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Abstract
With the growing demand for processing higher fidelity
data and the use of faster computing cores in newer hard-
ware accelerators, modern deep neural networks (DNNs)
are becoming increasingly memory intensive. A disparity
between underutilized computing cores and saturated memory
bandwidth has been observed in various popular DNN models.
This inefficiency is caused by both the conventional treatment
of DNNs as compute-intensive workloads and the lack of
holistic memory access optimization in DNN models.

In this paper, we introduce WELDER, a deep learning
compiler that optimizes the execution efficiency from a
holistic memory access perspective. The core of WELDER
is tile-graph, an abstraction that facilitates fine-grained data
management at tile level. By leveraging the observation of
optimization independence across memory layers, WELDER
is able to decompose the whole combinatorial DNN opti-
mization space into several independent ones and effectively
trade off between intra- and inter-operator data reuse using a
tile traffic-based cost model. This allows WELDER to unify
previous ad-hoc memory optimizations into a single space,
generate efficient execution plans with 89 more optimization
patterns, and outperform state-of-the-art solutions signifi-
cantly. WELDER is also able to handle DNN models with
arbitrarily large input by combining the existing accelerator
memory and host memory as a whole system.

1 Introduction

Deep neural networks (DNNs) have been used in a wide
range of tasks like vision and language analysis and synthesis.
Conventional wisdom treats DNNs as compute-intensive
workloads. A DNN model is often defined as a dataflow
graph (DFG), where each node represents a compute-intensive
operator (e.g., matrix multiplication). These operators are
offloaded to modern accelerators with massive parallel com-
puting cores, such as GPUs and TPUs [23], to speed up com-
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putation. To utilize accelerators efficiently, DNN frameworks
and compilers explore various optimization techniques, such
as code specialization [15,50,52] and operator fusion [15,31].

Although these computation centric optimizations are
shown effective for classic DNN models, we observe that
modern DNNs are becoming increasingly memory intensive.
Our profiling on a range of state-of-the-art DNN models
reveals that the bottleneck of the end-to-end DNN compu-
tation is mostly on GPU memory. The memory bandwidth
utilization can be as high as 96.7% while the average utiliza-
tion of computing cores is only 51.6% (§2). Moreover, we
observe the disparity between the underutilized cores and the
saturated memory bandwidth could become even larger with
the evolution of both hardware and DNN models. Modern
models are processing higher fidelity data, e.g., larger images,
longer sentences, high-definition graphics, which consume
more memory bandwidth in the computation. Furthermore,
the faster computing cores (e.g., TensorCore [6]) impose an
even greater pressure on memory.

Optimizing memory intensive DNN workloads is challeng-
ing as it requires improving the sophisticated data access
and reuse patterns across multiple memory layers (e.g., GPU
DRAM and shared memory). From the memory perspective,
DNN computation comprises of a repetitive process for each
operator to 1) load input tensors across memory hierarchy, 2)
compute at the cores, and 3) store the resulting tensors across
memory hierarchy. To derive a good data access pattern, it
requires a careful calculation of the size of tile, a partition
of a tensor, along each tile dimension. Such a tiling strategy
is already difficult to obtain in existing practice [5, 50, 52].
As a further complication, due to the different algorithmic
semantics, each operator may require a different data access
patterns. Such diversity across operators makes inter-operator
data reuse especially challenging, and often infeasible. If the
derived tile shape of an operator at a certain memory layer
does not match that of a downstream operator, it is difficult to
reuse the tile at that layer. Consequently, existing approaches
either focus on intra-operator optimization and leave all inter-
operator intermediate tensors in the lowest memory layer
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(e.g., GPU memory), or rely on rule-based operator fusions
to alleviate the inter-operator memory overhead. These rules
are only applicable for specific operator combinations (e.g.,
register fusion for element-wise operators [10, 13, 15], shared
memory fusion for a limited set of operator types [51]) and can
be suboptimal when having different input sizes or running
on different hardware configurations.

In this paper, we introduce WELDER, a deep learning com-
piler that holistically optimizes memory access for end-to-end
DNN models consisting of general operators. The design of
WELDER is based on three key observations. First, to resolve
potential tile shape conflicts between two adjacent operators,
we observe that their aligned tile shape can be automatically
inferred by propagating an output tile shape from back to front,
given that the computing logic in each operator can be accu-
rately preserved (e.g., through the tensor expression). Second,
to decide which tile shape will lead to better performance, by
enforcing the computation pattern to be aligned with hardware
feature (e.g., TensorCore), we can just minimize the data
traffic across all memory layers. Given the operators with
aligned tile configuration, we notice that their data traffic can
be easily modeled based on their input/output tile sizes and
the input/output tensor shapes. Finally, when considering the
whole memory hierarchy, we observe that the optimization
of memory traffic is inherently independent across memory
layers, i.e., inter-layer independence. Particularly, the above
traffic model is determined only by the tile configuration at
the memory layer of interest. These observations allow us to
optimize the whole space with an effective process: starting
from aligning two adjacent operators at independent memory
layers, deciding their optimal tiling size at the right memory
layer guided by traffic costs, and expanding the optimization
to include further operators.

WELDER incorporates these insights into a new DNN
compiler design. First, to facilitate fine-grained data man-
agement, WELDER proposes tile-graph, a tile-level data-flow
graph to model DNN computation. Each node in the graph
processes one data tile of a tensor at a time. To map DNN
computation to a multi-layered memory hierarchy, WELDER
allows the control of each node’s data tile size and the desired
memory layer to reuse the data tile between two nodes.
Specifically, WELDER provides a SetConnect interface to
set the data reuse layer for each edge and a Propagate
interface to infer the tile configurations within a group of
connected nodes. Second, to efficiently optimize the tile level
data-flow scheduling holistically, WELDER exploits the inter-
layer independence properties in the data-flow computation
to decouple the optimization space into multiple sub-spaces.
Based on this, WELDER proposes a two-layered scheduling
policy that enumerates different memory connection options
for each edge and decides on an efficient tile configuration for
each sub-space guided by the traffic cost model. Finally, the
optimized execution plan is mapped to executable code for
a specific hardware accelerator through four abstracted com-

puting interfaces defined in the hardware layer: Allocate,
LoadTiles, ComputeTile, and StoreTiles.

With the tile level holistic data-flow scheduling, WELDER
is the first to unify all common operator fusions (e.g., register-
based element-wise fusion, shared-memory fusion, etc.) into
a single framework. This generality allows WELDER to find
89 uncommon operator fusion patterns automatically that are
mostly unexplored by existing rule-based approaches (§5.2).
Interestingly, our approach can easily support new require-
ments for handling DNN models with arbitrarily large input
(e.g., high-resolution images), where even a single operator
may be too large to fit in the GPU memory. Specifically, by
extending the current memory hierarchy with additional layers
(e.g., host memory), WELDER can generate an optimized
execution plan across the combined hierarchy of host and
device memory.

We have implemented WELDER on top of TVM [15], Ram-
mer [31] and Roller [52]. Our evaluation is conducted on 10
state-of-the-art DNN models covering both classic and recent
model structures for various tasks including vision, NLP,
3D-graphics, etc. The evaluation results show that WELDER
significantly outperforms the state-of-the-art DNN framework
and compilers like PyTorch, ONNXRuntime, and Ansor on
both NVIDIA and AMD GPUs, with up to 21.4×, 8.7×, 2.8×
speedups, respectively. WELDER’s automatic optimization
even outperforms TensorRT [7] and Faster Transformer [2],
which are a highly optimized handcrafted DNN inference
library and a model-specific implementation from NVIDIA,
with up to 3.0× and 1.7× speedups. Furthermore, when
running these models on hardware with faster computing
cores such as TensorCore, we observe a larger improvement
in performance, highlighting the importance of memory
optimization for future AI accelerators.

2 Motivation

Modern DNNs are memory-bounded. Figure 1 presents
the average GPU utilization, including both computational
FLOPS and global memory throughput, for a representative
DNN benchmark running with ONNXRuntime [8]. As shown,
the average computation utilization is only 51.6% while
memory utilization is 96.7%. When examining the model
types, we find that ResNet and BERT, which are dominated
by convolution and matrix multiplication operators and can
achieve relatively high computation utilization (e.g., >80%),
are two representative classical models. However, the remain-
ing models, which are popular models proposed in recent
years, exhibit low computation efficiency due to introducing
more memory-intensive patterns beyond compute-intensive
operators. Additionally, we observe that the new DNN
models often have a higher ratio of memory store traffic to
load traffic compared to classical models. The primary reason
is these models tend to process high-fidelity data and generate
large activations across layers. However, current systems such
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Figure 1: Computation FLOPS and memory bandwidth
utilization for different models on NVIDIA V100 GPU.

Figure 2: Latency numbers of unfused, fused, and each
individual kernels of Matmul and Softmax.

as ONNXRuntime have limited optimizations for reducing
inter-operator traffic. This indicates that these models will
frequently exchange large intermediate data across operators
through global memory. The results highlight the need for
optimizing memory access efficiency across operators.

Conflicted intra- and inter-operator data reuse patterns.
Optimizing intra-operator and inter-operator data reuse simul-
taneously is challenging. An operator is often implemented
as nested multi-level loops over all tensor dimensions. Within
the operator, the data reuse across multiple memory layers
are often implicitly optimized using sophisticated loop tiling
techniques [5, 50, 52]. We consider a typical pattern of two
consecutive operators, i.e., Matmul and Softmax. When the
two operators are optimized independently, their optimal
tile sizes in shared memory are different, e.g., [32×64] for
Matmul and [4×128] for Softmax. As a result, Softmax is
unable to reuse the intermediate data from Matmul in shared
memory, leading to a total latency of 0.36ms, as shown in
Figure 2. However, if we force them to take into account
both intra- and inter-operator data reuse, the fused operator
latency can be reduced to 0.29ms, achieving a 1.26x speedup.
Upon examining their aligned tile size (i.e., [16×128]), we
observe that both operators sacrifice their own efficiency (e.g.,
with 15% and 4% performance degradation when running
separately, due to suboptimal data tile for intra-operator data
reuse) in favor of overall efficiency. This demonstrates the
need for an efficient data reuse solution across intra-operator
and inter-operator to optimize memory access holistically.

Key observations. Through a further analysis on the ex-
ample in Figure 2, we have identified three key observations.
First, an aligned tile configuration across operators can be
deduced based on a chain of shape inference starting from
an output tile shape. For example, if we want to compute a
[4×128] output tile of Softmax, based on its computing logic
(e.g., tensor expression), we can deduce that its dependent

input tile shape is also [4×128]. Then, by using [4×128] as
the output tile of Matmul, we can further deduce that input
tile shapes of Matmul will be [4×k] and [k×128], where k is
an reduction size that can be set as any number not exceeding
the reduction dimension size of the Matmul. In this way, the
two operators can be fused by reusing the intermediate data
tile ([4×128]) in shared memory.

Second, given the aligned tile configuration and the original
tensor shapes, the total memory traffic can be easily derived
analytically. In this example, the Matmul takes input tensors A
in shape [98304×64] and B in [64×128] respectively, and an
output tensor C in [98304×128]. The Softmax then takes
C as input and produces an output tensor D in the same
shape. Input tensors A, B, and the output tensor D are in
global memory. Given these shapes, we can first calculate
the memory traffic when computing a single output tile (i.e.,
[4×128]) of tensor D. To do so, it will first load a tile of
shape [4×k] from tensor A and a [k×128] tile from tensor B
for Matmul, and then the intermediate tile [4×128] will be
consumed by Softmax in shared memory, and write a tile of
shape [4×128] to tensor D, where the k can be replaced as 64
given the input tensor shape of [98304×64]. Thus, the total
traffic incurred in global memory for an individual output
tile is 35KB ((4*64+64*128+4*128)*4Bytes(FP32)), where
the traffic of the intermediate tile [4×128] is saved due to
data reuse in shared memory. To compute the full output
tensor D, a total of 24,576 such computations are required
(i.e., (98304*128)/(4*128), resulting in a total global memory
traffic of 840MB (i.e., 24,576*35KB). Interestingly, changing
the output tile to [16×128] will reduce the total traffic to only
264MB, following the same calculation.

Finally, our traffic-cost calculation is only determined by
the tile configuration at the memory layer of interest, e.g., the
output tile shapes of [4×128] or [16×128] in shared memory,
once the tensor shapes are specified. This allows us to choose
the tile size for each layer independently in order to optimize
the traffic cost from the lower memory layers.

These observations together provide us an effective way to
optimize memory access holistically, i.e., aligning a group of
adjacent operators through an output tile shape, deciding on
the best tile shape based on memory traffic, and optimizing
for each memory layer independently. In this way, WELDER
is able to change the original coarse-grained inter-operator
dependency into a more fine-grained tile-level dependency,
which essentially removes some false barriers between opera-
tors and enables more concurrency.

3 WELDER Design
The observations in §2 motivate WELDER, a deep learning
compiler that aims to improve the performance of modern
DNNs in a holistic memory access scheduling space. Figure 3
shows the system overview. WELDER takes a full DNN model
as input and converts it into a data-flow graph of tile-based
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Figure 3: System overview of WELDER.

computing tasks (i.e., operator-tiles), which is called tile-
graph (§3.1). A tile-graph provides fine-grained control over
data tile configurations and memory placement. Given a tile-
graph, WELDER resolves the intra-operator and inter-operator
data-reuse conflicts through a "first-connect-then-schedule"
approach: it first assumes two adjacent operators can reuse
data tile at a certain memory layer (i.e., connect), and then
derives the best common tile shape to see if the total memory
traffic can be reduced. To facilitate this goal, WELDER
provides two tile-graph scheduling interfaces: SetConnect
and Propagate (for the chain of shape inference). Based on
this, we propose a two-step scheduling algorithm, i.e., graph
connecting and sub-graph scheduling, to recursively decide
an efficient tile-graph execution plan for multiple memory
layers, known as a hierarchical tile-graph (§3.2). Finally, this
plan is then mapped to an executable code for a specific hard-
ware accelerator using four abstracted computing interfaces
defined in the hardware layer, i.e., Allocate, LoadTiles,
ComputeTile, and StoreTiles (§3.3). The memory specifi-
cation of the abstracted accelerator is used by the tile-graph
scheduling layer to guide the optimization process.

3.1 Operator-tile and Tile-graph
WELDER defines DNN computation in a fined-grained task
granularity named operator-tile. A DNN operator, such as
convolution, can be implemented as multiple homogeneous
operator-tiles, which are executed either in a streaming or
parallel manner to compute all the data tiles in the output
tensors [31]. Each operator-tile takes as input a data tile sliced
from the input tensors and computes a data tile in the output
tensors, with the computing logic described by an index-based
tensor expression [15]. Figure 4(a) and (b) shows examples of
operator-tiles for Conv and MaxPool, where the Conv operator
computes a [1×1×C] data tile by taking a [3×3×C] data
tile as input, and the MaxPool operator takes an input tile of
[2×2×F ] and computes an output tile of [1×1×F ].

To improve the utilization of hierarchical memory re-

(a) Conv3x3

H

W

C

H

F

W

F

W/2
H/2 F

(b) MaxPool2x2

(c) Connected Conv-MaxPool

Conv
MaxPool

Conv MaxPool

W

H

C

H/2

W/2
F

H

W

Figure 4: Illustration of two operator-tiles: (a) Conv and
(b) MaxPool; and (c) connecting them into a tile-graph (the
weight tensor of Conv is omitted for simplicity).

sources, such as the shared memory, WELDER allows two
adjacent operator-tiles to be “connected” through a common
intermediate data tile, also known as a reuse-tile. This allows
the second operator-tile to consume the data produced by
the first operator-tile directly, without the need to materialize
it into a full intermediate tensor. Figure 4(c) illustrates an
example of this connection between two operator-tiles for
Conv and MaxPool, using a [2× 2×F ] reuse-tile. Multiple
operator-tiles can be connected along each adjacent edge to
form a data flow graph of operator-tiles, known as a tile-graph.

Tile propagation. Once connected, most tiles in a tile-
graph are correlated, which can be automatically inferred
by propagating an output tile shape to the entire graph. This is
achieved by using a chain of shape inferences from the output
nodes to the inputs. For each operator-tile, the dependent
region of the input tensor can be accurately determined
by analyzing its tensor expression and output tile size. In
cases where the input region may contain irregular patterns
such as sparse or noncontinuous access (e.g., Gather or
Convolution with strides), our expression analysis provides
a conservative upper bound as the input tile shape. If the tile-
graph has multiple output nodes, their output shapes may also
be correlated, as they may share a common ancestor node in
the graph. In this case, after propagating the first output tile,
we propagate separate shapes for the remaining output nodes,
aligning them with the first one. If there is an inconsistent tile
shape between the two propagations, we do not connect the
latter output node to the current graph.

Memory traffic and footprint. After the tile propagation,
the memory traffic and footprint of a tile-graph can be
determined. First, the memory traffic for an individual tile-
graph can be calculated by summing its input and output tile
sizes. The total traffic is obtained through further multiplying
this value by the number of tile-graphs needed to compute the
full output tensor (e.g., through dividing the tensor size by the
output tile size). Second, the minimum memory footprint for
the tile-graph can be calculated using a memory allocation
algorithm (e.g., bestfit [19]) by allocating all data tiles in a
topological order. As a footprint optimization, input tiles that
contain reduction axes can be further partitioned into smaller
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Figure 5: Map three consecutive operators to a three-layer
memory hierarchy (the weight of Conv is omitted).

ones, which can be loaded and consumed sequentially by
accumulating their results to the output tile. Specifically, a
particular policy can automatically try different tiling sizes
along the reduction axes during the tile propagation.

3.2 Tile-graph Scheduling
To map a DNN model represented by an inital data flow
graph to an accelerator, we can recursively partition each
operator into multiple operator-tiles to fit within each memory
layer, and connect operator-tiles at higher memory layers to
exploit inter-operator data reuse. As a result, an entire DNN
computation can be modeled as a data streaming pipeline
over a two-dimensional space, with data tiles moving up and
down the memory hierarchy vertically and being passed to
successor operators at different layers horizontally.

Figure 5 illustrates an example of mapping three consecu-
tive operators (Conv, ReLU, and MaxPool) to a three-layered
memory hierarchy (e.g., from L2 to L0). The input tile of the
Conv operator is repeatedly loaded from L2 to L1 and then L0
for computation. By connecting the Conv and ReLU operators
at L0, the output of the Conv operator can be reused as the
input for the ReLU operator, and the two operators form a tile-
graph at L0. At the same time, they are consolidated into a
virtual node (i.e., Conv+ReLU) in L1. The output of the ReLU
is then continuously spilled into the data tile at L1 and reused
as the input for the MaxPool, through further connection at L1.
This allows all three operators to form a single tile-graph at the
L1 layer, resulting in the virtual node Conv+ReLU+MaxPool
in L2. After this recursive process, all operators are connected
at the lowest layer as a single tile-graph.

Decoupling optimization space. Given the observation that
DNN computation is mostly memory-bounded, our major
optimization goal of the data streaming pipeline can be
transformed to minimizing the memory traffic. This allows us
to decompose the whole optimization space into several sub-
spaces by leveraging the inherent independence of optimizing

void SetConnect(Edge *edge , MemLevel level);
TileConfig Propagate(TileGraph g,

Map<Axis , Dim> config);
size_t MemFootprint(TileGraph g);
size_t MemTraffic(TileGraph g);

Figure 6: The scheduling interface in WELDER

traffic across memory layers. Specifically, the total data
traffic loaded from and stored to a lower memory layer for
a given tile-graph can be estimated by just its output tile
shape, i.e., used to deduce all the input and output tile shapes.
Based on this property, different tile-graphs from the same
or different memory layers can independently optimize their
memory traffic by searching for the optimal tile shapes. For
example, in Figure 5, the tile-graph of Conv and ReLU at
L0 can be optimized independently of the L1 tile-graph
(e.g., formed by the Conv+ReLU and MaxPool operators),
which is referred to as inter-layer independence. This further
implies that the optimal tile configurations of the sub-graphs
Conv-Relu and MaxPool at L0 are also independent, due
to their independence with the tile-graphs at L1, to which
we refer as intra-layer independence. In practice, the only
constraint is that the tile size at the lower memory level must
be larger than the tile size at the upper memory level. This is
often the case, as the lower memory level typically has greater
capacity than the upper memory level. With these properties,
we can independently schedule each tile-graph given a graph
connection plan.

Scheduling interface. WELDER provides two scheduling
interfaces to control graph connecting and sub-graph tiling,
as shown in Figure 6. First, the graph connecting is imple-
mented using the SetConnect interface, which assigns a
memory level for an edge in the tile-graph (the lowest level
by default). After connecting, the tile shapes in the graph
is inferred through the Propagate interface, by specifying
the dimensional sizes of the output tiles and the optional
reduction axes in input tiles. For example, in Figure 5,
we can use the SetConnect interface to connect Conv and
Relu at L0 and connect Relu and MaxPool at L1. After the
connection, for the sub-graph Conv+Relu, we can use the
Propagate to infer the intermediate reuse-tile shape (i.e., [1,
1]) by specifying the output tile shape of [1, 1]. Similarly,
we can also infer the intermediate reuse-tile shape of sub-
graph Conv+Relu+MaxPool (i.e., [2,2,F ]) by specifying the
output tile shape of [1,1,F ]. The two scheduling primitives
are essentially two interfaces to update the edges and vertices
of the tile-graph. Particularly, SetConnect is used to add a
connection between two nodes and Propagate is used to set
tile configuration for a node. They together form a complete
interface for updating the tile-graph. Note that these primitives
are only used by WELDER’s scheduling policy and transparent
to the end users. WELDER also provides two cost interfaces,
MemFootprint and MemTraffic, to calculate the memory
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1 Func GraphConnecting(g:Graph, d:Device):
2 for node : TopologySort(g.nodes()) do
3 for edge : node.out_edges() do
4 for level : d.MemLevels() do
5 SetConnect(edge, level);
6 s = ExtractSubgraph(node, 0);
7 configs = SubGraphTiling(s, 0, tensor_shapes);
8 if t = Min(d.Profile(configs)) < best_latency
9 best_latency = t;

10 best_level = level;
11 SetConnect(edge, best_level);

12 Func SubGraphTiling(g:Graph, level:Memory, c: Config)
13 configs = PriorityQueue();
14 for subtile : EnumerateSubtiles(g, c) do
15 config = Propogate(g, subtile);
16 if MemFootprint(g) > level.capacity
17 continue;
18 configs.push(config, priority=MemTraffic(g));
19 results = Dict();
20 for config : TopK(configs, k) do
21 // return empty sub-graph at top level to exit recursion

subgraphs = unique([ExtractSubgraph(node, level+1)
for node in g.nodes()]);

22 for subgraph : subgraphs do
23 subgraph_configs = SubGraphTiling(subgraph,

level+1, config);
24 results[config].append(subgraph_configs);
25 Return results;

26 Func ExtractSubgraph(node:Node, level:Memory)
27 nodes = Set();
28 for edge : node.InOutEdges() do
29 if edge.connect_level > level
30 nodes.insert(ExtractSubgraph(edge.node, level));
31 return SubGraph(nodes);

Figure 7: Two-step tile-graph scheduling algorithm.

footprint and the total traffic of a tile-graph, which serve as
our cost models to guide the scheduling.

Scheduling policy. WELDER adopts a two-step scheduling
algorithm to optimize data flow computation effectively.
Specifically, a graph-connecting scheduler first enumerates
different graph connecting plans by setting different memory
reuse levels for each edge, and then a sub-graph scheduler
quickly searches for efficient tile configurations for each sub-
graph decoupled by the graph-connecting scheduler. Figure
7 shows the two-step scheduling algorithm in WELDER. First,
given a DNN data flow graph g and an accelerator device d,
the graph-connecting scheduler enumerates all graph nodes
and their output edges in a topological order (line 1-3). For
each edge, WELDER tries different connection levels (e.g.,
using the SetConnect interface) (line 5). It then extracts
the connected sub-graphs where all edges have connection

Allocate Allocate workspace in a memory layer
LoadTiles Load input tiles from lower memory layer
ComputeTile Compute an operator-tile at the top layer
StoreTiles Store result tiles back to lower memory layer
MemLevels Query memory hierarchy configurations

Table 1: Device interfaces in abstracted hardware accelerator.

levels higher than 0. Here, we use the number 0 to represent
the lowest memory level, and larger numbers for higher
levels. The ExtractSubgraph function is implemented in
line 26-31. For the extracted sub-graph, WELDER calls
the SubGraphTiling function to get several efficient tile
configurations and chooses the optimal one by profiling on
the hardware (line 7-10). After comparing with all other
connection levels, WELDER sets the best connection level
for the current edge.

Then, the sub-graph scheduler (i.e., the SubGraphTiling
function) takes as input a sub-graph and the last level tile
configuration and searches for efficient tile configurations for
the current level. First, WELDER enumerates the tile sizes (i.e.,
EnumerateSubtiles in line 14) for output dimensions using
a tile shape expanding approach similar to Roller [52], which
enlarges initial tile shape (e.g., size of 1) towards the shapes
that can reduce total traffic and align with hardware features.
After getting the output tile shapes, we can infer the complete
tile configuration using the Propagate interface and check
if it exceeds the memory capacity using the MemFootprint
interface, or appends it to a sorted result list with the memory
traffic as the key (e.g., using the MemTraffic interface)
(line 15-18). Finally, we choose the top K configurations
with the least memory traffic for the current level, and then
extract the upper-level sub-graphs and decide their best tile
configurations recursively by calling ExtractSubgraph and
SubGraphTiling (line 20-24).

Note that WELDER has no assumption on the memory size
on different memory hierarchies, as our scheduling policy
can always try its best to determine the optimal layer and
tile size to place intermediate data, so as to minimize the
overall latency. While WELDER always favors hardware with
large higher-level fast memory (e.g., shared memory) that
can hold a sufficiently large intermediate data tile, because
too small tile sizes could lead to worse intra-operator data
reuse. The scheduling result of a data flow graph in WELDER
is a hierarchical tile-graph, which starts as a full graph at
the lowest memory level and is recursively split into several
sub-graphs in the upper layers, all the way to the top level.

3.3 Mapping to Hardware Accelerator

The hierarchical tile-graph generated by WELDER is an
abstracted execution plan that can be mapped to an executable
code for a specific hardware accelerator. To facilitate this
mapping, WELDER provides an abstracted accelerator device
with hierarchical memory layers. The memory configura-
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void ExecuteGraph(TileGraph g, MemLevel level ,
void *in, void *out) {

void *mem = Allocate(g.MemFootprint(), level);
LoadTiles(in, mem);
for (auto n : g.nodes()

if (level == MemLevel.top)
ComputeTile(n, mem.in[n], mem.out[n]);

else
ExecuteGraph(n.TileGraph(), level+1,

mem.in[n], mem.out[n]);
StoreTiles(mem, out);

}
// execute a full DNN graph at memory level 0
ExecuteGraph(graph , 0, inputs , outputs);

Figure 8: Compilation routine of hierarchical tile-graph.

tions, such as the number of layers, memory capacity, and
transaction width of each layer, can be obtained through
a MemLevels interface (e.g., used in Figure 7). With this
abstracted memory layer, it is easy to extend an existing
accelerator with additional memory layers (e.g., host memory
or SSD) as a new device, allowing it to handle very large
tensors that may not fit in the single device memory (§5.4 for
more details). WELDER’s performance gain mainly comes
from the bandwidth gap between memory layers. Thus, as
long as a lower-level memory becomes the bottleneck and
a high-level memory can hold the intermediate data tile,
WELDER can automatically pipeline the inter-operator data
transfer on the faster, high-level memory.

In order to execute a hierarchical tile-graph on a
hardware accelerator, WELDER provides four comput-
ing interfaces: Allocate, LoadTiles, ComputeTile, and
StoreTiles (listed in Table 1). The routine for executing
a hierarchical tile-graph using these interfaces is shown in
Figure 8. The process starts by executing the bottom-layer
tile-graph (i.e., the full DNN graph). For each tile-graph, it
first allocates the necessary workspace in the corresponding
memory layer (using the Allocate interface) and loads the
input tiles into this space (LoadTiles). Then, it executes all
the nodes in the sub-graph in a topological order. If the current
memory layer is the top level, the node is executed directly in
the computing cores (ComputeTile). Otherwise, the execu-
tion of the upper-level tile-graph is called recursively. Finally,
the result tiles in the current space are stored in the lower
memory layer (StoreTiles). This execution routine can be
used as both a code generation process or a runtime process,
depending on whether a specific accelerator implements these
computing interfaces as code emitters or executable function
calls. In WELDER, they are currently implemented as code
emitters to generate the accelerator-specific computing logic.
By executing this recursive routine, the entire hierarchical tile-
graph is unrolled and a full-model computation program with
all the necessary optimizations is generated automatically.

4 Implementation

WELDER is implemented based on open-source DNN com-
pilers, TVM [15], Roller [52] and Rammer [31]. It leverages
TVM for writing kernel schedule, Roller for enumerating
efficient tile configurations, and Rammer for the end-to-end
graph optimization. WELDER’s core mechanisms, includ-
ing the tile-graph, tile propagation, scheduling algorithm,
code generation, etc., are implemented in 5.2k lines of code.
WELDER takes an ONNX graph as input and performs com-
mon graph optimizations such as constant folding and simple
element-wise fusion. It then converts the optimized graph
into a tile-graph for holistic memory scheduling optimization.
WELDER is implemented on both CUDA and ROCm GPUs,
and GraphCore IPU through the unified device interface
(Table 1). For CUDA and ROCm GPUs, WELDER schedules
data tiles on three memory layers: global memory (DRAM),
shared memory, and register. To handle large images on
CUDA GPUs and GraphCore IPU, we also extend their device
memory by adding a host memory layer.

4.1 Hardware-aligned Tile Search

Enumerate efficient data tile size. WELDER takes into
account several hardware-related factors that could impact
the data access efficiency by introducing a penalty factor to
the traffic cost model. First, if there is uncoalesced memory
access, the total memory traffic will include the additional
transactions required for these accesses. For instance, in
CUDA GPUs, it is always preferable to use coalesced memory
access for a contiguous 128 bytes of data (one transaction).
Second, when there is insufficient parallelism due to a large
tile size, the memory traffic is increased proportionally based
on the utilization percentage of the computing cores. Finally,
we add an infinite penalty if the total memory footprint of
a given tile configuration exceeds the memory capacity. To
avoid enumerating inefficient candidates, WELDER searches
for output tiles by only enumerating the dimensions that
can reduce traffic the most according to the cost model, and
retrieves only top k candidates with the minimum traffic.

Decide aligned computation parallelism. In GPUs, the
top-level operator-tiles that are executed in the same thread-
blocks must agree on a unified block size (e.g., number of
threads). To ensure this alignment, WELDER first enforces
sufficient parallel tiles at the register level to align with the
hardware parallelism (i.e., by enumerating hardware-aligned
tiles). For example, in NVIDIA V100 GPUs, the tile number
should be greater than 128, as each SM has 4 warp schedulers
and each warp has 32 threads. We then determine the greatest
common divisor among the tile numbers of all operators as
the common thread-block size, if it is larger than the hardware
parallelism (e.g., 128) and less than the maximum limitation
(e.g., 1024). Otherwise, we set the block size to a number
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that equals the hardware parallelism. Once the block size
is decided, we bind all operator-tiles at the register level to
these threads. If a single thread needs to run multiple tiles,
we use TVM’s virtual thread to bind them, thus allowing
concurrent data access over all memory banks and avoiding
bank conflicts.

Support TensorCore. WELDER leverages TensorCore to
accelerate certain operators such as GEMM, BatchMatmul,
and Convolution (using implicit GEMM [28]) on CUDA
GPUs. We add annotations to these operators indicating which
axes will be bound to CUDA’s Warp-Level Matrix Operations.
For top-level operator tiles, we bind them to warps (instead
of threads) to perform MMA operations. Additionally, we
introduce some extra constraints when enumerating tile sizes,
such as ensuring that the number of threads is an integral
multiple of the warp size and that the axes (M, N, and K) in
each tile are an integral multiple of the fragment size of the
MMA operations.

4.2 Code Generation and Compilation
WELDER’s kernel generation is based on TVM. In particular,
the register level tile connection is implemented using TVM’s
compute_inline schedule primitive. For shared memory
level connection, we only use TVM to generate standalone
kernels for each connected part above the shared memory,
and then apply several additional passes to compose these
standalone kernels into a single fused kernel.

Load/store rewriting. The standalone kernels generated by
TVM load and store data from global memory. We rewrite
these global memory accesses to shared memory accesses
by adding an additional TIR [11] pass to TVM’s lowering
procedure. Additionally, we add memory fences to prevent
race conditions and apply padding to handle bank conflicts
in the buffers. As a result, the original global kernel can be
transformed into a device function, which is included in the
final fused kernel.

Block/thread index remapping. Some operators cannot be
directly connected to others and require remapping of their
blockIdx and threadIdx values. The BlockIdx remapping
is used for operators such as Transpose. The remapping
relationship is deduced from their tensor expressions. The
ThreadIdx remapping is used to connect 2D thread blocks
to 1D thread blocks. This is necessary when inter-thread
reduction or TensorCore primitives require the use of a 2D
thread block (both threadIdx.x and threadIdx.y), while
others may use a 1D thread block (only threadIdx.x). A 2D
thread block can be mapped to a 1D thread block as long as
their total number of threads is equal.

Memory management. We manage all shared memory,
including that allocated in each standalone kernel and the inter-

operator reuse buffer, in a uniform manner. First, we analyze
the liveness of each buffer based on the topology execution
order and convert them into a sequence of allocation and free
operations. We then use the bestfit algorithm to compute the
offset for each shared memory allocation, taking into account
any alignment requirements for data types and TensorCore
operations (e.g., aligning to 32 bytes to avoid misaligned
address access).

Compilation speedup. WELDER optimizes the compilation
speed through parallel compilations and sub-graph caching.
First, by taking advantage of the independence between
configurations, WELDER can use multi-processes to build
and evaluate each configuration in parallel. Second, in most
DNN models, some sub-graph patterns often repeat for mul-
tiple times. To avoid the redundant optimization, WELDER
leverages a sub-graph signature to cache each unique graph
pattern. For example, in a 12-layer BERT model, we can cache
the optimization result (kernel code and profiled latency) for
the first layer and reuse it for all the remaining 11 layers.

5 Evaluation

5.1 Experimental Setup
We evaluate WELDER using three servers equipped with
different accelerators: NVIDIA GPU, AMD GPU, and Graph-
core IPU. Two servers are equipped with the NVIDIA GPUs.
The first one is an Azure NC24s_v3 VM with Intel Xeon
E5-2690v4 CPUs and NVIDIA Tesla V100 (16GB) GPUs,
running on Ubuntu 16.04 with CUDA 11.0. The second one is
a local workstation with Intel(R) Xeon(R) E5-2678 v3 CPUs
and NVIDIA GeForce RTX 3090 GPUs, running on Ubuntu
18.04 with CUDA 11.3. The AMD GPU server is equipped
with Intel Xeon CPU E5-2640 v4 CPU and AMD Radeon
Instinct MI50 (16GB) GPUs, running on Ubuntu 18.04 with
ROCm 5.2.3. The IPU server is an Azure ND40s_v3 VM with
Intel Xeon Platinum 8168 CPUs and 16 IPUs with Poplar-sdk
3.0.

DNN workloads. WELDER is evaluated on 10 DNN models
with different model types, including CNNs, Transformer,
CNN-Transformer and multilayer perceptrons (MLP), and
most of which are the state-of-art in the corresponding tasks.
Table 2 characterizes them with a comparison of their model
types, tasks, and the years of publication. For all models in the
table, we use their official PyTorch implementations without
modification.

Baselines. We compare WELDER with several DNN frame-
works, including PyTorch (v1.12) [10] and ONNXRuntime
(v1.12) [8], as well as state-of-the-art DNN compilers such
as Ansor (v0.9) [50] and Rammer [31]. We also compare
WELDER with TensorRT (v8.4) [7], a vendor-specific infer-
ence library for NVIDIA GPUs. For transformer models,
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Figure 9: End-to-end model inference performance on NVIDIA V100 GPU (SIMT Core only). (left : batch size of 1, right :
batch size of 64).

Model Type Task Year

MobileNet [41] CNN Image Classification 2018
BERT [16] Transformer NLP 2018
ViT [17] Transformer Image Classification 2020

Conformer [20] CNN+Transformer Speech Recognition 2020
MobileViT [32] CNN+Transformer Image Classification 2021

Swin-Transformer [30] Transformer Image Classification 2021
NeRF [33] MLP 3D-scene Generation 2021

NAFNet [14] CNN Image Restoration 2022
Restormer [48] CNN+Transformer Image Restoration 2022

BSRN [29] CNN Image Super-resolution 2022

Table 2: DNN models evaluated in WELDER.

we further compare WELDER with NVIDIA’s FasterTrans-
former (v5.2) [2], a hand-crafted C++ library optimized for
transformer models. We also include BladeDISC (v0.3.0) [1]
that implements the latest AStitch [51] for the kernel fusion
optimization. We also include Nimble [25] which implements
multi-stream scheduling as a baseline on NVIDIA GPUs.

To evaluate a model on these baselines, we first trace the
model in PyTorch and export it to the ONNX format. We
then use this ONNX model as input to other frameworks,
including WELDER, Ansor, ONNXRuntime, and TensorRT.
For the ONNXRuntime, we use its CUDA execution provider
and set its graph optimization level to "ALL" to achieve the
best performance. For TensorRT, we use its Python API to
build an engine for the input ONNX model. For Ansor, we set
the total number of tuning trials to 800× the number of tasks
in each model. For all frameworks, we place the input and
output tensors in GPU device memory to avoid additional data
movement costs. During evaluation, we first performe some
warm-up iterations and then run each workload repeatedly
for at least 5 seconds. We only report the average speed for
each model, as we observe very little variation in all cases.
The average performance (e.g., speedup) across models is
calculated by geometric mean in all experiments.

5.2 Evaluation on NVIDIA GPUs
This section answers the following questions: 1) How does
WELDER perform in comparison with state-of-the-art DNN
frameworks or compilers? 2) To what extent can WELDER fur-
ther boost performance with TensorCores? 3) Can WELDER
automatically discover new optimization patterns beyond
previous expert-designed fusion rules? 4) How well does

WELDER improve both the memory and computational effi-
ciency? 5) What is the search efficiency of WELDER’s holistic
optimization?

End-to-end performance. Figure 9 shows the performance
of WELDER and other baselines for batch size of 1, expressed
as the normalized speedup relative to the best result. The
geometric mean speedup that WELDER achieves over DNN
frameworks is 4.29× for PyTorch and 2.07× for ONNXRun-
time. PyTorch does not perform well for models with batch
size 1 due to high Python overhead in its computation graph.
In contrast, ONNXRuntime is a more optimized framework
that removes Python overheads and implements pattern-based
graph optimizations. WELDER also outperforms Rammer by
1.96×, as Rammer can only fuse independent parallel kernels
instead of dependent ones through shared memory. When
evaluating BladeDISC (implementing AStitch), we notice
that it encounters "unsupported operator" failures and falls
back to PyTorch runtime for the majority of models. For
models without encountering any failure (including BERT,
MobileNet, BSRN and NeRF), WELDER is 2.70× faster
than BladeDISC. Regarding the Nimble baseline, WELDER
achieves an average speedup of 1.79×, excluding the models
where Nimble fails to execute.

Ansor improves DNN performance by generating high-
performance tensor programs and using rule-based fusion
across operators at the register level (e.g., Matmul+BiasAdd,
Conv2D+ReLU). However, it cannot exploit further memory
reuse opportunities, leading to an average performance gap
of 1.44× compared to WELDER. This is evident in CNN
models such as NAFNet (1.70×) and BSRN (1.43×), which
mainly consist of convolutions with relatively small channels
that can be well optimized by WELDER. WELDER also
outperforms Ansor by a significant margin on Transformer-
based models such as BERT (1.71×), Swin-Transformer
(1.45×), and ViT (1.56×), due to Ansor’s inability to fuse
patterns like LayerNorm or Softmax in the attention block.
Furthermore, WELDER performs well for CNN+Transformer
models, achieving speedups of 1.64×, 1.39×, and 1.29×
on MobileViT, Conformer, and Restormer, respectively, as
WELDER can cover fusion opportunities in both the CNN
and Transformer parts of these models. We also observe that
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WELDER only slightly outperforms Ansor on NeRF (1.09×),
mainly due to that the compute-intensive MLP dominates the
computation without further optimization opportunities.

Finally, TensorRT is a specialized DNN inference li-
brary provided by NVIDIA with highly optimized operators.
WELDER is comparable to TensorRT on popular transformer
models such as BERT (1.02×) and Swin-T (0.97×). This is
because TensorRT has incorporated expert-designed fusion
rules and in-house kernels for some popular models, including
transformer-based models, thereby leaving limited room for
further optimization. In contrast, WELDER identifies optimiza-
tion patterns automatically and achieves performance that is
on par with TensorRT, despite relying on less performant
kernels for compute-intensive operators. It is worth noting
that kernel optimization is complementary to WELDER, and
further optimized kernels may offer even greater benefits for
WELDER. Additionally, for newer and more diverse models
such as NAFNet, WELDER has demonstrated superior perfor-
mance to TensorRT, with speedups of up to 3.09× due to its
generality. Overall, our system outperforms TensorRT with
an average speedup of 1.47×.

Figure 9 also shows the normalized performance for a
larger batch size of 64. The last three models in Table 2 are
unable to be traced on PyTorch with large batch sizes due to
their use of large input size. Under this setting, WELDER con-
tinues to outperform all other baselines, providing an average
speedup of 1.83× over PyTorch, 1.90× over ONNXRuntime,
2.1× over Rammer, 1.57× over BladeDISC, 1.49× over Nim-
ble, 1.47× over Ansor, and 1.21× over TensorRT, respectively.
We observe that for large batch sizes, frameworks using
CUDA libraries perform much better, compared to the results
for a batch size of 1. This leads to smaller speedups over
PyTorch, ONNXRuntime, and TensorRT for WELDER, while
the speedup over Ansor remains similar to the results for a
batch size of 1.

Performance with TensorCore. The faster computing
throughput of TensorCore can put greater pressures on mem-
ory access. To understand the optimization behaviors when
running on TensorCore, we convert our benchmark models
(both weights and activations) to half-precision float type
(FP16) with PyTorch, as TensorCore only supports FP16.
This is done using the tools in the onnxconverter_common
package [9], with the exception for TensorRT, which converts
through its own converter as it often produces better results.

Figure 10 shows the performance comparisons of WELDER
with other frameworks using TensorCore for batch sizes of 1
and 64. For the 10 cases that use a batch size of 1, WELDER
outperforms PyTorch, ONNXRuntime, BladeDISC, Nimble,
Rammer, and TensorRT. The averaged speedup is 7.18× (up
to 21.4× on MobileNet) to PyTorch, 3.08× (up to 8.72× to
on Conformer) to ONNXRuntime, 5.29× (up to 16.9× on
MobileNet) to BladeDISC, 2.72× (up to 5.58× on NeRF) to
Nimble, 2.76× (up to 5.42× on NAFNet) to Rammer, and

Model DT BS WELDER(ms) FT-CPP(ms)

BERT FP32 1 3.13 3.15
BERT FP32 64 118.6 119.8
BERT FP16 1 1.49 1.50
BERT FP16 64 24.82 22.29
ViT FP32 1 1.33 1.96
ViT FP32 64 15.29 15.68
ViT FP16 1 1.09 1.89
ViT FP16 64 4.79 5.15

swin-T FP32 1 2.59 2.38
swin-T FP32 64 66.13 72.62
swin-T FP16 1 1.43 1.60
swin-T FP16 64 23.12 28.67

geometric mean 6.71 7.46

Table 3: Performance for WELDER and FasterTransformer

1.53× (up to 2.98× on NAFNet) to TensorRT, respectively.
For the remaining 7 cases in Figure 10 that uses a batch size

of 64, WELDER outperforms PyTorch by 1.98×, ONNXRun-
time by 2.13×, BladeDISC by 1.97×, Nimble by 3.84×,
Rammer by 3.45× and TensorRT by 1.16× respectively.

Some of the speedups are much larger than the ones
achieved on SIMT cores. Especially for the NeRF model,
WELDER outperforms TensorRT by 2.34× on TensorCore,
while the speedup on SIMT cores is only 1.16×. This
is mainly because TensorCore can greatly accelerate the
compute-intensive part of the model, making the optimization
of the remaining memory-intensive part more critical.

Note that Ansor is not included in this experiment as it
does not support TensorCore. For a fair comparison, we
disable WELDER’s TensorCore feature and evaluate these
FP16 models on SIMT cores by comparing with Ansor in
Figure 11. It shows a slightly higher speedups (1.74× on
average and up to 2.82×) compared with the ones in FP32.

Performance on another NVIDIA GPU We also conduct
evaluations on RTX-3090, another widely-used GPU, which
utilizes a distinct Ampere architecture. The RTX-3090 ex-
hibits various new features compared to the V100, including
advancements in memory load and TensorCore instructions,
as well as a different number of streaming multiprocessors
(SM). For the sake of conciseness, we solely compared
WELDER with TensorRT on the RTX-3090, as TensorRT
consistently delivers superior performance compared to other
baselines on NVIDIA GPUs. The results, depicted in Figure
12, illustrate that WELDER outperforms TensorRT with an
average speedup of 1.40×, calculated using the geometric
mean of all 34 test cases. Notably, this speedup is similar
to the one observed on the V100 GPU, which amounted to
1.36×, thereby highlighting WELDER’s adaptability across
diverse GPU architectures.

Patterns automatically discovered. WELDER automati-
cally discovers around 300 different fused subgraphs, which
is counted by unique operator types under all 34 compiled test
cases of the 10 models. Among them, 89 patterns contain at
least two reduction-based operators which cannot be covered
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Figure 10: End-to-end model inference performance on NVIDIA V100 GPU (TensorCore enabled). (left : batch size of 1, right :
batch size of 64).

Figure 11: Comparing with Ansor under FP16 w/o Tensor-
Core

Figure 12: Comparing with TensorRT on NVIDIA RTX-3090

by simple element-wise fusion rule in Ansor. To the best
of our knowledge, many of these patterns are uncommon
fusion patterns that have not been explored by manually-
designed rules or automatic fusion optimizations. Figure 4
illustrates two examples of such patterns, which fuse multi-
ple Convolution or MatMul (i.e., Dot) operators with other
memory-intensive operators into a single kernel. The number
of operators fused in each pattern ranges from 2 to 48 and can
achieve an average speedup of 1.87× (up to 5.4×) compared
to basic fusion methods such as those used in Ansor. The
most common pattern has been used 191 times in all models.

Such a general fusion capability often allows WELDER
to outperform the model-specific implementations opti-
mized by experts. For example, FasterTransformer [2] is
a manually-optimized benchmark for transformer models
from NVIDIA. It supports both element-wise fusion, such
as BiasAdd+Transpose, and non-element-wise fusion, such
as Layernorm+Softmax. In WELDER, all these patterns can
be automatically fused. Even more, WELDER can further
fuse Q*K with the following Softmax in the attention block
when the sequence length is not long (e.g., they are fused

Fused operators # Ops

DepthwiseConv2dNative Broadcast Add Broadcast Di-
vide Erf Broadcast Add Multiply Broadcast Multiply Con-
volution Broadcast Add Broadcast Divide Erf Broadcast
Add Multiply Broadcast Multiply Convolution Broadcast
Add Broadcast Divide Erf Broadcast Add Multiply Broad-
cast Multiply Convolution Broadcast Add Broadcast
Divide Erf Broadcast Add Multiply Broadcast Multiply
Concat Convolution Broadcast Add

48

Dot Relu Dot Relu Dot Relu Dot Relu Dot Relu Dot Relu
Dot

13

Table 4: Examples of fusion patterns discovered by WELDER.

in BERT where the sequence length is 128, but are not
fused in Conformer where the sequence length is 512, this is
automatically decided by WELDER).

For the three models supported by FasterTransformer, we
compare its performance with WELDER in Table 3. In general,
WELDER achieves an average speedup of 1.11× (up to 1.73×
on ViT) over FasterTransformer. Based on our profiled data,
The notable speedup for ViT under batch size of 1 can be
attributed to a convolution operator with a non-conventional
shape, where both stride and kernel size are 32 (ViT’s patch
size). For this single operator, WELDER’s generated kernel
is 4.4x faster. This highlights WELDER’s adaptability in
managing new operator shapes or model patterns.

Another example is NeRF, a popular 3D scene generation
model that is typically implemented as a 7-layer MLP. To
take full advantage of GPUs, domain experts often need to
implement such models from scratch to achieve better fusion
result (e.g., fully-fused MLP in [35]). With WELDER, we
can automatically fuse this 7-layer MLP into a single GPU
kernel. The generated kernel uses TensorCore for the first
6 layers and uses SIMT Core for the output layer, with all
intermediate results stored in shared memory. We observe
that our automatic fusion result can achieve a similar speedup
(over 5×) to the values reported in [35] (we are unable to
evaluate their code [34] as it does not support V100 GPUs).

Finally, for CNN models such as NAFNet, BSRN, and
MobileNet, WELDER is able to fuse different types of con-
volutions with other operators (e.g., Pooling, PixelShuffle,
etc.). For example, in NAFNet, our system can fuse back-to-
back pointwise convolutions together with the normalization
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Figure 13: Latency, GPU kernel count, global memory transac-
tion executed and intermediate result size (IRS) For 3 selected
models (FP32, batch size 64).

Figure 14: Varying input size, comparing with Welder-base.

operations between them. Another interesting pattern is in
models with multiple separable convolution layers, where
each layer consists of two operations: a depthwise convolution
(DWConv) and a pointwise convolution (PWConv). WELDER
is able to determine the optimal fusing order for these two
types of operators based on their operator configurations. For
example, on the top layers where the feature maps are large
and the number of channels is small, WELDER constructs a
DWConv+PWConv fusion group because it is better to cache
a complete feature map in shared memory. In contrast, on
the bottom layers, WELDER constructs a PWConv+DWConv
fusion group which caches a complete channel for DWConv
to reuse, as the feature map becomes smaller.

Ablation and sensitivity study. To demonstrate the benefits
of the holistic memory optimization provided by WELDER,
we create two variants of WELDER: “WELDER-none” dis-
ables all inter-operator tile connection and only searches for
intra-operator schedules, and “WELDER-base” only enables
inter-operator tile connection at the register layer. We also
include Ansor in this experiment, as it is another codegen-
based approach similar to ours. As shown in Figure 13,
enabling register layer tile connection, WELDER-base reduces
latency by an averaged 52% (i.e., 2.08× speedup), kernel
launch count by 67% , global memory transactions by 52%
and intermediate result size (IRS) by 66% compared with
WELDER-none. Note that the metrics of WELDER-base is
similar to that of Ansor, demonstrating the efficiency of our
general tile-based memory scheduling compared with the rule-
based fusion in Ansor. Moreover, by enabling tile connection
at shared memory layer, WELDER is able to further reduce
latency by an averaged 29% (with up to 1.82x speedup),
kernel launches by 60%, transactions by 25% and IRS by

Model Ansor time(s) Ansor Trials WELDER Time(s) WELDER Trials

BERT 15285 8000 244 651
Mobilenet 45527 25600 561 927

Table 5: Compilation time of Ansor and WELDER

Model Ansor WELDER TensorRT

Resnet50 2.403 2.327 2.351
Resnet18 1.071 1.094 1.158

UNet 8.670 9.251 4.429
VGG16 4.267 4.123 2.584

Table 6: Performance on compute intensive models

65% compared with WELDER-base. Note that the reduction
of memory transactions is less than the reduction of IRS,
because memory access on the model weights part cannot be
optimized by fusion.

In addition, we conducted a sensitivity study by varying
the input sizes of three selected models: BERT (128-512
text length), Conformer (128-512 audio frames), and NAFNet
(256x256-1024x1024 image input). The results, as depicted
in Figure 14, reveal that the fusion gain significantly increases
for NAFNet when employing larger images. Conversely, the
gain diminishes for the other two transformer-based models.
This discrepancy can be attributed to the fact that transformer-
based models exhibit quadratic computational growth with
respect to the input sequence length, thereby reducing their
memory-intensive nature.

Compilation time. Table 5 compares WELDER’s compila-
tion time against Ansor, which is a search-based compiler
requiring many tuning and profiling trails. We chose not to
include other baselines in the comparison since they directly
invoke library kernels, thereby eliminating the need for extra
time dedicated to tuning and code generation. It shows that
the end-to-end compilation speed of WELDER is more than
an orders of magnitude faster than Ansor. This is because
Ansor generates a very large search space for all the oper-
ators, and implicitly optimizes data reuse through machine
learning-based tuning. This often requires a large number of
tuning trials (e.g., 800 per operator in our evaluation) and
has additional overheads to train a cost model on the fly. In
contrast, WELDER decomposes the optimization space using
a layered scheduling policy and searches for efficient tiling
configurations using an analytic cost model to estimate traffic
costs. As a result, WELDER requires significantly fewer tuning
trials (20 per subgraph in our evaluation) than Ansor.

Performance on compute intensive models. Traditional
models like ResNet [21], VGG [43], and UNet [40] are
typically dominated by some large operators such as convolu-
tion. For these compute intensive models, although WELDER
mainly focuses on memory access optimization, WELDER
can mostly achieve comparable performance to state-of-
the-art baselines like TensorRT. This is because WELDER
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Figure 15: End-to-end model inference performance on AMD ROCm MI50 GPU (left : batch size of 1, right : batch size of 64).

can still generate high performance single operators (using
the multi-level tiling abstraction, which is similar to Ansor
[50] or Roller [52]) although there might be few chances
to connect the tile at a higher memory level. However, for
some convolution operators, existing libraries like cuDNN [4]
implement them using an optimized numerical algorithm
(e.g., winograd [26]), which are difficult to automatically
derive from tensor expressions. This can result in WELDER
performing worse than TensorRT if there is no additional
memory optimization room to compensate for this gap. For
example, Table 6 compares the performance of WELDER,
Ansor, and TensorRT on four such models. For ResNet, both
systems achieve comparable performance, as the majority of
convolution operators in this model perform better when im-
plemented with the DirectConv algorithm (which is supported
by both Ansor and WELDER) instead of winograd. However,
for UNet and VGG16, the dominant convolution operators are
mostly implemented using winograd in TensorRT, and there
are no further fusion opportunities for WELDER to exploit,
resulting in better performance for TensorRT. Given that this
is orthogonal to WELDER’s optimization, we leave the support
of the winograd algorithm (by rewriting tensor expressions)
to our future work.

5.3 Evaluation on AMD ROCm GPUs
We evaluate the efficiency of WELDER on AMD ROCm GPUs
by comparing its performance with PyTorch, ONNXRuntime
and Ansor. TensorRT and AStitch are not included because
they are exclusive to NVIDIA GPUs. Figure 15 shows the
end-to-end performance of the 10 DNN models. Compared
with PyTorch, ONNXRuntime and Rammer, WELDER can
outperform them by an average of 2.62×, 1.71× and 2.14×,
respectively. Compared to Ansor, WELDER achieves an
average performance improvement of 1.53×. Figure 15 also
shows the performance comparison with a larger batch size of
64, where WELDER outperforms PyTorch, ONNXRuntime,
Rammer and Ansor by an average of 1.69×, 1.23×, 1.86×
and 1.47×, respectively. Note that we have excluded some
CNN models for ONNXRuntime as they fail to execute on
it. We notice that WELDER’s speedup on MI50 is slightly
smaller than that of V100, this is because MI50’s peak FLOPS
is weaker than V100’s, while its peak bandwidth is higher,

Model Image Size Device WELDERBase(s) WELDER(s)

UNet 8k*8k GPU 38.2 14.5
VGG16 8k*8k GPU 15.7 8.30
UNet 2k*2k IPU 31.1 8.56

VGG16 2k*2k IPU 4.98 1.61

Table 7: Scale-up large DNN models to host memory

according to the official data-sheet. Such difference makes
the workload more compute-intensive on MI50, leaving less
optimization chances for memory access optimization.

5.4 Scale-up with Host Memory
WELDER’s abstracted device layer allows us to extend the
memory hierarchy to support large DNN tasks. For example,
in cases where classical CNN models like UNet or VGG16
are used to process high-resolution medical images [42], a
single tensor from some layers is often too large to fit in
the GPU memory. In these scenarios, tensor-based memory
swapping optimization techniques, such as SwapAdvisor [22]
or Capuchin [37], may not be effective due to the large tensor
granularity. WELDER addresses this issue by generating a
tile-based execution plan on the extended memory hierarchy
through holistic traffic optimization. This approach allows
us to load a data tile from the host memory, compute several
connected operator tiles by reusing the data in device memory,
and store the result back, as if it was being processed on a
single device. To evaluate the efficiency of this scheduling
approach, we compared WELDER with a variant that only
disables data reuse at the device memory layer.

Scale-up GPUs. As a preliminary experiment, Table 7
shows the performance of WELDER when scaling up UNet
and VGG16 on large image data by augmenting the GPU
memory with a host memory layer. As the results show,
by enabling tile-connection at the device memory layer,
WELDER is able to achieve average speedups of 2.63×
and 1.89× for the two models, respectively. It also reduces
host memory transfer by 3.11× and 2.90×. Note that the
ratios of reduced memory traffic are higher than the actual
speedup, as we have implemented double buffering (along
with pinned memory and CUDA streams) to overlap some
memory transfer with computation.
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Scale-up GraphCore IPU. We also perform a preliminary
evaluation of WELDER’s ability to scale up on the Graphcore
IPU [3], which is a DNN accelerator with a distinct architec-
ture from NVIDIA and AMD GPUs. The IPU is equipped
with massively parallel MIMD processors and a relatively
small device memory (i.e., 300MB), which poses a challenge
for it to handle even medium-sized tasks. We apply the same
tile-based scheduling to the two models for the IPU and set
the input image size to 2048*2048 to adapt to the IPU’s
memory capacity. The results in Table 7 show that WELDER’s
optimization is able to achieve average speedups of 3.63× and
3.09× for the two models, respectively. This improvement
ratio is higher than that of the GPU, which is mainly due to
that we disable the double-buffer optimization for the IPU
due to its limited memory.

6 Discussion
WELDER’s design and implementation mainly focuses on
static models. For dynamic model execution, there are two
practical ways to address this. First, the dynamic graph can be
transformed into static sub-graphs through JIT compilation,
such as PyTorch JIT compile, which has become a standard
practice in PyTorch 2.0. Then, WELDER can concentrate
on optimizing the static sub-graphs, which are typically the
computationally dominant part. Second, even though tensor
shapes may be dynamic, the internal tile in each operator can
be statically determined. This presents an opportunity for
WELDER to generate a static tile-level fusion plan but leave
the number of parallel tasks determined by the input tensor
shape.

7 Related Work
Compiler optimization like operator fusion is a widely-used
technique in DNN computation to reduce kernel launch over-
head and improve data locality in faster memory. Compilers
such as TVM [15], Ansor [50], XLA [12], DNNfusion [36]
all support operator fusion at register level. Other compilers
try to further fuse operators at shared memory, relying on
either fusion rules for a set of known operator types (e.g.,
AStitch [51], Apollo [49], DeepCuts [24]) or specific template
for a few operator combinations (e.g., Bolt [47]). Specialized
DNN runtimes such as TensorRT [7] and ONNXRuntime [8]
have incorporated expert-designed fusion rules for some com-
mon patterns in popular models such as the transformer-based
models. In contrast, WELDER works for general operators
implemented in tensor expressions without the assumption on
operator types and decides on the best fusion memory layer
automatically. This is because an operator’s resource usage
behavior (memory- or compute-intensive) often depends on
its shape, and therefore the fusion decision.

Systems like Rammer [31], HFuse [27], Nimble [25], etc.,
exploit better hardware parallelism utilization and reduce
kernel launches by either horizontal fusion or scheduling par-

allel tasks through multi-stream and CUDA graph. WELDER
builds upon Rammer by further exploring a complementary
optimization to these systems, i.e., holistic memory optimiza-
tion with a vertical fusion, resulting in a further speedup for
memory-intensive models.

Ansor [50] and Roller [52] are representative tensor compil-
ers that are focusing on intra-operator optimization through
either loop optimization or tiling optimization. Especially,
Roller [52] and Triton [44] also utilize the concept of tile to
optimize kernel performance (e.g., intra-operator data reuse).
In contrast, WELDER complements them by optimizing for
intra- and inter-operator memory access holistically. WELDER
generalizes the tile concept in Roller into a tile-graph ab-
straction, exposes a holistic tile-level scheduling space, and
proposes an efficient scheduling mechanism over the holistic
space and the explicit memory hierarchy.

Some works optimize for a specific pattern regarding to
a type of models with more aggressive operator fusions,
such as fully-fused MLP for the NeRF model [35], manually
fused kernels for CNN models [46], and attention fusion
for transformer models [2, 18]. Our evaluation shows that
WELDER can achieve most of these fusions automatically and
even produce new fusion patterns to help further optimization.

Moreover, kernel fusion techniques have been used in
traditional image processing [38, 39] or HPC [45] areas.
These efforts usually leverage domain-specific fusion rules for
their workload. WELDER focuses on DNN workload, while
it is applicable for general operators represented by tensor
expressions. It is also potentially helpful for workload that
can be implemented in tensor expressions in other domains.

8 Conclusion
By observing that modern DNN models are becoming increas-
ingly memory intensive, we introduced WELDER, a DNN
compiler that optimizes the execution efficiency based on a
new tile-graph abstraction. WELDER is able to holistically
optimize efficient intra- and inter-operator data reuse across
multi-level memory hierarchy. WELDER is the first to unify all
common operator fusions into a single framework, allowing
for the discovery of 89 uncommon fusion patterns, with the
largest one fusing 48 operators into a single kernel. This
generality enables WELDER to significantly outperform state-
of-the-art baselines. More importantly, WELDER provides a
systematic approach to take advantage of emerging trends
in the memory hierarchy, such as larger and more connected
on-chip memory, in the future AI accelerators.
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A Artifact Appendix

Abstract
WELDER provides end-to-end DNN model compilation with
its new tile-graph abstraction. This artifact reproduces the
main results of the evaluation on NVIDIA V100 GPU.

Scope
This artifact will validate the following claims:

• End-to-end model performances. By reproducing the
experiments of Figure 9, Figure 10, Figure 11, Table 3
and Table 6.

• Motivation experiments in Figure 1 and Figure 2.

• Ablation study in Figure 13.

• Compilation time in Table 5.

• GPU stale out experiments in Table 7.

Contents
This artifacts includes all the source code to implement
WELDER. We provide a docker file to setup environments. For
each figure and table mentioned above, we provide a script
to reproduce its result. Since there are more than 50 model
test cases to compile to fully reproduce the results, which will
cost a long time (especially for the Ansor’s baseline), we also
provide pre-compiled logs and models for NVIDIA V100
GPU. Please refer to the README.md file in the repository
for more details.

Hosting
The artifact is hosted at github repository1. Please use git to
clone the repository and checkout to the osdi2023welder
branch.

Requirements
This artifacts requires a NVIDIA V100 GPU with CUDA
driver supporting CUDA runtime larger than 11.0.

1https://github.com/microsoft/nnfusion/tree/osdi2023welder
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