent memory
(PM), e.g., Intel’s Optane DIMMs, enables local storage with
extremely low latency (e.g., ∼100ns when persisting small
data [73]). When building replicated distributed KVSs with
such fast storage media, network and CPU will become de-
terminants of request latency, since replicating an object (i.e.,
key-value pair) involves multiple times of network communi-
cation and request queueing/execution.

RDMA, a widely-deployed network technology [34,37,53],
is promising to mitigate the network and CPU overhead. First,
RDMA delivers low latency (∼2µs) due to protocol-offload
RDMA NICs (RNICs) and kernel-bypass software. Second,
RDMA provides one-sided WRITE and READ, allowing remote
memory accesses without involvement of remote CPUs. Re-
cent work have leveraged WRITE to replicate data in DRAM
(i.e., WRITE-enabled replication) [17, 30, 31, 69]. This elimi-
nates software queueing/execution of backups in the critical
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path, thus significantly cutting the replication latency com-
pared with RPC-enabled replication.

Yet, in the context of PM KVSs, WRITE-enabled replication
approach does not work well: it induces severe device-level
write amplification (DLWA) on PM. Specifically, a KVS is
typically finely sharded for load balancing and fast recovery,
so every server acts as backups for many shards, receiving
numerous concurrent replication writes from many remote
threads; besides, these replication writes are typically small
(∼100B) due to prevalent tiny objects in real-world work-
loads [24, 52]. In WRITE-enabled replication approaches (e.g.,
FaRM [31]), each server allocates an exclusive backup log
for every remote thread, to accommodate remote WRITE from
primaries. When adopting WRITE-enabled replication to PM
KVSs, these backup logs generate a huge number of PM write
streams1, which contain lots of small-sized writes. These nu-
merous write streams lead to severe DLWA, since PM has
block access granularity at media level (e.g., 256B in Optane
DIMMs) and its hardware combining capacity is bounded.
In our experiments, with 128B RDMA WRITE, 144 remote
PM write streams cause 1.58× DLWA (§2.4). DLWA wastes
limited PM write bandwidth, shortens PM lifetime, and harms
PM’s persistence efficiency.

In this paper, we propose Rowan, an efficient RDMA ab-
straction to handle replication writes on PM KVSs. Rowan
can aggregate numerous concurrent remote writes from dif-
ferent servers, and land these writes to PM sequentially, so
as to largely eliminate DLWA. Besides, it is one-sided as
RDMA WRITE, enabling backup-passive replication with low
latency and high CPU efficiency. We realize Rowan with off-
the-shelf RNICs based on two observations: 1) RDMA SEND
is two-sided on the control path but one-sided on the data
path; 2) RNICs consume receive buffers in order. Thus, we let
a control thread at the receiver side push PM-resident buffers
into receive queues in increasing address order. Senders only
need to issue SEND for remote PM writes and wait for ACKs
generated by receiver-side RNICs. We leverage two RNIC
hardware features, shared receive queue (SRQ) [11] and multi-
packet receive queue (MP RQ) [7, 9], to merge writes from
different connections and support variable-sized writes, re-
spectively. We also streamline Rowan’s control path by min-
imizing the control thread’s tasks. A Rowan instance can

1A write stream is a group of writes targeting contiguous addresses, e.g.,
writes that perform log appending.
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achieve 54.5Mops/s for highly concurrent 64B remote PM
writes, with almost no DLWA.

Further, we build Rowan-KV, a PM KVS leveraging Rowan
for primary-backup replication. It adopts a log-structured
approach to manage both local PM writes and remote PM
writes. Specifically, each server maintains per-thread primary
logs and a single backup log on PM. For a PUT request, a
worker thread in servers generates a log entry containing
the targeted object; then, it persists the log entry into its lo-
cal primary log via CPU instructions and every backup’s
backup log via one-sided Rowan. For a GET request, the thread
searches DRAM-resident indexes which point to objects in
logs. In this way, Rowan-KV features high performance and
low DLWA: 1) Replication bypasses CPUs of backups, en-
suring low latency and saving CPU cycles for foreground
operations; 2) The number of PM write streams in a server
is small (i.e., n primary logs + 1 backup log, where n is lo-
cal thread count), enabling efficient write combining in PM
hardware and thus largely eliminating DLWA. Rowan-KV
also introduces a failover mechanism for fault tolerance and a
dynamic resharding mechanism for load balancing.

We evaluate Rowan-KV on Optane DIMMs under a clus-
ter of 14 machines (8 clients and 6 servers). Our evaluation
focuses on YCSB benchmarks [26] with object sizes from
three typical Facebook KVSs workloads [24] (i.e., ZippyDB,
UP2X and UDB). Compared with KVSs using RPC and
WRITE for replication, Rowan-KV boosts throughput by 1.22×
and 1.39×, lowers median PUT latency by 1.77× and 2.11×,
and lowers 99% latency by 1.26× and 2.06×, respectively,
under write-intensive workloads. In addition, the DLWA is
less than 1.032× in Rowan-KV, while 1.54× in the WRITE-
enabled KVSs. Under read-intensive workloads, they have
similar performance. We also compare Rowan-KV with two
software techniques mitigating DLWA, i.e., batching and log
sharing; Rowan-KV still outperforms them.

In summary, this paper makes the following contributions:
• It demonstrates that WRITE-enabled replication can lead to

severe device-level write amplification on PM KVSs.
• It introduces Rowan abstraction and Rowan-KV with goals

of low latency and low device-level write amplification.
• It uses experiments to confirm the efficacy of Rowan-KV.

2 Background and Motivation
In this section, we first provide the background on PM (§2.1)
and RDMA (§2.2). Then, we show that characteristics of
typical KVSs architecture and workloads together lead to
high fan-in small writes for replication (§2.3). Finally, with
experiments, we demonstrate that when handling these writes,
WRITE-enabled replication causes severe DLWA (§2.4).

2.1 Persistent Memory (PM)
PM is a new kind of storage device that sits on the memory
bus. Thus, PM is byte-addressable and can be accessed by
CPUs via load/store instructions. In this paper, we focus
on Intel’s Optane DIMM, the only available PM product.
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Figure 1: Architecture of Optane DIMMs and RNICs.

PM performance. Optane DIMMs have unique performance
characteristics. In terms of bandwidth, an Optane DIMM of-
fers about 2GB/s for writes and 6GB/s for reads, which are
1/6 and 1/3 of DRAM, respectively. In terms of latency, com-
pared to DRAM, Optane DIMMs have similar write latency
but 3× higher read latency [73]. The limited write bandwidth
and high read latency of Optane DIMMs are the main design
considerations for many PM systems [20,25,48,49,59,67,74].
PM architecture. Figure 1 presents the architecture of Op-
tane DIMMs. The memory controller generates cache-line
granularity (i.e., 64B) read/write requests to Optane DIMMs,
but the internal PM media has a 256B access granularity (re-
ferred as XPLine in this paper). Such a granularity mismatch
will trigger read-modify-write events, thus leading to device-
level write amplification (DLWA). To mitigate DLWA, each
Optane DIMM features an XPBuffer [73], which performs
write combining for adjacent 64B writes, as shown in the right
part of Figure 1. Yang et al. estimated that the XPBuffer in an
Optane DIMM is approximately 16KB in size [73].
Persistent modes. There are two persistent modes for PM:
ADR and eADR [36]. In ADR mode, once a store reaches
the memory controller, it can survive power failure; but the
CPU cache is volatile, so programmers must explicitly flush
data from the CPU cache (using clwb or clflushopt instruc-
tions) or bypass the CPU cache (using ntstore instructions).
In eADR mode, the CPU cache also belongs to the persistence
domain: its data will be flushed to PM upon power failure.

2.2 Remote Direct Memory Access (RDMA)
RDMA is a network technology that offers high bandwidth
(e.g., 100 Gbps) and low latency (∼2µs).
Verb types. RDMA provides two types of verbs for network
communication: message verbs and memory verbs. Message
verbs, i.e., SEND and RECV, are the same as Linux socket inter-
faces: a SEND emits a message to a remote server that prepares
receive buffers via RECV. Memory verbs include WRITE, READ
and ATOMIC. These verbs can operate receivers’ memory with-
out involving receivers’ CPUs. Due to the one-sided feature,
memory verbs enjoy low latency and high CPU efficiency.
Queue pair. RDMA servers use queue pairs (QPs) for com-
munication. A QP contains a send queue (SQ) and a receive
queue (RQ). A server posts requests, including SEND, WRITE,
READ, and ATOMIC, to the send queue, and posts RECV to the
receive queue for accommodating incoming SEND messages.
A send/receive queue is associated with a completion queue
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max shard size # of backup shards
(stored by one PM server)

CosmosDB 20GB [10] 200
DynamoDB 10GB [2] 400
FoundationDB 500MB [3] 8,400
Cassandra 100MB [1] 42,000
TiKV 96MB [38] 43,000

Table 1: A PM server hosts many backup shards for popular KVSs.
We assume 3-way replication and a typical configuration of PM
servers: 2 sockets, each with 3TB Optane DIMMs (6TB in total).

(CQ), which generates completion signals for posted verbs.
Remote persistence. When issuing a WRITE to remote PM,
to ensure the data persistence, we should take two extra ac-
tions. ¬ Since receiver-side RNICs return acknowledgements
before data in WRITE is DMA-ed to PM, we should send a
READ (1B in arbitrary addresses) to flush RNIC and PCIe
buffers at the receiver side [42]. These two verbs (i.e., WRITE
followed by READ) can be posted in one request according
to the ordering guarantee of RDMA [70].  We should dis-
able Data Direct I/O (DDIO) [5, 32], a technology of Intel
CPUs that lets RNICs directly DMA data to last level cache
(LLC). In ADR mode, disabling DDIO ensures that DMA-ed
data can reach persistence domain. In eADR mode, it avoids
PM write amplification resulting from LLC’s near-random
eviction (64B cache line vs. 256B XPLine) [42, 70].

2.3 High Fan-in Small Writes in KVSs
In KVSs, replication makes high fan-in small writes a domi-
nant access pattern due to the following two reasons.
1) Data sharding. Distributed storage systems (including
KVSs) typically split the entire data set into a large num-
ber of shards, and then distribute these shards across many
servers [16, 50]. Each shard has multiple replicas, with one
selected as primary and the others as backups. Data shard-
ing has two advantages. First, it can improve load balancing
and support dynamic data migration in a fine-grained manner.
Second, it can improve availability: when a server fails, since
replicas of its data are distributed to many servers, the system
can perform recovery and re-replication in parallel. For exam-
ple, FaRM [30] maps each server into 100 consistent hashing
rings by default; in Facebook’s RocksDB clusters, each server
typically hosts tens or hundreds of shards [29].

With data sharding, each server acts as backups for tens
or hundreds of shards, and their primaries are distributed to
many servers. This makes every server receive messages for
data replication, i.e., replication writes, from many primaries
residing in many other servers. We call it high fan-in writes.

To solidify the argument of high fan-in writes in KVSs,
we analyze five widely-used replicated KVSs. As shown in
Table 1, these KVSs all have a maximum shard size, from
tens of megabytes (i.e., Cassandra [1] and TiKV [38]) to
several gigabytes (i.e., DynamoDB [2] and CosmosDB [10]).
When we deploy these KVSs on servers having terabytes of
PM, each server will host a considerable number of backup
shards which ranges from 200 (CosmosDB) to 43,000 (TiKV),

generating high fan-in replication writes.
The degree of fan-in is even higher in systems equipped

with fast network hardware (e.g., RNIC) [30, 31, 44, 45, 61,
69]. To achieve multicore-scalable and squeeze out the raw
performance of NICs, these systems run multiple threads, each
independently processing requests using exclusive network
connections. For example, in DrTM+H [69], every worker
thread independently issues RDMA WRITE for replication.
With this threading model, the degree of fan-in increases from
the number of remote servers to the number of remote threads.
2) Numerous small-sized objects. Many important appli-
cations relying on KVSs generate numerous small objects,
whose size is much smaller than the access granularity of PM
media (e.g., 256B XPLine in Optane DIMMs). For example,
in ZippyDB, the largest KVS at Facebook [15], the average
size of objects is only 90.8B [24]. Moreover, the other two
typical KVSs at Facebook — UP2X (a KVS for AI services)
and UDB (a KVS for social graph) — have average object size
of 57.25B and 153.8B, respectively [24]. Twitter exhibits a
similar workload feature: the most common length of a tweet
is only 33 characters [14, 52]. This paper focuses on these
small objects because of their prevalence and importance.

When a KVS handles PUT requests (from clients) for these
small objects, primaries emit replication writes to associated
backups. These writes are small, since they typically only
contain replicated objects with tiny metadata [56]. These
writes are also high fan-in due to data sharding, as explained
before. As a result, we can conclude that high fan-in small
writes are a dominant access pattern in the cluster of KVSs.

2.4 DLWA from WRITE-enabled Replication
Recent research demonstrates that for in-memory DRAM sys-
tems, compared with RPCs, leveraging RDMA WRITE for
replication can obtain significant performance gain [17, 30,
31, 69]. In such WRITE-enabled replication, primaries issue
replication writes to backups’ logs via one-sided WRITE, and
only need to wait for acknowledgements (ACKs) from the
RNIC hardware of backups. This eliminates software queue-
ing/execution of backups in the critical path, thus enjoying
low latency (e.g., Mu [17] cuts the latency by 61%). Further,
the saved CPU cycles in backups can serve requests (e.g.,
GET) from clients, thus improving system throughput.

In systems using WRITE-enabled replication, to handle high
fan-in replication writes from many remote threads (recall
§2.3), each server maintains lots of backup logs, each accom-
modating WRITE from an individual remote thread (which
can act as primary) [31, 69]. For example, in FaRM’s evalua-
tion with 90 machines (each running 30 worker threads) [31],
there are thousands of backup logs (i.e., 89×30) in each server.
Yet, when we apply WRITE-enabled replication to PM KVSs,
these backup logs (which are placed in PM for durability) will
cause a huge number of PM write streams, which contain lots
of small writes, thus inducing severe DLWA. We conduct an
experiment to demonstrate it.
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Figure 2: DLWA with varying remote write streams. DLWA = media bandwidth/request bandwidth. Threads access PM on a remote server;
each thread generates a remote write stream. In (c) and (d), 18 CPU cores in the remote server perform local sequential PM writes.

In the experiment, we launch a number of threads (on four
servers), each issuing sequential RDMA WRITE to an exclu-
sive PM-resident log in a remote server and thus generating a
PM write stream. We disable DDIO in the remote server and
post a READ after each WRITE to guarantee persistence. The
remote server is equipped with three 256GB Optane DIMMs
and a 100Gbps RNIC. We use ipmctl [8] to periodically
read hardware counters of Optane DIMMs, calculating re-
quest bandwidth and media bandwidth, which means write
bandwidth received from memory bus and write bandwidth
issued to PM media, respectively. Figure 2(a) and (b) show
results with 64B and 128B WRITE size (representing small
replication writes, §2.3), respectively. When remote write
stream count is lower than 90, DLWA is negligible. This is
because the XPBuffer on Optane DIMMs can combine ad-
jacent small writes from the same write streams into 256B
internal writes (§2.1). However, the capacity of combining is
bounded due to the limited size of XPBuffer. Consequently, as
the number of remote write streams continues to increase, se-
vere DLWA appears. Specifically, when remote write stream
count is 144, the DLWA is 2.48× and 1.58× in case of 64B
WRITE and 128B WRITE, respectively.

Next, we consider a more practical scenario where local
PM writes exist. In the remote server, we run 18 CPU cores,
each performing sequential 128B PM writes using ntstore.
We repeat the above experiment; Figure 2(c) and (d) show
the results. Without remote RDMA WRITE, local PM writes
can deliver high request bandwidth (i.e., available bandwidth).
As the remote write stream count increases, DLWA in Op-
tane DIMMs reaches 2.49× and 1.70× in case of 64B WRITE
and 128B WRITE, respectively. In addition, the available band-
width drops from 5.2GB/s to 2.1GB/s (60%) for 64B WRITE,
and from 5.4GB/s to 3.2GB/s (41%) for 128B WRITE.

DLWA on PM leads to three issues. First, it reduces avail-
able PM write bandwidth, thus degrading system performance.
The wasted bandwidth could also have been used for co-
located applications [33, 54, 55]. Second, it shortens the life-
time of PM which has limited write endurance [6]. Third,
severe DLWA consumes a considerable number of hardware
resources (e.g., XPBuffer), harming persistence efficiency.

To efficiently handle high fan-in small writes, we need a
new RDMA abstraction (rather than WRITE) for PM KVSs.
This abstraction should mitigate DLWA, while achieving bene-
fits of one-sided verbs — low latency and high CPU efficiency.

Optane DIMMs

96B

128B

32B
96B

128B

32B

~0x200
0x100

RNIC

ReceiverSender 3

Sender 2

Sender 1

Figure 3: An instance of Rowan abstraction.

3 Rowan Abstraction
We propose Rowan, a new RDMA abstraction to handle high
fan-in small writes in PM KVSs. In this section, we first de-
scribe Rowan’s semantic and characteristics. Then, we present
how to realize Rowan using off-the-shelf RNICs.

3.1 Rowan Semantic
Figure 3 presents a Rowan instance. A Rowan instance is
associated with one receiver and a set of senders. Senders
concurrently issue writes to the receiver which has registered
a large PM area. The receiver-side RNIC lands these writes to
the PM area sequentially, and finally returns ACKs to senders.

Rowan abstraction has the following advantages. First, by
translating concurrent remote small writes into a single write
stream, the XPBuffer in Optane DIMMs can easily combine
them into 256B XPLine writes, largely eliminating DLWA.
Second, since all the data operations are performed by the
receiver-side RNIC without involving receiver-side CPUs,
Rowan enjoys benefits of low latency and high CPU efficiency
like RDMA WRITE. In addition, compared with CPUs, RNIC
ASICs can deliver extremely high throughput.
Comparison with batching. Batching is also an approach
that can mitigate DLWA on PM: it opportunistically accumu-
lates multiple small writes at the sender side, and then emits
the batched writes to the receiver via one RDMA WRITE.
However, batching induces extra latency, sapping the benefits
of extremely low-latency hardware (i.e., RNICs and PM). In
contrast, Rowan does not delay any write and thus ensures low
latency: senders immediately issue writes and receiver-side
RNICs immediately land received writes to PM. In addition,
as we will show in §6, batching frequently fails to accumulate
enough small writes within a short time interval in KVSs,
and Rowan outperforms batching in both latency and through-
put. Our view of batching has been echoed by authors of
RAMCloud — “. . . batching requires some operations to be
delayed until a full batch has been collected, and this is not
acceptable in a low-latency system such as RAMCloud” [56].
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Figure 4: Realizing Rowan with off-the-shelf RNICs. (a) Rowan basic architecture using shared receive queue (SRQ). In this subfigure, the
32B write and 56B write are placed in the same XPLine. Yet, the 384B write fails to be received due to 64B receive buffers. (b) Rowan using
multi-packet shared receive queue (MP SRQ) with 64B stride. In this subfigure, three writes are placed in two XPLines of the first receive buffer.
We use a completion queue (CQ) ring to eliminate CQ polling in the control thread.

3.2 High-Performance Rowan
Rowan is conceptually simple but challenging to realize us-
ing off-the-shelf RNICs. We do not want to modify RNIC
hardware like StRoM [60] and PRISM [23], so as to enable
Rowan to be deployed immediately in datacenters today that
are equipped with RNICs. Before describing our solution, we
present a straightforward solution that has poor performance.
3.2.1 Straightforward Solution
A straightforward solution to realize Rowan abstraction is
combining RDMA WRITE and atomic verb FETCH_AND_ADD.
Specifically, there is a 64-bit sequencer stored in the receiver’s
memory. When performing a write, the sender first issues a
FETCH_AND_ADD to the sequencer, reserving a PM address;
then, it issues a WRITE to this address. This solution has two
limitations. First, it needs two round trips, increasing the la-
tency. Second, the poor performance of atomic verbs bot-
tlenecks throughput: even storing the sequencer in RNICs’
device memory [68], the throughput is less than 10Mops/s.
3.2.2 Our Solution
Counter-intuitively, we use RDMA SEND and RECV to realize
Rowan. This is based on our two observations.
• RDMA SEND is two-sided on the control path but one-

sided on the data path. In the control path, the receiver’s
CPUs prepare receive buffers via RECV; however, in the
data path, when handling SEND requests, the receiver-side
RNIC performs all tasks, including landing SEND’s data to
receive buffers and returning ACKs.

• In a receive queue, receive buffers are consumed in order.
Every time, the receiver-side RNIC pops the first buffer in
the associated receive queue and lands data to it.

Key idea. On the control path, CPUs push PM buffers into
the receive queue in increasing address order; on the data
path, the receiver-side RNIC consumes them in order.
Basic architecture. Figure 4(a) shows the basic architecture
of Rowan implementation. Rowan uses reliable connection
(RC) QPs to delegate transmission reliability to RNICs. We
create a shared receive queue (SRQ) [11] which is associated

with all QPs; thus, RNICs can land data of SEND from different
remote QPs to the same receive queue. In the receiver, we
reserve a dedicated thread, namely control thread, to perform
control-path tasks; the RNIC performs data-path tasks.

Specifically, the control thread splits the PM area into
fixed-sized (e.g., 64B in Figure 4)(a)) buffers, and posts these
buffers (using RECV) into the SRQ in increasing address or-
der. Senders encapsulate writes into SEND requests, and emit
them to the receiver; each SEND is followed by a READ for
persistence. When receiving a SEND (followed by a READ), the
receiver-side RNIC pops the first buffer in SRQ, DMAs the
SEND’s data into the buffer, generates a completion entry (CE)
to the SRQ’s CQ, and finally returns an ACK to the sender. In
this way, writes from different senders can be combined into
the same XPLines on PM, mitigating DLWA.
Handling variable-sized writes. When the size of a SEND’s
data is larger than the first buffer in the SRQ, the RNIC cannot
accommodate it and will trigger an error CE. For example, in
Figure 4(a), with 64B receive buffers, the 384B write cannot
be handled. If we use a buffer size larger than 256B for the
SRQ to support relatively large writes, small writes from
different senders will not be combined into the same XPLines,
destroying the benefits of Rowan abstraction.

Fortunately, current RNICs (e.g., ConnectX-4/5/6) support
a new type of RQ, called multi-packet receive queue [7, 9]
(MP RQ). In an MP RQ, each receive buffer can accommodate
multiple SEND requests. We need to define a stride (e.g., 64B)
for an MP RQ. When receiving a SEND, the RNIC appends
the data to the receive buffer that is being used, and the start
address is stride-aligned. If there is no enough space left, the
RNIC pops a new receive buffer from the MP RQ to use.

Figure 4 shows Rowan that uses MP SRQ, where we set
the stride to 64B and receive buffer size to 4MB. In the figure,
three writes are placed in two XPLines (i.e., 512B area) in the
first receive buffer, each having a 64B-aligned start address.
By using MP SRQ, Rowan can support variable-sized writes,
while combining small writes to mitigate DLWA.
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There are two points worth noting when using MP SRQ:
• In Rowan, the stride is a fixed value of 64B. We do not

choose a smaller value (e.g., 32B) for two reasons. First,
in the RNIC we use (i.e., ConnectX-5), the minimum sup-
ported stride value is 64B. Second, recent studies suggest
that senders should pad small writes to PCIe data word
(64B) granularity [70], to avoid expensive read-modify-
write operations on receivers’ PM. Thus, we assume the
incoming small writes are already 64B granularity.

• If a SEND is larger than maximum transmission unit (MTU),
it is comprised of multiple packets. The RNIC may land
these packets to non-contiguous addresses. We let the upper
applications (e.g., KVSs) to handle this case.

Minimizing control-path tasks. On Rowan’s data path, the
receiver-side RNIC can deliver extremely high throughput (>
50Mops/s). On the control path, for CPU efficiency, we only
want to use one control thread; thus, we minimize control-path
tasks to make them can be easily handled by one thread.

There are two tasks performed by the control thread: post-
ing receive buffers into the MP SRQ and polling the CQ
to consume CEs. For the former, since we use large receive
buffers (e.g., 4MB) by leveraging the multi-packet feature and
post a batch of receive buffers at a time, this task is lightweight.
For the latter, unfortunately, unlike other verbs, RECV can not
be marked as unsignaled, so every SEND will generate a CE at
the receiver side. The control thread cannot timely consume
these CEs (considering > 50Mops/s throughput), making the
CQ fill and thus causing QPs in an error state. We get inspira-
tion from eRPC [43] to address this problem. Like eRPC, we
create a CQ that forms a ring structure, so that the RNIC can
overwrite entries in the CQ ring in a round-robin manner. In
this way, the control thread does not need to poll the CQ.

4 Rowan-KV Design
We build Rowan-KV, a PM KVS that uses Rowan for primary-
backup replication. It has two main design goals.
• Low latency. Rowan-KV exploits one-sided Rowan to

eliminate software overhead at backups during replication.
• Low DLWA. Rowan-KV adopts a log-structured approach

to manage PM writes from both local CPUs and remote
CPUs. For the former, every thread appends data in its local
log. For the latter, Rowan merges replication writes into a
single backup log. Hence, Optane DIMMs only receive a
small number of write streams and can efficiently combine
adjacent small writes into XPLines, thus mitigating DLWA.

4.1 Overview
Figure 5 shows the architecture of Rowan-KV. Servers per-
sistently store objects (i.e., key-value pairs) in PM and use
RDMA for network communication. Rowan-KV divides the
entire data set into many shards and distributes them across
servers. Each shard is replicated for high availability: with
the replication factor of k, it has one server as primary and
k-1 servers as backups. Clients issue KV requests via RPCs.
Sharding mechanism. Rowan-KV hashes each object’s key
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Figure 5: Architecture of Rowan-KV. The per-thread logs (t-logs)
and backup log (b-log) are divided into 4MB segments.

into a 64-bit number and lets a shard manage a continuous
range in the hashed keyspace. Shard distribution is maintained
by a configuration manager (CM) and is cached in servers and
clients. Rowan-KV uses a dynamic resharding mechanism to
mitigate load imbalancing from overloaded servers (§4.6).
Log-structured approach. Rowan-KV adopts a log-
structured approach, where each server has three components:
• Per-thread logs. Each server launches a number of worker

threads to handle requests from clients. Each worker thread
maintains a per-thread log (t-log) in PM, which stores ob-
jects of PUT/DEL requests. We do not allocate independent
logs for each shard, to reduce random PM writes.

• Backup log. Each server has a single backup log (b-log) in
PM, which receives replication writes from primaries using
a Rowan instance. By doing so, Rowan-KV can largely
eliminate DLWA from high fan-in small writes.

• Per-shard hash indexes. Each server builds a DRAM-
resident hash table for every shard it manages, to index
objects in t-logs or the b-log. Putting indexes in DRAM can
avoid random PM writes and expensive PM reads [22, 25].
The t-logs and b-log are divided into 4MB segments.

Handling KV requests. When issuing a KV request for an
object, the client sends an RPC to a worker thread residing in
the server that is the targeted shard’s primary.

For a PUT/DEL request, the worker thread generates a log
entry containing the object (only the object’s key for DEL),
and persistently appends the log entry to its local t-log us-
ing ntstore instructions (¬ in Figure 5). Then, the worker
thread issues replication write for every backup via one-sided
Rowan, persistently appending the log entry to every backup’s
b-log (). Upon receiving all ACKs from backups’ RNICs,
the worker thread updates the associated index to make the
object (in t-logs) visible (®), and finally returns a response to
the client. Rowan-KV has a strong durability guarantee: when
a client receives the response of a PUT/DEL request, its effects
have been persisted on all replicas.

For a GET request, the worker thread first locates the object
by searching the associated index (¶). Then, it copies the
object’s value from t-logs (·) and replies to the client.
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Figure 6: Life cycle of segments.

Background operations. Rowan-KV uses three types of
threads to perform background operations.
• Control thread. One control thread performs control-path

tasks for the Rowan instance (§3). In Rowan-KV, it pushes
free segments to the b-log via RDMA RECV, and hands
used segments over to digest threads.

• Digest threads. There are multiple digest threads. They
digest used segments from the b-log. Specifically, they
parse log entries and update associated indexes.

• Clean threads. There are multiple clean threads. They
garbage collect stale objects in segments (from worker
threads or digest threads) to reclaim free PM space.

4.2 Log Metadata
In Rowan-KV, t-logs and b-log are comprised of multiple
segments, each storing a number of log entries. We describe
segment metadata and log entry metadata, respectively.
4.2.1 Segment Metadata
A segment’s metadata mainly includes its state. At any given
time, each segment is in one of four states:
• Free. The segment can be allocated to t-logs by worker

threads, the b-log by the control thread, or clean threads.
• Using. The segment is being used by t-logs, the b-log, or

clean threads; it has space to store new log entries.
• Used. It has no space to store new log entries, and some of

its log entries have not been persisted on all replicas.
• Committed. It has no space to store new log entries, and all

of its log entries have been persisted on all replicas.
In addition to the state, a segment has an extra metadata

called owner, indicating which type of thread allocates it (e.g.,
worker threads). Each server maintains a PM array called
segment meta table to record metadata for all its segments.

Figure 6 presents the life cycle of segments. The path for
primaries is simple: a worker thread allocates a free segment
for its t-log, and the segment becomes using state. Once the
segment has no space, it transitions into committed, since the
worker thread can easily ensure that all of the segment’s log en-
tries have been persisted on all replicas. The path for backups
is fairly complicated, where we should accurately distinguish
between used segments and committed segments (§4.3 and
§4.4). Such a distinguishment is essential for failover (§4.5).
4.2.2 Log Entry Metadata
A log entry contains the request type (i.e., PUT/DEL) and the
targeted object (only the object’s key for DEL). It also includes
three metadata fields:
• 32-bit checksum. The checksum covers the whole log en-

try. Checksums eliminate persistent tails for logs: upon
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Figure 7: A 2-MTU-sized log entry in the b-log.

recovery, we can identify the end of each log by calculat-
ing checksums. Besides, backups can use checksums to
independently check the integrity of log entries in the b-log.

• 48-bit version. Each shard has a version, namely shard ver-
sion, which is maintained by its primary. Upon a PUT/DEL
request, the worker thread atomically increments the associ-
ated shard version, and stores the obtained version into the
log entry. Upon recovery, the version allows us to identify
the most recent objects from multiple t-logs.

• 16-bit shard ID. It indicates which shard the targeted object
belongs to.

Handling larger-than-MTU log entries. For a log entry
that is larger than MTU, backup-side RNICs may divide it
into multiple packets and place them in non-contiguous ad-
dresses of the b-log (recall §3.2). To enable backups check
the integrity of such a log entry, we design a simple counter-
based metadata. Specifically, if a log entry is larger than MTU,
we logically divide it into multiple MTU-sized blocks, and
duplicate log entry metadata at the start of each block (each
checksum field protects the individual block). Besides, we add
two extra metadata to each block: 1) cnt: block count of the
log entry, and 2) seq: the sequence number of the block.

Figure 7 shows a 2-MTU-sized log entry in the b-log,
where its two blocks are not adjacent. The pair of 〈shard ID :
A,version : 64〉 uniquely identifies the log entry. When scan-
ning the two blocks (checksums match) with their cnt and
seq, backups can determine the log entry’s integrity.

4.3 Managing the Backup Log
The control thread manages the b-log by communicating with
the RNIC and digest threads. To minimize the communication
overhead, the control thread performs tasks in a batch manner.

Specifically, when the system starts up, the control thread
allocates a considerable number of free segments (e.g., 512)
for the b-log, and pushes them into Rowan’s MP SRQ via
RECV. Then, it enters into a loop: 1) identifies a batch of seg-
ments (e.g., 128) that is in used state; 2) hands these segments
over to digest threads; 3) allocates a batch of free segments
and pushes them into the b-log via one RECV call. Note that a
free segment transitions into the using state after it is allocated
by the control thread (recall backup path in Figure 6).
Identifying used segments. The control thread adopts a sim-
ple method to identify used segments in the b-log. For every
segment pushed into the b-log, its first 64 bits are set to zeros.
Meanwhile, the first 64 bits in a log entry include the request
type, which is non-zero. Thus, when the control thread finds
that a segment has non-zero first 64 bits, it can ensure that all
previous segments in the b-log (we call the set of segments S
here) have been allocated by the RNIC for accommodating
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log entries. However, this does not mean that segments in
S are used, since maybe some DMA operations writing log
entries in S are outstanding. Hence, we wait 2ms for all these
DMA operations to complete, to guarantee that all segments
in S have transitioned into used state. At the primary side,
worker threads measure the time of each replication write: if
it is more than 1ms, worker threads retry the replication write.

4.4 Digest and Garbage Collection
Digest. Multiple digest threads process used segments in the
b-log in parallel. Each digest thread manages an exclusive set
of shards: it extracts log entries from used segments in order
and only processes shards it manages. For a log entry, digest
threads update the index of the associated shard. Besides,
digest threads identify committed segments, and hand these
segments over to clean threads.
Identifying committed segments. To help digest threads
identify committed segments in the b-log, primaries dissemi-
nate the information of log entries to backups. Specifically, for
a shard, worker threads in its primary maintain a CommitVer;
any log entry containing a version ≤ CommitVer has been per-
sisted on all replicas. Every 15ms, worker threads write the
〈shard ID, CommitVer〉 pair into backups’ b-logs via Rowan.

At the backup side, digest threads maintain an array
CommitVerArray, which contains associated CommitVer for
each shard. When encountering a 〈shard ID, CommitVer〉
during parsing segments of the b-log, digest threads up-
date CommitVerArray. Meanwhile, when processing a seg-
ment, digest threads generate an array MaxVerArray for it;
for each shard, this array records the maximum version that
digest threads have encountered in log entries. A used seg-
ment can transition into committed one, if its MaxVerArray ≤
CommitVerArray (i.e., for every shard, the maximum version
in MaxVerArray ≤ CommitVer in CommitVerArray).
Garbage collection. Multiple clean threads garbage collect
stale objects in committed segments. When memory utiliza-
tion of a committed segment, i.e., the percentage of valid
bytes, is lower than a pre-defined threshold (e.g., 75% in our
evaluation), a clean thread cleans it. Specifically, the clean
thread scans the committed segment and checks the liveness
of objects in log entries (by searching indexes). For live ob-
jects, the clean thread copies associated log entries to a using
segment and updates indexes. Finally, the committed segment
transitions into free state for future usages.

4.5 Failover
We adopt FaRM’s reconfiguration-style approach [31] to han-
dle failover but tailor it for Rowan-KV. A configuration in
Rowan-KV contains 1) 64-bit term, 2) membership, i.e., the
set of live servers, and 3) shard distribution. The configura-
tion is persistently stored in a Zookeeper instance [40], and is
cached in the CM, clients, and servers. Rowan-KV uses leases
to detect failures for servers and CM [31]. When the CM fails,
Rowan-KV activates a new CM using the same mechanism as
FaRM [31]. When a server fails, Rowan-KV performs failover

with the following three phases.
1) Generating and committing a new configuration. The
CM generates a new configuration, where the term is incre-
mented and the membership excludes the failed server. In the
new shard distribution, the CM reassigns shards managed by
the failed server to live servers, and promotes a backup to the
new primary for each shard losing its primary.

Then, the CM stores the new configuration in Zookeeper
and sends it to all servers. Servers cache the configuration,
destroy QPs used for communicating with the failed server,
and respond. From this point, servers block all requests from
clients. Once the CM receives all responses, after ensuring
that the lease for the failed server has expired, it sends a com-
mit message to all servers. Now, servers can unblock requests.
A server rejects requests containing terms that are lower than
the one it caches. Clients will fetch the new configuration
from CM upon receiving rejected responses.
2) Promoting backup to primary. When a backup of a
shard (we call the shard A here) is promoted to the new
primary, its worker threads block requests to A until digest
threads build indexes for all objects of A. The new primary
and backups should reach a consensus on the committed log
entries. Hence, the new primary and backups process using
and used segments in the b-log, collecting log entries belong-
ing to A. These collected log entries are gathered to the new
primary and then are scattered to backups. The new primary
and backups store these log entries into segments. In this way,
all replicas will own the same set of log entries for A. During
digest, the new primary constructs a valid shard version for A,
which is larger than versions in any A’s log entry.
3) Re-replication. The CM adds a new backup for the shard
having replicas in the failed server. The new backup performs
re-replication asynchronously. It first initializes an index for
the shard, and then sends a message to the primary. Upon
receiving the message, the primary traverses the shard’s index
and transmits associated log entries to the new backup.

4.6 Dynamic Resharding
Rowan-KV introduces a dynamic resharding mechanism to
migrate hotspot shards for improving load balancing.

CM detects overloaded servers and produces new shard
distribution. Specifically, for each shard, each worker thread
records the number of received requests during a fixed pe-
riod (i.e., 500ms), and sends the statistic data to CM. Since
Rowan is one-sided and thus backups are unaware of repli-
cation writes, we let worker threads in primaries record the
number of received replication writes for backup shards. CM
calculates the load of each server according to these statistics.
If a server has a load that is higher than the average load
by a threshold (i.e., 30%), CM determines that the server is
overloaded. CM produces a new shard distribution, where the
hottest shards in overloaded servers are moved to underloaded
servers, with a goal of making the load of every server within
5% of the average. Then, it saves a migration list in the config-
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uration, which contains a triple 〈source server, target server,
shard ID〉 for each migration task. Finally, CM increments the
term, writes the new configuration (including the new shard
distribution) to Zookeeper, and sends it to all servers.

Next, we describe how Rowan-KV migrates a primary
shard from a source server to a target server (migrating a
backup shard is much easier since it does not serve client re-
quests). Upon receiving the new configuration, servers cache
it to local memory. From this point, the source server re-
jects client requests for the migrated shard. Clients will fetch
the new configuration from CM when receiving rejected re-
sponses, so subsequent requests to the migrated shard will
be sent to the target server. Then, the source server sends a
message to the target server; the message contains the shard
version of the migrated shard. Upon receiving both the mes-
sage and the new configuration, the targeted server starts to
serve requests for the migrated shard. In this way, Rowan-KV
guarantees that only one server can serve the shard at any
given time. Then, the process of data migration starts:
• In the source server, a migration thread requests free PM

segments from the target server via RPCs, traverses the
index of the migrated shard, and stores the associated log
entries to remote segments via RDMA WRITE.

• In the target server, a migration thread scans segments
written by the source server and installs log entries in the
shard’s index. Upon a PUT request to the migrated shard,
the target server handles it as normal. Upon a GET request,
the target server searches the index; if the corresponding
key is not found, the target server routes the GET request to
the source server since some objects have not been migrated
yet. Of note, the versions in log entries resolve the conflicts
between the migration thread and concurrent PUT requests.
The target server informs CM when it finishes data migra-

tion. Then, CM deletes the migration task from the migration
list and writes the new configuration to Zookeeper. Finally,
CM sends a message to the source server to inform it to free
the index of migrated shard; the associated log entries in the
source server will be removed by garbage collection.

If the migration is interrupted due to failures of the source/-
target server, the CM first rolls back the shard distribution in
the configuration to the state before migration. Then, the CM
deletes the associated task in the migration list and performs
the normal failover process. In addition, the CM informs the
target server (if alive) to release resources allocated for the
interrupted migration task (e.g., migration thread and index).

4.7 Cold Start
When the entire cluster experiences a power failure, Rowan-
KV can guarantee durability of data. Upon recovery, the CM
fetches the configuration from Zookeeper, and disseminates
it to all servers. Each server obtains the metadata for all its
segments via the segment meta table (recall §4.2.1). For a
shard, its primary extracts associated log entries from using
segments whose owner is worker threads; then, the primary

sends these log entries to backups, to make all replicas own
the same set of log entries. Each primary builds indexes for
shards it manages by processing segments, and constructs
valid shard versions. If two log entries have the same targeted
key, the one with the larger version is more recent. Finally,
Rowan-KV resumes unfinished migration tasks according to
the migration list stored in the configuration.

5 Implementation
We implement Rowan-KV in Linux hosts. Rowan-KV is a
fully user-space system: it uses libibverbs for RDMA opera-
tions and CPU memory instructions for accessing PM.

5.1 Threading Model
Rowan-KV binds each thread (i.e., worker threads, clean
threads, digest threads, and control thread) to an exclusive
CPU core. Rowan-KV follows two principles:
Minimizing inter-thread communication. First, each
worker thread handles both network I/O and KV logic; this
avoids request dispatch in systems that have dedicated threads
to poll network requests [56], thus enjoying high multicore
scalability. Second, a thread hands over segments to other
threads in a batch manner (§4.3) using thread-safe queues.
Avoiding thread blocking. To avoid blocking due to waiting
for network events, worker threads adopt a coroutine-like
approach to interleave work: after issuing Rowan operations
for a PUT, a worker thread saves the context of the PUT request
(e.g., the targeted key); then, it polls the RDMA completion
queue, getting new requests to execute. Upon receiving ACKs
from backups, the worker thread restores the PUT’s context
and continues the remaining logic. In this way, a worker thread
can concurrently handle multiple PUT requests.

5.2 Network Components
RPC. Rowan-KV uses an RPC framework for client-server
and inter-server communication (not include replication).
We build the RPC framework with RDMA SEND and RECV
verbs using unreliable datagram (UD) QPs. Specifically, each
worker thread creates a UD QP to receive requests and send
responses. When a client joins the Rowan-KV cluster, it estab-
lishes RPC connections with a worker thread in every server.
Like FaSST [44], our RPC framework currently does not
support messages larger than an MTU. To reduce CPU con-
sumption on PM reads: the RPC framework leverages RNICs’
scatter-gather DMA to gather RPC headers and PM-resident
objects, generating responses of GET requests.
Rowan. To realize Rowan, every worker thread builds a reli-
able connection (RC) QP with every remote control thread.

At the sender side, a worker thread uses the associated send
queue in QPs to issue Rowan operations. A Rowan operation
contains a SEND followed by a 1B READ for persistence (§3).
SEND and READ are sent in one ibv_post_send call. For a
worker thread, all its Rowan QPs and RPC QP share the same
CQ, so that it can be aware of Rowan ACKs and new RPC
messages by polling the CQ. We mark SEND as unsignaled to
eliminate a completion event. For READ, we store the context
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id of the associated PUT request (§5.1) into the wr_id field, so
that worker threads can distinguish Rowan ACKs belonging
to different PUT requests when polling the CQ.

At the receiver side, a control thread manages all Rowan
QPs connected to remote worker threads; these QPs share
an MP SRQ. The control thread pushes PM segments to the
MP SRQ via RECV. We register PM to RNICs using physical
addresses [64], to remove virtual-to-physical translation tables
in RNICs and thus reduce cache thrash of RNICs.
Mitigating the impact of disabled DDIO. We disable
DDIO to ensure the RNICs can land data to PM (rather than
CPU cache). However, disabling DDIO will ¬ cause CPU
cache miss when handling RPCs and  degrade performance
of DMA operations between RNICs and memory. For ¬,
worker threads poll multiple RPC messages at a time, and
issue prefetch instructions to them. For , for RDMA READ
used for persistence, we set its source address to RNICs’ de-
vice memory [4, 68], to eliminate a DMA write at senders.
We expect that DDIO does not need to be disabled, with next-
generation RNICs supporting RDMA flush extensions [12].

5.3 Storage Components
PM management. We configure Optane DIMMs in App-
Direct mode, which exposes PM as a range of physical mem-
ory. Rowan-KV splits the PM space into 4MB segments and
stores the segment meta table in a predefined PM area (recall
§4.2.1). A DRAM-resident free list records free segments, to
serve segment allocation. We add padding for each log entry,
making it 64B-aligned; it can ¬ avoid expensive PM read-
modify-writes on receiver-side RNICs [70] when performing
Rowan operations, and  avoid slow repeated writes to the
same cache lines [25, 42] in logs.
DRAM indexes. Each per-shard index is implemented with a
concurrent bucket hash table [51]. The hash table is organized
into a bucket array, where each bucket contains multiple 64-
bit items. An item is composed of a 16-bit tag and a 48-bit
PM address: the tag is a part of a key’s hash value, to filter
out mismatched searches and thus reduce PM reads; the PM
address points to log entries. For a key, its targeted bucket is
calculated by hash(key) % sizeo f (bucket array). If the targeted
bucket is full when inserting a key, threads create a new free
bucket and link it to the targeted bucket, forming a bucket
chain. Indexes support conditional update to resolve conflicts
between threads: indexes omit an update if its log entry has
version that is smaller than the one indexes are pointing to.

6 Evaluation
6.1 Experimental Setup
Environment. We use 6 machines as servers and 8 machines
as clients. Each machine is equipped with the Intel Xeon Gold
6240M CPU (18 physical/36 logical cores), 96GB DRAM,
and one 100Gbps Mellanox ConnectX-5 RNIC. All machines
are connected to a 100Gbps Mellanox IB switch. Each server
machine owns three 256GB Optane DIMMs (ADR mode).

Unless otherwise specified, we run Rowan-KV on 6 servers.

In each server, we use 24 cores for worker threads, 5 cores
for digest threads, 6 cores for clean threads, and 1 core for
control thread. The control thread also manages leases, with a
lease time of 10ms. The CM and Zookeeper instance (3-way
replication) run on client machines. Each client machine runs
multiple client threads to issue requests to servers. We set the
replication factor to 3. Each server holds 48 shards.
Workloads. We evaluate Rowan-KV using YCSB [26] with
different PUT:GET ratios: Load A — 100% PUT (write-only);
A — 50% PUT and 50% GET (write-intensive); B — 5% PUT
and 95% GET (read-intensive); C — 100% GET (read-only).
Key distribution follows Zipfian with parameter 0.99 (default
parameter in YCSB). We populate 200 million objects into
KVSs before each experiment. We use three Facebook work-
loads [24] to generate object size: ZippyDB (for general data
store) — 90.8B average object size; UP2X (for AI/ML ser-
vices) — 57.25B average object size; UDB (for social graph)
— 153.8B average object size.
Comparing targets. We compare Rowan-KV with four
KVSs, each using a specific replication approach:
• RPC-KV. It uses RPC to perform replication. Each server

maintains per-thread b-logs, and primaries issue replication
writes via RPC. Upon receiving a replication RPC, the
worker thread appends the log entry into its local b-log.
• RWrite-KV. It uses FaRM’s approach [31] to perform

replication. Each worker thread has an exclusive remote
b-log at every remote server. During replication, the worker
thread issues WRITE for appending log entries to its b-logs
at backups. Each server stores (m−1)∗n b-logs, where m
is the number of servers and n is the worker thread count.

• Batch-KV. Batch-KV is a variant of RWrite-KV and uses
WRITE for replication. Each worker thread generates large-
sized WRITE requests to its remote b-logs by batching
log entries, to mitigate DLWA. To reduce latency, worker
threads immediately send batched log entries to backups
once 1) the total size is larger than an XPLine, i.e., 256B,
or 2) 5µs timeout is triggered.

• Share-KV. It is another variant of RWrite-KV and uses
WRITE for replication. Worker threads in a server share the
same remote b-log at a remote server, to reduce b-log count
and thus mitigate DLWA. Worker threads use local atomic
increment to obtain contiguous addresses in remote b-logs.
All systems are implemented in the same codebase (includ-

ing optimizations in §5), to allow us to focus on the effects of
replication approaches. By default, we disable DDIO to pro-
vide one-sided persistence. For RPC-KV, DDIO is enabled.
We compare Rowan-KV with two off-the-shelf KVSs in §6.7.

6.2 Rowan Performance
We repeat the experiment in §2.4, to show performance of
Rowan abstraction. Figure 8 presents the result of one Rowan
instance. Rowan can largely eliminate DLWA in case of nu-
merous concurrent remote small writes. The DLWA is less
than 1.029× when no local PM writes exist (Figure 8(a) and
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Figure 8: Rowan performance. DLWA = media bandwidth/request bandwidth. A number of threads issue 64B/128B writes to a remote server’s
PM via a Rowan instance. In (c) and (d), 18 CPU cores in the remote server perform local sequential PM writes.

(b)), and less than 1.056× when local PM writes exist (Fig-
ure 8(c) and (d))). This is because Rowan can merge remote
small writes into a single write stream, enabling efficient hard-
ware combining in Optane DIMMs’ XPBuffer.

Further, we report the peak throughput of Rowan and
RDMA WRITE under these four cases, as shown in the right-
most subfigure of Figure 8. When no local PM writes exist,
Rowan can deliver 54.5 Mops/s for 64B remote PM writes and
42.2 Mops/s for 128B one, outperforming WRITE by 1.44×
and 1.43×, respectively. When local PM writes appear, Rowan
outperforms WRITE by 1.85×/1.78× for 64B/128B writes.
Three causes make Rowan performant. First, Rowan largely
eliminates DLWA, improving the available PM bandwidth.
Second, on the data path of Rowan, all PM writes are per-
formed by the receiver-side RNIC, ensuring high throughput.
Finally, on the control path, by leveraging ring CQ and MP
SRQ, the control thread only performs very lightweight tasks,
so it does not become the bottleneck. Of note, the bottleneck
of Rowan performance is 6GB/s PM write bandwidth in Fig-
ure 8(b)-(c), but processing capacity of RNICs in Figure 8(a).
Rowan does not achieve 75Mops/s (a maximal message rate
that a 100Gbps RNIC can provide), since we disable DDIO
and send an extra RDMA READ for each Rowan operation.

6.3 Rowan-KV Performance
Figure 9 shows median latency and throughput (6 servers)
under YCSB workloads with ZippyDB object size. Since
Rowan-KV aims to accelerate replication, we report latency
of PUT and GET separately. We increase the load generated
by clients, and ensure that KVSs reach their peak throughput.
We make two observations.

First, under read-only workloads (Figure 9(d)), RPC-KV
has 5% higher throughput against other KVSs. This is because
for KVSs using WRITE or Rowan, DDIO is disabled, lowering
RPC performance. Such performance gap can be eliminated
with next-generation RNICs supporting RDMA flush exten-
sions [12]. Under read-intensive workloads (Figure 9(e) and
(f)), RPC-KV and Rowan-KV have the similar throughput,
since RPC-KV consumes CPU cycles of backups for 5% PUT
requests, offsetting the benefits of DDIO. Compared with
RPC-KV, Rowan-KV has 1.09× lower median PUT latency
due to elimination of backups’ software queueing, and 1.27×
higher median GET latency due to disabled DDIO.

Second, under write-only and write-intensive (i.e., 50%
PUT) workloads (Figure 9(a)-(c)), Rowan-KV has the high-
est throughput with the lowest median latency. We compare
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Figure 9: Median latency vs. throughput. ZippyDB object size. We
report PUT latency and GET latency separately.

Rowan-KV with the other four KVSs in turn.
With RPC-KV. Rowan-KV achieves peak throughput of
72.7/48.2Mops/s under write-intensive/write-only workloads,
outperforming RPC-KV by 1.22×/1.37×. This is because
Rowan-KV replicates log entries via one-sided Rowan, saving
CPU cycles that handle replication RPCs. The saved CPU cy-
cles can be used for primaries to handle RPCs from clients. At
the peak throughput of RPC-KV, Rowan-KV has 1.77×/1.61×
lower median PUT latency under write-intensive/write-only
workloads. This is because compared with RPCs, one-sided
Rowan eliminates backup-side software queueing/execution
on the critical path of replication. Avoiding replication RPCs
also makes Rowan-KV reduce median GET latency by 23%.
Figure 10 shows DLWA of write-only and write-intensive
workloads (6 servers). For Rowan-KV and RPC-KV, the
DLWA is less than 1.032×. This is because they generate
a small number of PM write streams: in each server, Rowan-
KV has 24 t-logs and 1 b-log; RPC-KV has 24 t-logs and
24 b-logs (recall we use 24 worker threads in experiments).
Optane DIMMs can efficiently combine adjacent small writes
of the same logs into XPLine writes, when write stream count
is not high (recall Figure 2(c) and (d)).

With RWrite-KV. Compared to RWrite-KV, Rowan-KV
yields 1.39×/1.61× higher throughput and 2.06×/2.1× lower
median PUT latency under write-intensive/write-only work-
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Figure 10: DLWA (6 servers) at peak throughput.

loads. The main culprit of RWrite-KV’s low performance is
DLWA: as shown in Figure 10(a), it suffers 1.54× DLWA.
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Figure 11: Latency CDF.

This is because RWrite-KV
owns lots of logs (i.e., 24×6
in experiments) in a server to
accommodate small writes, ex-
ceeding the combining capacity
of Optane DIMMs: a large num-
ber of write streams are equiva-
lent to random writes. In RWrite-
KV, Optane DIMMs trigger lots of read-modify-write events,
which squander a considerable number of hardware resources
(e.g., XPBuffer), degrading performance of PM accesses. To
demonstrate it, we measure the latency of remote persis-
tence operations of Rowan-KV and RWrite-KV under write-
intensive workloads. Figure 11 shows the latency distribution.
Remote persistence in RWrite-KV is slow (against Rowan-
KV), with 11.5µs median latency and 24µs 99% latency. Of
note, although RNICs are ideally capable of providing an RTT
of ∼2µs, the 6.6µs median latency of Rowan is reasonable,
since 1) we disable DDIO and each Rowan operation contains
a synchronous RDMA READ, and 2) the latency is measured
under high loads where RNICs suffer from DMA queueing.
With Batch-KV. Batch-KV boosts the throughput of RWrite-
KV by 1.23×/1.35× under write-intensive/write-only work-
loads, since it reduces the number of WRITE and mitigates
DLWA (by 12%) via batching. However, batching makes
Batch-KV suffer the highest PUT latency among all KVSs:
even under low loads, Batch-KV has more than 50% higher
PUT latency compared with Rowan-KV. In terms of through-
put, Rowan-KV outperforms Batch-KV by 1.13×/1.19× under
write-intensive/write-only workloads. This is because Batch-
KV still experiences DLWA: it frequently fails to accumulate
enough small writes within 5µs timeout for two reasons: 1)
All GET requests do not generate writes but consume CPU
time; 2) Only writes to the same destination can be batched;
yet, due to sharding of KVSs, for a server acting as primaries,
the backups of its shards are distributed to multiple servers,
greatly decreasing the batching opportunity. We also change
the timeout value to 20µs, and Batch-KV delivers 9% lower
throughput against Rowan-KV, with unacceptable latency.
With Share-KV. Share-KV reduces DLWA of RWrite-KV by
26%/22% under write-intensive/write-only workloads, since
it lets worker threads share the same b-logs. However, it still

Rowan-KV RPC-KV RWrite-KV Batch-KV Share-KV
UP2X 73.9Mops/s 61.5Mops/s 56.2Mops/s 70.3Mops/s 56.0Mops/s

UDB 62.5Mops/s 50.4Mops/s 49.9Mops/s 57.1Mops/s 50.6Mops/s

Table 2: Throughput under write-intensive workloads.

suffers sizable DLWA (1.28×∼1.39×), resulting in lower per-
formance against Rowan-KV. This is because although worker
threads in a Share-KV server generate contiguous remote ad-
dresses for WRITE, the asynchronous network makes receiver-
side RNICs receive and perform these writes in an out-of-
order manner. In contrast, for Rowan-KV, leveraging Rowan,
receiver-side RNICs decide destination addresses of writes.
Besides, Rowan can merge writes from different servers.
Tail latency. Under write-intensive workloads with 50Mops/s
throughput, Rowan-KV’s 99% latency is 20.5µs, which is
1.26×, 2.11×, 1.53×, and 1.87× lower than that of RPC-KV,
RWrite-KV, Batch-KV, and Share-KV, respectively.
Performance under uniform workloads. We evaluate
Rowan-KV using uniform key distribution. Rowan-KV de-
livers 67.86Mops/s and 108.19Mops/s in cases of 50% PUT
and 5% PUT, respectively, which are 6.6% and 15.5% slower
than throughput of Zipfian skewed workloads (see Figure 9).
Rowan-KV has higher performance under skewed workloads
for two reasons. First, in our cluster of 6 servers, due to
hash-based sharding, there is no observable load imbalanc-
ing across servers under skewed workloads. Second, threads
enjoy much better cache locality under skewed workloads.
Performance with UP2X/UDB object size. Due to space
limitations, here we only report the throughput under write-
intensive workloads, as shown in Table 2. Rowan-KV delivers
the highest throughput via powerful Rowan abstraction.

6.4 Sensitivity Analysis
We conduct experiments on sensitivity analysis using write-
intensive workloads and ZippyDB object size.
Impact of object size. We change object size to generate
varying log entry size. As shown in Figure 13(a), when log
entry size is an integer multiple of XPLine size (e.g., 256B),
all KVSs do not induce severe DLWA; thus, Rowan-KV and
KVSs using WRITE have the similar throughput. RPC-KV
consumes CPU cycles for replication RPCs, so it has 21%
lower throughput against Rowan-KV with 1024B log entries.
Impact of replication factor. Figure 13(b) presents through-
put with varying replication factor. As replication factor in-
creases, performance improvement between Rowan-KV and
other KVSs increases. This is because, with higher replica-
tion factors, RPC-KV needs to consume more CPU cycles to
handle a PUT request, and WRITE-enabled KVSs issue more
WRITE and thus induce more DLWA. In contrast, Rowan-KV
replicates objects in a one-sided manner and merges all re-
mote writes into a single b-log in a sequential manner.
Impact of worker thread count. Figure 13(c) presents
throughput with different worker thread counts. We make
two observations. First, when the number of threads is small
(i.e.,≤ 16), RPC-KV has the lowest throughput, since the CPU
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Figure 13: Sensitivity analysis. We use write-intensive workloads with ZippyDB object size.
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Figure 14: The timeline of failover.

is the bottleneck. Second, RWrite-KV and its variants yield
poor scalability. This is because 1) for RWrite-KV and Batch-
KV, the number of b-logs is proportional to thread count, and
2) for Share-KV, RNICs are more likely to receive and per-
form WRITE to b-logs in an out-of-order manner in case of
high thread count; thus, they suffer more severe DLWA with
higher thread count. DLWA harms PM performance (recall
Figure 11), thus stalling throughput. In contrast, Rowan-KV
exhibits superior throughput with different thread counts.
Impact of PM bandwidth. Figure 13(d) presents through-
put with different number of Optane DIMMs per server. In
case of one Optane DIMM, the PM bandwidth is bottleneck.
Thus, RWrite-KV (which has the most severe DLWA) is out-
performed by Rowan-KV, RPC-KV, Batch-KV, and Share-
KV by 1.61×, 1.18×, 1.05×, and 1.28×, respectively. In case
of three Optane DIMMs, CPU becomes the bottleneck and
limits throughput, and PM bandwidth is not saturated (see
Figure 10). Rowan-KV squeezes out CPU resources in two as-
pects: 1) it reduces CPU involvement via Rowan’s one-sided
semantic; 2) it largely eliminates DLWA, streamlining Optane
DIMMs’ internal operations and thus improving persistence
efficiency of worker threads.

6.5 Failover and Cold Start
Failover. We kill a server to test Rowan-KV’s failover mech-
anism. We use write-intensive workloads with ZippyDB ob-
jects and Rowan-KV runs for 50 seconds before the test. Fig-
ure 14 shows the timeline, where throughput is recorded
per 2ms. The server is killed at time 100ms (i.e., kill).
Rowan-KV uses 26ms to commit the new configuration (i.e.,
commit-config), which mainly includes detecting failure
(8ms), writing new configuration to Zookeeper (4.3ms), and
waiting for the failed server’s lease to expire (10ms). Then,
Rowan-KV consumes about 44ms to promote backups to pri-
maries (i.e., finish-promotion). At this point, Rowan-KV
can serve all requests from clients.
Cold start. We test cold start of a Rowan-KV instance, which
contains 10 billion ZippyDB objects and thus occupies about
3TB PM space (6 servers). The time of cold start is 49.6s.
Although cold start is slow, it is not common in datacenters.
Periodically checkpointing DRAM-resident indexes can ac-
celerate cold start, and we leave it for future work.
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Figure 15: The timeline of resharding.
6.6 Dynamic Resharding
In this experiment, we evaluate Rowan-KV’s dynamic re-
sharding mechanism. We use read-intensive workloads with
ZippyDB objects. Figure 15 presents the total throughput (6
servers) over time. At first, clients generate a uniform work-
load and each server has a similar CPU utilization (i.e., 90.2%
∼ 90.9%). At time 3s (i.e., hotspot), clients shift 80% re-
quests for server A to a shard residing on server B, to make
server B have a hotspot shard and overloaded. The throughput
drops by 33% due to load imbalancing. At this time, server
A and server B have a CPU utilization of 60.7% and 91% re-
spectively. The average CPU utilization of the other 4 servers
drops to 72.8%, since requests to overloaded server B suffer
from long queueing and thus the limited number of clients
cannot generate enough requests to other servers. CM detects
the overload after 660ms (i.e., detect-overload) and pro-
duces a migration task that migrates the hotspot shard from
server B to server A. The migration takes 1346ms and moves
about 1.1 million objects. The throughput increases as the
migration proceeds, since more GET requests to the hotspot
shard can be served by server A. Finally, the system achieves
a load-balanced state with steady throughput.

6.7 Comparison with Other Systems
We compare Rowan-KV with two state-of-the-art replicated
KVSs designed for RDMA networks:
• Clover [63]. Clover runs on disaggregated PM, where PM

servers do not have compute resources. Clients perform
GET operations via RDMA READ verbs, and perform PUT
operations (including replication) using a combination of
RDMA WRITE and ATOMIC.

• HermesKV [45]. It is a DRAM-resident KVS built on
Hermes [45], a broadcast-based replication protocol. Her-
mesKV uses RPC for all inter-server communication (in-
cluding replication). We modify the code to support PM:
we store objects in PM and issue ntstore instructions for
durability; indexes are in DRAM. In addition, we let clients
generate KV requests to HermesKV servers.

We use ZippyDB objects and 4KB objects to test KVSs under
small writes and large writes, respectively. The key distri-
bution follows Zipfian with parameter 0.99. The replication
factor is 3 and HermesKV runs with enabled DDIO.
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Figure 16: Comparison with Clover and HermesKV. (a) Throughput
with ZippyDB objects. (b) Throughput with 4KB objects.

Figure 16(a) shows the results of small writes (ZippyDB
objects). Under write-intensive workloads (i.e., 50% PUT),
Rowan-KV outperforms Clover and HermesKV by 24.5×
and 1.98×, respectively. Two reasons contribute to Clover’s
low throughput. First, due to the disaggregated architecture,
every operation in Clover needs multiple network commu-
nications. Second, Clover uses RDMA ATOMIC to resolve
conflicts between client threads, which leads to significant
performance degradation when contention appears [35]. Us-
ing RDMA ATOMIC on PM is also considered slow due to
its read-modify-write behavior [70]. HermesKV uses RPC
for replication which consumes CPU cycles at backups, so it
is outperformed by Rowan-KV which uses one-sided Rowan
for replication. We measure DLWA of these KVSs. Clover
has 1.86× DLWA and HermesKV has 2.95× DLWA, since
both of them generate a large number of random small writes
on PM: for a PUT operation, Clover performs copy-on-write
using WRITE and HermesKV performs in-place updates. In
contrast, Rowan-KV adopts the log-structured approach to
manage objects and exploits Rowan abstraction to minimize
the number of write streams; thus, DLWA of Rowan-KV is
less than 1.032×. Under read-intensive workloads (i.e., 5%
PUT), Rowan-KV and HermesKV have similar throughput,
which far exceeds that of Clover (about 5×).

Figure 16(b) reports the results of large writes (4KB ob-
jects). Under write-intensive workloads, Rowan-KV outper-
forms HermesKV by 1.42× and is bottlenecked by PM write
bandwidth. HermesKV can not approach the limitation of PM
write bandwidth, since its backups waste lots of CPU cycles
to copy/persist large objects from RPC buffers to PM. Un-
der read-intensive workloads, Rowan-KV and HermesKV are
bottlenecked by the network bandwidth (11GB/s per server),
which is much lower than PM read bandwidth (18GB/s).

7 Discussion
Although Intel killed Optane memory business for commer-
cial reasons in summer 2022, we believe that Rowan is still ap-
plicable to future byte-addressable storage devices. For exam-
ple, CXL storage devices (e.g., Samsung’s Memory-Semantic
SSD [13]), which are considered promising alternatives to
Optane DIMMs, share similarities with Optane DIMMs: 1)
limited write bandwidth; 2) byte interfaces with a block-level
internal access granularity (e.g., flash page). Thus, when many
remote threads concurrently access CXL storage devices with
small IO size, Rowan can still effectively mitigate DLWA and
thus boost system performance.

8 Related Work
PM KVSs. There are a host of works on PM KVSs, but most
of them are single-machine (except Clover [63]) . HiKV [71]
and Bullet [39] are designed before the availability of real PM
devices; both of them store objects into fine-grained PM hash
tables. However, real PM devices have block-level internal
access granularity (e.g., 256B in Optane DIMMs). To reduce
DLWA, recent PM KVSs, including FlatStore [25], Viper [22],
and Pacman [66], adopt log-structured approaches to manage
objects. Rowan-KV also uses log-structured approach for the
same reason, but focuses on distributed environments where
objects are sharded and replicated.
RDMA replication. RDMA replication can be categorized
into two groups, namely backup-active and backup-passive,
depending on whether backups consume CPUs on the critical
path of replication. Lots of systems [20, 21, 41, 45, 65] belong
to backup-active group, where backups’ CPUs need to process
messages during replication. For backup-passive group [17,
31, 46, 47, 57, 62, 69, 75], primaries only need to wait for
ACKs from the RNIC hardware of backups. For example,
Hyperloop [47] uses RDMA WAIT and WRITE verbs to realize
chain replication. Rowan-KV belongs to the backup-passive
group, so it features low latency and high CPU efficiency. Yet,
traditional backup-passive approaches can lead to DLWA on
PM KVSs, driving us to design the Rowan abstraction.
RDMA abstraction. Due to limited expressivity of RDMA
verbs, several works propose new RDMA abstractions [18,
19, 23, 27, 60, 72]. StRoM [60] and RMC [19] allow applica-
tions to define functions on NICs. Aguilera et al. [18] and
PRISM [23] propose several new RDMA verbs to support far
memory data structures and distributed systems. RedN [58]
makes RDMA Turing complete using self-modifying chains.
All above works (except RedN) require RNIC modification or
specialized hardware (e.g., SmartNICs). In contrast, Rowan
can be realized with off-the-shelf RNICs, leveraging RNIC
features such as SRQ and MP RQ. Besides, Rowan targets
handling high fan-in small PM writes.

9 Conclusion
This paper explored how to efficiently replicate PM KVSs
using RDMA. We showed that existing approaches using
RDMA WRITE cause severe device-level write amplification
(DLWA) on PM. To this end, we proposed Rowan, a one-sided
RDMA abstraction that can merge numerous remote writes
into a single stream. Based on Rowan, we built Rowan-KV,
a log-structured PM KVS; it outperforms RPC and RDMA
WRITE alternatives in throughput and latency under write-
intensive workloads, while achieving low DLWA.
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