
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Defcon: Preventing Overload
with Graceful Feature Degradation

Justin J. Meza, Thote Gowda, Ahmed Eid, Tomiwa Ijaware, Dmitry Chernyshev,
Yi Yu, Md Nazim Uddin, Rohan Das, Chad Nachiappan, Sari Tran, Shuyang Shi,

Tina Luo, David Ke Hong, Sankaralingam Panneerselvam, Hans Ragas,
Svetlin Manavski, Weidong Wang, and Francois Richard, Meta Platforms, Inc.

https://www.usenix.org/conference/osdi23/presentation/meza

Defcon: Preventing Overload with Graceful Feature Degradation

Justin J. Meza Thote Gowda Ahmed Eid Tomiwa Ijaware Dmitry Chernyshev
Yi Yu Md Nazim Uddin Rohan Das Chad Nachiappan Sari Tran Shuyang Shi

Tina Luo David Ke Hong Sankaralingam Panneerselvam Hans Ragas
Svetlin Manavski Weidong Wang Francois Richard

Meta Platforms, Inc.

Abstract
Every day, billions of people depend on Internet services for
communication, commerce, and entertainment. Yet planetary-
scale data center infrastructures consisting of millions of
servers experience unplanned capacity outages and unex-
pected demand for resources; how can such infrastructures
remain reliable in the face of capacity and workload flux?

In this paper, we introduce Defcon, a system for improving
the availability of large-scale, globally-distributed Internet
services using graceful feature degradation. In response to
overload conditions, Defcon enables site operators to gradu-
ally disable less-critical features in order to reduce resource
demand. Defcon presents a common interface to product de-
velopers to define feature knobs that represent degradation
capabilities. Defcon automatically tests knobs to understand
each knob’s product- and infrastructure-level trade-offs. At
Meta, we have used Defcon to improve global product avail-
ability in the face of worldwide demand-surges in addition to
large-scale infrastructure failures.

1 Introduction

Large-scale, globally-distributed Internet services, such as
those operated by Alibaba, Amazon, Google, Meta, Microsoft,
and Netflix, power modern human life by providing access to
communication, commerce, entertainment, and many other
experiences. At the same time, rapid advances in finance, arti-
ficial intelligence, machine learning, and virtual/augmented
reality have solidified the utility of Internet services for much
of humanity for the foreseeable future.

Internet services consist of features – functional building
blocks that make up a larger product. For example, a video
product consists of a search feature, a playback feature, a rec-
ommendation feature, and so on. Features are hierarchical: A
top-level playback feature may itself consist of a video quality
feature and a closed-caption feature, for example. Features,
and the products they make up, power Internet services.

Products (and, by extension, features) run in data centers
distributed around the planet. Analogous to the familiar von

Neumann architecture, computing at a planetary scale requires
input/output (in the form of HTTP and RPC requests), com-
putation (in the form of front-end servers), interconnect (the
network backbone), caching, storage, and so on. Site opera-
tors deploy these resources within geographically-distributed
data centers with the goal of ensuring that the workload de-
manded by users does not exceed the resources supplied by
the network, servers, and so on.

Planning data center resources well requires predicting
the future – or at least trying to. Capacity engineers rely on
detailed user demand forecasts and server supply models to
decide how and where to purchase and deploy resources, but
alas, prophesy yet remains elusive: Errors and inaccuracy
creep into models and forecasts, making data center capacity
planning at times more of an art than a science. In addition, un-
predictable world events – like global pandemics – can render
even the most sophisticated predictions obsolete overnight.

At the end of the day, the people that use Internet services
care about availability: Can they use the product that they
want to use when they want to use it? Toward that end, com-
panies work hard to ensure their products remain highly avail-
able. But what happens when things do not go according plan,
such as during a persistent product demand increase due to a
global pandemic, or when recovering from a global outage?
Can we achieve high product availability without sacrific-
ing additional resources? Can we be more efficient for rare
– but inevitable – partial outages and survive them without
additional server resources?

For example, Figure 1 shows a real-world surge in demand
for one of Meta’s products, Facebook (measured on the y-
axis in mega-instructions per second, or MIPS, executed by
front-end servers for the product), that occurred over several
hours on October 27, 2022. Localized peaks toward the left
and right of the chart illustrate software deployment on the
front-end systems, which consumes additional resources due
to idle hosts updating their binaries and cold cache effects –
these are expected behaviors. At around 5AM PDT, however,
an unexpected increase in demand for the product happened
to coincide with the daily peak usage of the product (shown

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 607

Figure 1: Defcon in action during a real-world site event. (See
Section 1 for explanation.)

from a previous day as “reference signal”) leading to con-
structive interference and causing the product to run out of
capacity and dangerously approach an overload condition
(approximately 1.15 × 1010 MIPS) at which point fail-slow
behavior and overload would occur. At around 6:35AM PDT
(vertical dotted line), site operators engaged a system, which
we present in this paper, in order to safely and efficiently
reduce resource consumption (MIPS), while still preserving
access to core product functionality for all users, avoiding
an outage. Around 7:15AM PDT, as demand for the product
continued to increase, site operators further engaged a next
level of the system – leading to a correspondingly larger de-
crease in resource consumption, bending the traffic (MIPS)
surge curve to restore it to nominal amounts of resource de-
mand. After the surge had passed, at around 8:00AM PDT,
site operators disengaged the system, restoring the product’s
features to their original state.

In this paper, we present Defcon, a system to provide
graceful feature degradation for Internet services. Defcon
achieves high availability without sacrificing additional server
resources by allowing site operators to dynamically turn off
product features in response to rare (e.g., monthly or yearly)
demand spikes or even unpredictable product demand in-
creases. The key insight of Defcon is that not all product
features provide equal value – many features can safely be
turned off for short periods of time without altering a prod-
uct’s fundamental behavior. Human guidance is used to define
and actuate “knobs” – control flow annotations that represent
the best capacity savings and user experience trade-offs.

We characterize the overload problem and solution space,
apply a rigorous data-scientific methodology to analyze knob
behavior, and describe a real-world at-scale testing method-
ology to validate the efficacy of Defcon. We also shed light
on the design and organization of large-scale, real-world sys-
tems from the field as our approach accurately reflects the
trade-offs involved in designing and implementing an initial
solution to an emerging problem under realistic constraints.
A key contribution of this paper is to prove the efficacy of
feature degradation to help solve the overload problem in
distributed systems.

We describe the design and implementation of Defcon and

our experience operating Defcon in production over the course
of three years. We evaluate our approach using a combination
of continual at-scale controlled tests as well as case studies
from production incidents, including during a sustained de-
mand surge. Overall, we find graceful feature degradation
to be a powerful design pattern for system architects to ef-
ficiently improve the availability of large-scale distributed
systems.

2 Background

Graceful degradation pervades the natural world: Removing
ballast to prevent a ship from capsizing, escalators losing
power and becoming ordinary stairs, starfish reproducing a
lost limb, and so on. We observe analogous patterns of grace-
ful degradation in the realm of computing and provide a brief
overview of these techniques as well as a backdrop for why
graceful degradation matters in large-scale Internet services,
next.

2.1 Data Center Capacity Management
Modern hyper-scale data center infrastructures rely on server
capacity distributed across the planet in order to support the
diverse resource needs of the services that run in the data cen-
ters. Capacity Engineers rely on two inputs in order to make
data center capacity planning decisions: workload resource
demand and server resource supply.

Workload resource demand models the resource needs of
a product in order to support its set of features. Capacity
engineers normalize resources to a common unit baseline
in order to plan resources across different server architec-
tures or generations (e.g., Relative Resource Units, or RRUs)
where resource types include computational throughput, stor-
age capacity, memory bandwidth, and network bandwidth.
Modeling workload resource demand involves understanding
how many RRUs of different resource types are required to
support product features. To accurately model future resource
demand, engineers scale current resource demand based on
feature growth projections.

Of course, in reality, resource supply and demand can be-
have in unpredictable ways. For example, a workload pattern
change can change resource demand, while a data center out-
age can decrease resource supply. A key challenge, therefore,
is how to allocate resources in the face of constant infras-
tructure and workload flux1. In many traditional systems,
scenarios where resource demand > resource supply leads
to fail-slow – and, eventually, overload-induced – system un-
availability.

1Note that systems in Meta’s infrastructure are already equipped to auto-
matically scale up and down capacity in response to predictable (e.g., diurnal)
demand changes. Even so, there still comes a point when there is no remain-
ing capacity to elastically expand a service into (such as during unpredictable
load spikes or large outages).

608 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Potential Solution Description Additional Resources Engineering Effort User Impact
0. Do Nothing Allow overload to happen, leading to

product outages.
None None Very High

1. Overprovision Resources Increase server resources, leading to
lower steady state utilization. Cannot
fully predict future traffic patterns.

Prohibitively High None Potentially None

2. Drop User Requests Reduce work by discarding user requests
at a load balancer level (L4 or L7) before
they enter into a data center.

None Medium High

3. Shed Server Load Modify micro-services to decide when
and which requests to drop for their ser-
vice.

None High Medium

4. Degrade Product Features Annotate control flow and avoid execut-
ing certain features on-demand.

None High Low

Table 1: Potential solutions to the overload problem and their associated trade-offs.

2.2 The Overload Problem

System overload occurs when the requested throughput of
a service (e.g., measured in queries per second, QPS) ex-
ceeds the capabilities of the system, leading to a phenom-
ena known as congestion collapse whereby goodput (a mea-
sure of the rate of successful responses from the service),
decreases [2, 38]. Systems of any size can become over-
loaded, but the overload problem is especially acute in large,
geographically-distributed Internet services, which can cause
cascading failure scenarios, and can lead to widespread out-
ages [12]. Overload remains a fundamental problem in the
operation of distributed systems.

Meta’s infrastructure is organized around a collection of
geographically-distributed data center failure domains, each
representing around 5–12% of the overall capacity. Common
failures such as bugs, network/power outages, and incorrect
configuration happen within these failure domains and we
have found 5–20% of savings to be a sweet spot for capacity
savings for mitigating the risk of cascading failures due to
overload. In this work, we assume a baseline of an overload-
induced metastable failure state that leads to product outages
for large portions of users for minutes to hours at a time.

Table 1 summarizes some potential solutions to the over-
load problem and how they trade off the amount of hardware
resources (Server Resources), the amount of effort required
of engineers to implement and maintain (Engineering Effort),
and the potential impact to users (User Impact). For example,
one way to attempt to solve the overload problem is to simply
allocate more server resources for a distributed system (op-
tion 1). While potentially effective, simply allocating more
resources can be inefficient, leading to low resource utiliza-
tion when traffic is not at its infrequent (e.g., on the order of
months or years) projected peak.

Furthermore, we can never perfectly predict traffic patterns
and real-world events can often thwart even the best prepara-
tions. Take the COVID-19 pandemic as an example: In 2020,
as more persons began to shelter in place, communication

that was once in-person began shifting to occur online. Fig-
ure 2 shows an example of how traffic for one product at Meta
greatly exceeded its pre-pandemic resource plans. During
global crises, Internet services often become more important
than ever for humans to communicate and remain connected
with each other. And while at Meta we were able to survive
the COVID-19 demand surge, we wondered: “Can we build
systems that are inherently resilient in the face of unforeseen
overload?”

To answer this question, we found options 2–4 compelling.
Note that options 2 and 3 both reduce work, but whereas op-
tion 2 reduces work at its source, option 3 reduces work at its
destination. Specifically, for option 3, we considered a fine-
grained backpressure-based approach, which led to noticeable
user impact when capacity demand exceeded capacity sup-
ply and requests could not be processed. After evaluating the
potential trade-offs at Meta, we opted for a technique to min-
imize user impact and found option 4, Degrade Features, to
achieve the best trade-off: No additional server resources and
low impact to users, albeit with an investment in engineering
effort (which we qualify in Section 5).

Figure 2: Real-world events can often thwart event the most so-
phisticated preparation techniques, as shown by this graph of actual
versus forecasted demand for Facebook in 2020 during the onset of
the COVID-19 pandemic.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 609

2.3 Related Work

Degradation is a self-adaptation technique that reduces the
amount of work that servers need to perform to stay resilient
during resource shortages, spiky load, and reduced hardware
performance [12] that would otherwise cause a distributed
system to enter a failure state [6, 16]. Degradation has been
considered in many different contexts of system design, such
as storage systems [8, 22, 31, 39], processor design [4, 17],
cloud computing infrastructure [9, 11, 20, 25, 29], edge com-
puting systems [21], web server applications [1, 2, 14], search
engines [10], and mail services [27]. In network systems,
graceful degradation is used to handle overload of network
resources through intelligent connection management [36],
traffic prioritization [3], traffic handover control [5], security
hardening [15, 34], as examples.

Degrading the static content of a website was proposed
in [2] and relevant techniques have been extended to dynamic
content [26]. Degradation has also been proposed by cloud
Infrastructure as a Service (IaaS) providers as a feature to
increase cloud utilization [29] and used for adapting to the
high network variability and possible network disruptions in
edge computing infrastructure [21]. Defcon contributes to this
area of research by developing a product-level, feature-centric
framework to perform configurable graceful degradation of
large-scale geo-distributed micro-services during spiky load
and disaster events and providing real-world insights on how
to build and operate such a system from its global of deploy-
ment in products at a large scale.

One alternative approach for surviving resource shortages
during load spike or outage events is load shedding [11,37,38],
which drops a proportion of load by dropping request traffic
when a server approaches overload. However, load shedding
sacrifices availability guarantees and broadly impacts user
experience. In contrast, degradation techniques aim to provide
high availability of products and services to users around the
globe, which is critical to minimize impact.

Another area of related research is on specifying and real-
izing degradation for distributed systems. A relaxation lattice
method was proposed for specifying the behavior of degrada-
tion [13]. Furthermore, specifications and implementations
of degradation were presented in [39] as a complementary
mechanism to fault tolerance in the design of highly-available
distributed systems. Availability Knob [30] was proposed to
provide a variety of availability guarantees, improving the
utilization of reliability-heterogeneous infrastructures. In this
work, we adopt the “knob” nomenclature, although for differ-
ent means. Whereas Availability Knobs specify availability
SLA flexibility, knobs as used in this work describe source
code control flow annotations which can be enabled or dis-
abled at-will.

Client-managed degradation was explored in the context
of features like low power modes [18]. Our approach differs
from client-managed degradation in three key ways. First, in

contrast to an ad-hoc approach to define individual points of
degradation in client code (which, like a low power mode,
then effectively become new “features” to maintain in the
client), our approach provides a framework (knobs) that de-
velopers can use to efficiently encapsulate existing features,
significantly reducing the development cost of degradation.
Second, our approach provides developers with a framework
to automatically test, analyze knob savings, and manage the
lifecycle of knobs. Third, our approach extends to both client-
side and server-side knobs, as it abstracts the knob control
plane into configuration management as opposed to custom
client (or server) code.

2.4 Graceful Feature Degradation

In this work, we ask the question, “Can we design distributed
systems that remain available even when resource demand
> resource supply?” While such systems would violate tra-
ditional system design assumptions, our key insight is that
not all features of a product are equally important – if we
can identify essential features (such as the ability to send
a message in a messaging product) versus fungible features
(such as an online status indicator for whether the message
recipient is currently online), then we can gracefully trade
off fungible features for on-demand server resources, while
still preserving essential features. For example, the number of
results can be considered as an adjustable feature for a search
product.

In this paper, we introduce the qualifier graceful feature
degradation to refer to the property of a large, globally-
distributed system to dynamically modify its behavior (fea-
tures) in order to dynamically (i.e., at runtime, without re-
compilation or changing binary flags) alter its control flow for
the purpose of reducing the system’s resource requirements.
From here on, we use the terms “graceful degradation” and
“graceful feature degradation” interchangeably.

3 Defcon

Defcon is a system to implement graceful degradation in
large-scale distributed systems. Defcon is designed to be used
during infrequent site emergency situations where demand is
greater than supply. There are many reasons why a system
may encounter situations where demand for the system’s re-
source exceeds the supply of resources for the system. Some
examples are data center outages, load spikes during special
events like New Year’s Eve, service overload due to a bug in
a software deployment, and so on. We provide an overview
of Defcon and discuss the design and implementation of its
key system components, next.

610 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.1 Overview

Figure 3 shows an overview of Defcon. Knobs annotate pro-
gram control flow eligible for degradation and follow a well-
defined API. Product engineers use a Knob Definition Frame-
work to annotate source code that can be degraded. These
knobs are controlled using a Knob Actuator Service by site
operators according to a policy. Not shown in the figure, a
Knob Testing Framework registers knobs defined in the code
base and automatically tests them to understand the sensitivity
of product experience and resource consumption when the
knob is turned on. We discuss each of these components next.

Figure 3: Overview of Defcon system architecture. Product software
engineers use a Knob Definition Framework to label sections of con-
trol flow corresponding to specific features to conditionally execute.
A Knob Actuator Service controls which knobs (and their correspond-
ing features) are enabled or disabled in response to real-time events.
Mobile clients, web clients, and micro-services all communicate
via configuration with the Knob Actuator Service to dynamically
determine control flow. A Degradation Portal provides insights for
site operators to understand which knobs to enable in response to
server resource shortages and a Degradation CLI allows humans to
rapidly control knobs en masse.

3.2 Knob Definition Framework

A knob is a switch to enable or disable a feature in the code.
Unlike feature flags, which require a binary restart in order to
take effect, knobs are controlled dynamically while a binary is
running. Knobs are implemented by a client library (or sidecar
service) that determines the current state of each knob and
are controlled using a configuration management system [32].
Software developers provide each knob a unique name, which
they then can reference in their code. Thus, knobs can span
multiple source code files, or even multiple binaries. Knobs
come in two flavors:

1. Server-side knobs are implemented in binaries running
on the servers in data centers. The advantage of server-side
knobs is that we can adjust the knobs’ state in seconds without
any propagation delays.

2. Client-side knobs are implemented in client code run-
ning on phones, tablets, wearables, and so on. The advantage
of client-side knobs is that they have the capability to reduce
network load by stopping requests sent to the server along
side reducing server load due to the request. Client-side knobs
can also be controlled conditionally based on device metadata,
such as cache state and network bandwidth availability. For
example, Meta’s mobile apps maintain a client-side cache
response freshness threshold value. We update this freshness
threshold value during Defcon to control incoming traffic. At
Meta, we use server-side configuration to control these values.
We use two approaches to propagate knobs state changes to
clients, each with its own pros and cons:

2.a. Silent Push Notification (SPN): This approach uses a
push notification system to propagate knobs state changes. At
Meta, we have large numbers of client devices and the system
takes around 30 minutes to finish all push notification jobs to
propagate knobs state changes. SNP works like a typical app
notification mechanism but instead of showing a notification
to a user, the client app updates corresponding configuration
fields.

2.b. Mobile Configuration Pull (MCP): In this approach,
clients pull updated mobile configurations from servers
through an API. At Meta, every client application imple-
ments two kinds of configuration-pull mechanisms: (1) A
full configuration pull happens every 6 hours and pulls up-
dated configuration data for every configuration definition.
Full configuration pull is more thorough, but requires more
network bandwidth and server resources. (2) During Emer-
gency Mobile Configuration (EMC) pull, each client request
triggers a server to inspect an emergency configuration file lo-
cated on the server to fetch updated configuration data for the
fields mentioned in the emergency configuration file. EMC
consumes less network bandwidth and server resources, but
requires manual intervention.

Listing 1 shows an example of defining a knob in Python
(although APIs also exist for Rust, C++, Hack [35], and Java).
Every knob has a unique name (with a namespace unique
for each product name, Feedin this example), a level corre-
sponding to the magnitude of resource reduction and used
for grouping all knobs of a similar magnitude together, and
a Boolean enabled state. The export statement instructs the
build system to generate/update knob source code definitions
in the code base.

Listing 1: Knob definition.

from configs .knobs import KnobConfig
disableCommentsRanking = KnobConfig (

name = "Feed/DisableCommentsRanking ",
oncall = "owner_team_oncall " ,
level = 2, # Impact magnitude.
enabled = True)

export (disableCommentsRanking)

Listing 2 shows an example of using a knob in Python. To

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 611

use a knob, a developer must inspect the enabled field for the
knob:2 If the knob is disabled (the common case), the binary
follows its normal control flow; if the knob is enabled (e.g.,
during an emergency), the binary follows a work-reducing
control flow to reduce server resource consumption for every
request served.

Listing 2: Knob usage.

from configs import ConfigReader
disableCommentsRanking = ConfigReader (

"Feed/DisableCommentsRanking ")
comments = fetchComments ()
if (disableCommentsRanking .enabled == False)

comments .RankUsingModel ()
else # Knob enabled: do less work.

comments .RankChronologically ()

At Meta, knobs are not implemented haphazardly, but are
instead carefully planned for by product teams with target
resource savings set for different knob levels. Even so, the
flexibility and ease of knob definition has enabled some prod-
ucts to implement and manage hundreds of knobs. Usually
product teams choose the design of their knobs (i.e., server
side knobs or client side knobs) based on the product behavior
and the trade offs from controlling the demand at different
places. Generally, knobs are defined at product feature level
to stop the entire control flow across different surfaces.

Defcon knobs are added to both existing and new features.
At Meta, features are deployed gradually with server-side con-
trols and experiments. Meta’s deployment process requires
product engineers to have a single-server side configuration
to enable/disable their features. In Meta’s infrastructure, fea-
tures are typically implemented as separate RPCs and there-
fore there is strong isolation between the control flow of each
feature. For shared library code, product engineers have the
choice to degrade at the library level or at a finer-grained RPC
request level.

This process provides an advantage for developing knobs
as a product team can simply extend these feature controls
to check for Defcon configuration. Integrating knobs with
feature development and deployment processes has other ad-
vantages: Ease of running experiments to test a knob for
side-effects, measuring the capacity savings from disabling
a knob, and measuring the impact of a knob on users (Sec-
tion 3.4). User impact is then used to classify a knob into the
correct Defcon level (Section 3.5). Once a product engineer
is satisfied with a knob’s behavior, they will explicitly choose
to include it in the Defcon system.

To aid product teams in understanding the breadth and
behavior of the knobs they have defined, a browser-based
graphical user interface is provided to help developers under-
stand target level resource saving expectations, manage knob

2Knob configuration state is cached within memory on the server a binary
is running on and accessed either by a shared library or a sidecar binary,
typically requiring no more than microseconds to access.

metadata, visualize knob savings against the target expecta-
tions, and understand any user experience trade-offs (using a
measurement methodology we discuss later). In turn, emer-
gency responders use this user interface to understand Defcon
level savings and the associated impact of enabling knobs.

3.3 Knob Actuator Service
We believe it is important to have a highly reliable tool with
minimal dependencies to control Defcon, so that we can use
Defcon even when most other systems are unavailable. The
Knob Actuator Service is responsible for enabling or disabling
(actuating) sets of knobs. Knobs are grouped into three cate-
gories: (1) By service name, (2) by product name, and (3) by
feature name (such as “search,” “video,” “feed,” and so on).

The Knob Actuator Service also manages metadata
for knobs, stored in a geographically-replicated relational
(MySQL) database. Knob metadata includes: (1) The engi-
neering oncall responsible for the knob’s definition, (2) the
engineering team responsible for the knob’s usage, and (3)
a cache of recent resource and user experience test results
(discussed later in this section).

Finally, the Knob Actuator Service is responsible for chang-
ing the state of knobs. Knob state changes can be performed
for individual knobs or for sets of knobs grouped using one
of the three categories (service, product, or feature name).
State changes occur in seconds for server-side knobs and in a
couple of minutes for client-side knobs (due to the EMC pull
cycle duration mentioned before).

While state changes across sets of knobs are used dur-
ing site events that require additional capacity supply, state
changes for individual knobs are used for testing knob impact.
Knobs can be further selected for only a fraction of users
participating in controlled A/B test experiments (discussed in
the next sub-section).

At Meta, emergency responders receive notifications for
various overload scenarios (including increased demand, de-
creased capacity, etc.) for services. The emergency responders
use a Degradation Policy (defined in Section 3.5) to evaluate
if Defcon can and should be used to reduce the load. Once the
emergency responders decide on a course of action, they use
capacity savings data from recent tests (which are available in
a dashboard) to estimate what Defcon level should be enabled,
and use the Knob Actuator Service to enable Defcon knobs
to reduce the demand to the desired amount.

3.4 Knob Testing Framework
As an emergency response tool, we must test Defcon periodi-
cally to ensure its reliability and performance. Since Defcon
will incrementally degrade product features when enabled,
we go to great lengths to minimize its impact during testing.

Our strategy is to execute frequent, but small scale A/B tests
to get continuous signals for Defcon knob resource savings as

612 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

well as potential issues, and infrequent large-scale exercises to
validate these signals at scale and observe how the knobs for a
product, service, or feature (and downstream services) behave
when Defcon is enabled for all of the product’s, service’s, or
feature’s requests.

We classify production tests into two categories:
1. Small scale tests. A/B testing measuring user behavior

metrics helps us quantify the impact on users and products.
These tests are conducted across a product, but with a very
small user base, (e.g., 0.01–2%) of a population over a cer-
tain duration (e.g., 15 minutes to 36 hours). The main goals
from these tests are vaidating the knob set-up for the product,
measuring the impact from the knobs, and measure the sav-
ings on downstream services using TRU. During A/B testing,
we define four groups. One control group without any impact
from Defcon and three treatment groups with different Defcon
levels. We compare the resource consumption between the dif-
ferent groups with the control group as a baseline to measure
the impact from Defcon on the service and the downstream
services. To understand the impact of the Defcon knobs at a
more granular level, we also run A/B tests at a service level
(for any services that have knobs defined) and at a feature
level.

We run server-based tests for multi-tenant backend services
when per-user annotation is not propagated (e.g., for batch-
processing services or multi-tenant services, where requests
may belong to the system or several users simultaneously). In
this case, we randomly select a small number of hosts for a
particular service, and split these hosts in 4 groups, testing as
described above.

We compare host metrics with the control group and store
the results. The downside of this approach is that user experi-
ence may be momentarily inconsistent because consecutive
requests from the same user may be served by different hosts.
To minimise the user impact, we pick a negligible number of
hosts for this test and run it for 5–15 minutes only. We run
host-based tests weekly to always have fresh data and make
sure that results are consistent. If results are not consistent,
we adjust the number of randomly selected hosts. To make
sure that our results are statistically significant and reliable we
check that they match with empirical large scale test results
(discussed next).

2. Large scale tests. Since Defcon is an emergency tool,
we must test Defcon at scale to ensure its reliability and per-
formance. We execute a Defcon service test on 100% of users
quarterly to measure the resource savings at the product and
service level and the demand reduction on the downstream
services. Since during an emergency situation we may need
support from Defcon for multiple products at the same time,
we also execute combined degradation tests for multiple prod-
ucts together to measure the impact on Meta’s infrastructure.
During such tests, we enable Defcon knobs across products
at levels 3, 2 and 1 for a short time and we monitor behavior
similar to individual product tests.

3.5 Degradation Policy
Graceful feature degradation provides a trade-off between
resource savings and product behavior. When designing the
policy for when – and to what extent – to enable degradation,
we must understand the trade-off between capacity savings
from enabling a knob or collection of knobs and the user or
product impact that comes from doing so. Product teams are
responsible for defining key performance indicators that are
closely measured and monitored during tests. Infrastructure
teams provide a distributed tracing framework [19] to measure
resource savings not only on the product, service, or feature
where the knob is implemented, but also along the transitive
closure of services affected by the knob.

Meta implements a four-level Defcon policy scheme
whereby smaller-numbered levels correspond to higher
amounts of degradation. Levels can be applied across the
same features supported by the Knob Actuator Service (prod-
uct, service, and feature). To ground the policy in reality, care
has been taken to design each level around handling a specific
set of failure scenarios:

Level 4 (L4) is the default state: All knobs are disabled.

Level 3 (L3) is used for handling overload situations result-
ing from relatively small-scale load spikes such as those
seen during New Year’s Eve or sporting events like
World Cup. The Level 3 target savings is 5% of a prod-
uct’s overall demand.3

Level 2 (L2) is used for handling overload situation that arise
from full data center region failures. Target savings is
10% of a product’s overall demand (but can vary up
or down based on a product’s data center deployment
model).

Level 1 (L1) is used during rare emergency events such as
unforeseen global system outages. Target savings is 20%
of a product’s overall demand.

For setting target level savings, recall from Section 2.2
that Meta’s infrastructure is organized around a collection of
geographically-distributed data center failure domains, each
representing around 5–12% of the overall capacity, making
5–20% of savings to be a sweet spot for mitigating the risk of
cascading failures due to overload.

The Knob Definition Framework allows product developers
the freedom and flexibility to explore potential knob resource
savings and trade-offs in order to arrive at a portfolio of knobs
that attempt to maximize the resource savings while min-
imizing the potential impact to users. When setting these
level targets, service owners will translate demand reduction
numbers to whichever resource they bottleneck on, like CPU,

3Most front-end services at Meta have CPU utilization as the bounding
resource, and so target CPU savings is the most salient metric to focus on.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 613

memory, network. We rely on historical data for the amount of
demand increase typically seen during similar past scenarios.

Figure 4 illustrates the four-step policy that emergency re-
sponders follow when operating Defcon in production. Emer-
gency responders:

1. Analyze the state of the product resource demands and
potential Defcon knob resource supplies using a sys-
tem monitoring dashboard. The dashboard lists critical
system resource utilization metrics described in Degra-
dation Policy.

2. Decide if the situation can be mitigated by applying a
Degradation Policy. A degradation policy specifies the
resource and impact trade-offs associated with enabling
knobs at a particular level for a product.

3. Check the current state of Defcon and adjust it in accor-
dance with the desired Degradation Policy (e.g., enable
L2 knobs for a product).

4. Degrade fungible product features using a command line
interface (CLI). Continue at step 1, adjusting Defcon
level as necessary.

Figure 4: Emergency responders rely on a well-defined Degradation
Policy in order to engage Defcon effectively.

We next evaluate the efficacy and trade-offs associated with
operating Gratuit in a real-world large-scale environment.

4 Evaluation

At Meta, we have operated Defcon across three products –
Facebook, Instagram, and Messenger – for over three years.
Defcon has been used to avert or avoid many dozens of situ-
ations that would have otherwise led to resource exhaustion
and overload. We next evaluate Defcon to demonstrate its
efficacy, both during tests as well as during real-world events.

4.1 Measurement Methodology

We relied on four main sources of data for our analysis:4

1. A Real-time Monitoring System (RMS) for measuring
hardware counter statistics across the entire fleet of
servers at Meta to measure real-time demand for server
resources.

2. A Resource Utilization Metric (RUM) source of truth
data set for available server resource supply, measured
using load-test data. Supply metrics include available
request throughput, CPU MIPS, memory bandwidth, and
so on.

3. A Transitive Resource Utilization (TRU) system that
uses a distributed tracing framework to measure resource
changes across the transitive closure of services involved
in serving requests from a particular service.

4. A User Behavior Measurement (UBM) framework for
quantifying any user workload changes that occur during
a test.

Using these systems, we measure two system-level metrics
during testing: (1) The global savings in resource utilization
on the product, service, or feature under test using RMS; and
(2) the savings in resource utilization on back-end services
that receive traffic from the product, feature, or service under
test using a combination of RMS, RUM, and TRU.5

We rely on controlled UBM experiments in order to mea-
sure the non–system-level effects of Defcon in a statistically
significant manner. Requests to a product, service, or feature
under test are divided into two groups: A control group (group
A) and a test group (group B). Resource usage and user be-
havior is measured and then compared between group A and
group B. Tests are run on a small fraction of users (typically a
fraction of a percent) and over a long enough period to obtain
statistically-significant results (typically minutes to hours).

In addition, for large-scale tests that involve large collec-
tions of knobs, we utilize various data science approaches
to model each of our metrics both before a test (a forecast)
and after a test (a backcast). Through linear modeling and
time-series forecasting/backcasting, we construct a source-
of-truth signal during the test period. Resource savings are
subsequently computed by taking the percentage difference
between the real signal captured during the large-scale test
and the constructed source-of-truth.

As an example of this methodology, Figure 5 shows the
measured global request throughput for the Facebook prod-
uct before a product-level Defcon test. This experiment was
performed as the product was nearing its peak moment of

4Due to space constraints, we do not detail the design of these systems in
this paper.

5Whether to use RMS or RUM depends on the resource consumption to
measure.

614 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 5: An example of timeseries forecasting. The measured
global request throughput (QPS, y-axis) over time for the Facebook
product immediately prior to enabling Defcon. A raw signal is con-
verted to a smoothed signal and a forecast is generated from the
smoothed signal.

request throughput (i.e., the highest organic load that we can
test upon). Raw signal obtained prior to switching on Defcon
(“raw signal”) is first smoothed (“smoothed signal”) and sev-
eral time-series forecasting models are applied to obtain an
estimate of what the raw signal would have looked like if De-
fcon was not turned on. Examples include linear, exponential,
and Auto-Regressive Moving Average (ARMA) [28] models
that are fitted using sections of the test signal before and after
the Defcon degradation period.

Figure 6: An example of timeseries backcasting. Methodology is
similar to Figure 5.

Aside from the forecasting models, we also reference past
days’ signals in the steady state. The model which gives
the smallest Median Percentage Error (MAPE) [23] is then
chosen. Similarly, Figure 6 shows a time-series backcasting
method applied to the smoothed signal gathered when Defcon
is turned off. Note that the forecast and backcast use a some-
what conservative approach to ensure that measured savings
are not over-estimated and to factor in headroom for the spikes
observed in the raw signal. Finally, combining both the fore-
casted and backcasted signals (Figure 7), we derive a baseline
which tells us what the metric would have been under nor-
mal circumstances when Defcon is not enabled. Savings are
subsequently computed by taking the difference between the
actual signal gathered during a Defcon test and the baseline.

Figure 7: By combining forecasts and backcasts during a Defcon
test, we can construct a baseline to compare to the behavior when
Defcon is enabled during a test.

4.2 Individual Product Tests
To continuously validate Defcon savings and reliability, we
regularly perform A/B tests with a small percentage of users
(0.01%, 0.05% and 0.5% for Level 1, Level 2, and Level 3
experiment groups respectively). The user percentages are
set based on required population size of A/B test statistical
analysis. Figure 8 shows the results of A/B test applied across
different product areas. The y-axis shows the CPU resource
consumption (measured in relative MIPS) and each bar corre-
sponds to a group under test. As we expect, enabling lower
levels of knobs generally results in more resource savings.

Figure 8: Results for Defcon tests for different sets of knobs (Prod-
uct Areas) with different Defcon levels enabled. The y-axis plots
the percentage change in CPU resource consumption, MIPS. Lower
values indicate greater resource savings. Tests at each level are in-
clusive of higher levels (i.e., L1 tests also include L2 and L3 knobs).
Notice that, generally, L1 knobs have larger resource savings than
L2 knobs, and the same for L2 and L3. However, levels correspond
to impact and not necessarily savings, and so some products, such
as Storage, can achieve higher savings at lower levels of impact (L2
> L1).

Table 2 provides a detailed example of user impact metric
data measured using the UBM framework described in Sec-
tion 4.1 while testing at Level 1 for: (1) an individual knob,
(2) a collection of knobs for a feature, and (3) all the knobs
within all the features that make up a product. We observe

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 615

that degradation generally leads to relatively small user inter-
action changes, especially when compared to the alternative
of an overload event leading to a site-wide outage. We also
observe that enabling knobs can lead to user interaction shifts
since user behavior changes in response to feature availability.
For example, Video Watch Time at the Feature granularity
increases when Level 1 knobs are turned on, as users engage
in different ways to interact with a product.

Metric Name Knob Feature Product
User Interaction –1.82% –4.3% –5%
News Feed Usage –0.6% –1.1% –1.6%
Video Watch Time –0.6% +2.37% –0.93%
App Usage Time –0.36% –1.9% –11.0%

Table 2: Example UBM metrics when enabling Defcon Level 1 for
a selected Knob, Feature, and Product. User Interaction measures
high level user engagement metrics for an app, like the number of
comments, reactions, posts, and so on over the test interval. News
Feed Usage is a composite metric measuring feed views and feed
interaction time. Video Watch Time is a composite metric aggregat-
ing time spent watching videos, count of live viewers, engagement
with live videos, and so on. The Knob granularity is for an individual
knob defined for the product. The Feature granularity is the feature
that contains that individual knob and all other knobs that make up
the feature. The Product granularity is for the product that contains
that feature and all other features that make up the product.

4.3 Combined Product Tests

At Meta, we regularly run combined degradation tests for
multiple products. Figure 9 shows a combined Defcon test for
three products: Facebook, a multi-tenant asynchronous com-
pute platform (Async), and Instagram on 100% of traffic. The
main goal of these tests is to accurately measure the combined
transitive resource savings for shared backend services (here
we illustrate the savings for Memcache, an in-memory key–
value store [24]). As we can see, enabling Defcon across these
three products leads to a compounding resource reduction for
Memcache.

Of course, even when core product behavior remains un-
changed, users may not expect to see changes in product
features. At Meta, a user can submit a report when the user en-
counters something unexpected. Figure 10 shows user reports
for four products during a combined test. As the figure shows,
changing the features within products does not go unnoticed
by users, with users submitting higher than nominal reports
when Defcon is enabled. Note that this volume of reports –
while keeping core product functionality available – is much
preferred compared to fail-slow or overload conditions which
could be several orders of magnitude larger without Defcon
enabled.

Figure 9: An example of transitive resource changes on a multi-
tenant backend system (Memcache), measured in QPS (y-axis). Re-
quests are tagged according to which source of traffic sent the request:
Facebook, an asynchronous compute platform (Async) and Insta-
gram. We see that Facebook and Async contribute the most to the
reduction in overall QPS (All of the Above).

Figure 10: Number of reports submitted by users for different prod-
ucts during a combined product test.

4.4 Transitive Resource Savings

We next explore in more detail how transitive savings affect
dependent services. Figure 11 shows an example of the re-
source savings achieved on the Memcache service (the same
service from Figure 9) as measured only for the requests origi-
nating from the Feed product. Knobs of decreasing level were
enabled incrementally during the test and then removed later
in the test.

Note that knobs for the Feed product were only enabled
during the first half of the annotated test range, and while
other products participated in this test, using TRU, we were

616 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

able to observe the resource changes for only a single source
of requests. Crucially, this savings is a beneficial side-effect
of the reduction in workload from the front-end service and
not a result of knobs defined in the Memcache service.

Figure 11: Resource savings, measured in QPS on the y-axis, on the
Memcache service by enabling Defcon on upstream products, de-
spite the Memcache service having no knobs defined. Reducing the
request throughput to the Memcache service leads to corresponding
reductions in resource consumption for the service and its dependent
services.

Figure 12 shows an example of resource savings for TAO
(a social graph caching service [7]) when Defcon is enabled
across the three products under test. In addition to showing
another service that achieves savings despite not having any
knobs defined, it also shows an example of how resource
savings can remain relatively stable over long periods of time
(hours).

Figure 12: Another example of transitive resource savings on a so-
cial graph (TAO) service that has no knobs defined. We find resource
savings from Defcon to be stable over long periods of time (e.g.,
hours).

Figure 13 adds annotations to the results for TAO, showing
the distinct phases involved in a large-scale test. As we can
see, products enable knobs of decreasing level until reaching
Level 1, remain at Level 1 for a small period of time, and then
return to a disabled state. In this case, we can clearly see in
Phase III, IV, and V that most of the demand for the TAO
service comes from the Async product. We record insights

such as these as metadata for knobs and use the insights to
inform decisions during real-world site events.

Figure 13: A detailed timeline of events during a typical multi-
product Defcon test. This figure illustrates the complexity of testing
Defcon at-scale in a production environment.

Interestingly, we also find that enabling Defcon across mul-
tiple products can achieve more resource savings for a product
than enabling Defcon for that product alone. This occurs be-
cause some front-ends (such as the Facebook product) also
serve RPC requests from other products (such as the Insta-
gram product) so enabling Defcon on the other products re-
duces the resource consumption of the Facebook product.
Figure 14 shows such an interaction for the Facebook product
during a test when Defcon is applied to the asynchronous
compute product, Async. We can see that even after Facebook
knobs are disabled (around 17:50 UTC), Facebook still sees
reduced resource consumption compared to its baseline due
to reduced requests from the Async product.

Figure 14: An illustration of the inter-dependent resource savings
of knobs: Enabling knobs for the asynchronous compute product,
which sends requests to the Facebook product, leads to additive
savings compared to enabling knobs for the Facebook product alone.

4.5 Outage Simulation Testing
At Meta we also simulate the conditions posed by large-scale
outages such as natural disasters by redirecting traffic away
from data center regions in order to concentrate more traffic

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 617

on the remaining regions, akin to what could happen during a
fiber cut, hurricane, or power grid failure [33]. This reduces
the available resource supply, effectively simulating load spike
events such as New Year’s Eve or World Cup.

In Figure 15 we show the results of running a large-scale
test on the Facebook product through the Facebook product’s
peak moment of traffic. At the beginning of the test, we se-
quentially redirect traffic from multiple data center regions
(labeled C and A) in order to concentrate enough load on
the remaining regions. This operation continued until site
operators began to detect a small volume (measured in very
low parts per million of requests) of failed requests due to
overload, whereupon Defcon was enabled at Level 2.

Figure 15: We regularly run tests to test the efficacy of Defcon
under large-scale outages. In this test, we start by redirecting prod-
uct traffic away from two data center regions in order to reduce
the amount of server resource supply for the same amount of user
demand, thereby increasing the resource utilization of the remainder
of the fleet. We then enable Defcon in order to validate resource
savings when products are in a highly-loaded state.

Moreover, after enabling Defcon at Level 2, we continued
to redirect traffic until the second data center region was com-
pletely drained of traffic. This example illustrates how Defcon
can effectively avert overload conditions that could ultimately
lead to fail-slow behavior and wide-spread cascading failures.
Tests such as this also provide valuable validation of the mea-
sured resource savings in a realistic environment: At-scale, at
peak, and using the real production workload.

To illustrate the importance of at-scale testing, in Figure 16,
we show an example of measured resource savings on a sepa-
rate day, during a similar time, using the same knobs as the
previous example. We can see that while the mean resource
savings during this test is similar to the real-world increased
load simulation, it is not exactly the same. A major reason for
this is cold cache effects from traffic being redirected among
data centers, a realistic concern during real-world outages.

To illustrate the generality of our approach, Figures 17–20
show similar results across four different products – Feed,
TAO, Memcache, and Graph Search – during a different two–
data-center region drain test at peak levels of traffic with
L2 knobs enabled. The y-axes of these figures have been
normalized to compare the relative sensitivity to knobs across
different products, with the measured savings corresponding

Figure 16: We find that resource savings (measured in MIPS on the
y-axis) are load-dependent. In this example, having warm caches
increases the amount of resource savings (corresponding to lower
values of MIPS) compared to when outages are simulated (cf. Fig-
ure 15).

to 3.2% for Feed, 2% for TAO, 8% for Memcache, and 6%
for Graph Search.

Notice that while different products achieve different levels
of savings (these are reflections of their own target savings
for L2 knobs), their response to enabling Defcon can vary due
to caching effects and workload pattern changes in response
to enabling knobs. The figures also illustrate how different
products can customize their demand metrics used to measure
and track their target Defcon savings (e.g., by using CPU
Cycles or Power consumption).

Figure 17: Results for L2 knobs enabled during a two–data-center
region drain test for the Feed product.

4.6 Real-World Large-Scale Outage
Since Defcon is an emergency tool used during large-scale
outages, we must ensure that unknown unknowns are mini-
mized. Based on the different degradation tests that we exe-
cute for products, and by measuring the impact on users and
downstream services, we work closely with Site Reliability
Engineers (SREs) to come up with degradation policies and
guidelines for the scenarios where Defcon can help. During
a real-world outage, SREs work with a lead emergency re-
sponder, the Incident Manager (IM), who decides on which
options from the Degradation Policy to pursue to mitigate an
outage.

618 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 18: Results for L2 knobs enabled during a two–data-center
region drain test for the TAO product.

Figure 19: Results for L2 knobs enabled during a two–data-center
region drain test for the Memcache product.

Figure 1 from Section 1, showed one such outage where
the IM applied the principles listed in the Degradation Policy
to avert a site-wide overload event and outage (please refer
to Section 1 for an detailed explanation). During this event,
the IM made the call to first engage L3 knobs for the product
before eventually engaging L2 knobs. The fact that different
levels of knobs – with different amounts of impact – existed,
provided the IM with a spectrum of options to pursue in order
to eventually arrive at the right degradation trade-off in real-
time.

To ensure that we could mitigate this real-world event
smoothly, we needed to ensure that the degradation policy
discussed in Section 3.5 has been practiced by SREs and the
IM. To make sure all the responding members are trained on
using the policy, we frequently execute mock fire drills where
we come up with potential scenarios, and role play the neces-
sary steps to mitigate the risks. We have found such testing
to be largely beneficial in ensuring emergency responders are
prepared when disasters strike.

Figure 20: Results for L2 knobs enabled during a two–data-center
region drain test for the Graph Search product.

5 Lessons Learned

Over the past several years of using Defcon, we have learned
several key lessons to consider for graceful feature degrada-
tion:

1. Understand business goals and customer perception to
determine what to degrade.

Prior to implementing knobs, product engineers first decide
on which features to degrade. Core product functionality must
remain intact, but among the non-core features, we find that
there exists a spectrum of resource savings compared to user
impact. For this reason, product designers perform A/B tests
(cf. Table 2) and make a decision about which knobs to keep
and which to pass on. While this process requires human
interaction, the Knob Definition Framework and Knob Testing
Framework allow developers to quickly explore the knob
definition space in order to determine the set of knobs that
provide the most resource savings for the least user impact.

2. Leveraging graceful degradation during emergencies
requires regular testing and an easy-to-consume under-
standing of the business and customer impact.

To provide an easy-to-consume understanding for emer-
gency responders to use in the heat of the moment, product
engineers provide a high-level functional summary of what
is affected at each Defcon level. Using this summary, site
incident managers can quickly determine whether enabling
knobs for a product at a given level is an adequate response.
Additionally, this summary benefits the public relations and
communications team, who may need to respond to inquiries
from customers or the media about product feature changes.

3. Degradation systems require high and regular commit-
ment from product teams.

To motivate product engineers to work on Defcon knobs,
we built mechanisms to provide recognition for investing in
this technique for product reliability. We organize monthly
Defcon meetings per product to showcase each team’s work
to their organizational leader (e.g., a vice president). We also

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 619

leverage the concept of Defcon champions. A Defcon cham-
pion is someone who is passionate about reliability that can
drive Defcon throughout the organization. Defcon champions
identify and recruit people in their organization to work on
Defcon.

4. Knobs, once built, need to be regularly maintained.
Implementing and maintaining knobs requires engineering

effort. Identifying candidate features involves coordination
with product developers to run experiments to understand
the capacity savings and user impact of knobs. Developers,
however, have provided feedback that controlling and testing
knobs using a standardized framework has helped them to
rapidly develop and deploy knobs. While automated systems
measure and report knob behavior, regressions in capacity
savings and user impact require manual investigation. We
intend to explore automating this area of knob maintenance
in future work.

5. Low dependence and high availability actuation.
To ensure that Defcon is ready to be deployed during disas-

ters, we iterated on improving our operations and operational
availability. As an example, we developed a CLI with minimal
dependencies on other systems in our infrastructure to make
sure that Defcon is ready to be enabled during partial failures
and disasters. Having a low dependence and highly available
mechanism for knob actuation is critical for facing real-world
disasters.

6. Developer experience and efficiency are key.
Before Defcon existed, there were scattered independent

efforts to try to achieve similar goals. By unifying these dis-
parate efforts and providing tools to support teams in a struc-
tured manner, we were able to increase the coverage of Defcon
and simplify knob maintenance. Since Defcon is built on top
of existing tools at Meta, such as Configerator [32], develop-
ers do not need to learn new technologies to implement new
Defcon knobs.

Safety is handled by ensuring that features are isolated at
the RPC layer (a design practice at Meta) and thus knobs
typically encapsulate control flow between RPC callers and
callees. While fine-grained degradation within a binary serv-
ing an RPC request is possible, safety and consistency must
be validated by product developers during initial knob testing.
We note that such validation is similar to what developers
must do when routinely modifying binary control flow (i.e.,
not for the purpose of Defcon knobs) – a common practice
at Meta. To aid developers in knob definition, we provide
guidance on how to properly implement and maintain knobs,
as well as provide developers with a Knob Testing Framework
to measure Defcon savings and track regressions.

The main challenge for developers in maintaining Defcon
knobs is capacity savings regression tracking. Systems at
Meta are constantly evolving, so the impact of existing knobs
can drift over time. Because of this, we make sure that each

team tests Defcon savings at a limited scale in production at
least once every three months (an interval chosen to balance
knob impact with the need to understand behavior changes)
using the Knob Testing Framework. We are actively exploring
ways to test knobs more frequently at lower impact.

6 Conclusion

We presented Defcon, a system for graceful feature degrada-
tion to prevent overload in large-scale Internet services. We
hope that by characterizing the overload problem, the corre-
sponding solution space, and our approach to graceful feature
degradation, we will spark discussion within the research
community about how best to tolerate overload-induced sys-
tem behavior and advance reliable and available distributed
system design.

620 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Trustworthy Graceful Degradation: Fault Tol-
erance across Service Boundaries. https:
//www.usenix .org/conference/srecon21/
presentation/rodgers-prior , 2021.

[2] Tarek F. Abdelzaher and Nina Bhatti. Web Con-
tent Adaptation to Improve Server Overload Behav-
ior. Computer Networks: The International Jour-
nal of Computer and Telecommunications Networking,
31(11–16):1563–1577, may 1999.

[3] Satyajeet Singh Ahuja et al. Network entitlement:
contract-based network sharing with agility and SLO
guarantees. In SIGCOMM’22, 2022.

[4] S. Almukhaizim, T. Verdel, and Y. Makris. Cost-
effective graceful degradation in speculative processor
subsystems: the branch prediction case. In Proceed-
ings 21st International Conference on Computer Design,
pages 194–197, 2003.

[5] Matteo Maria Aurizzi, Tommaso Rossi, Emanuele Raso,
Ludovico Funari, and Ernestina Cianca. An SDN-Based
Traffic Handover Control Procedure and SGD Manage-
ment Logic for EHF Satellite Networks. Computer
Networks: The International Journal of Computer and
Telecommunications Networking, 196(C), sep 2021.

[6] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko,
and Timothy Zhu. Metastable Failures in Distributed
Systems. HotOS ’21, page 221–227, 2021.

[7] Nathan Bronson, Zachary Amsden, George Cabrera III,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. Tao: Facebook’s distributed
data store for the social graph. USENIX ATC, 2013.

[8] Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Anto-
niu, and María S. Pérez. Harmony: Towards Automated
Self-Adaptive Consistency in Cloud Storage. In 2012
IEEE International Conference on Cluster Computing,
pages 293–301, 2012.

[9] Google Cloud. Infrastructure Design for Availability
and Resilience. https://services .google.com/
fh/files/misc/infrastructure_design_for_
availability_and_resilience_wp .pdf , 2020.

[10] Shuai Ding, Sreenivas Gollapudi, Samuel Ieong, Krish-
naram Kenthapadi, and Alexandros Ntoulas. Indexing
Strategies for Graceful Degradation of Search Quality.
In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’11, page 575–584, 2011.

[11] Google Site Reliability Engineering. Addressing Cas-
cading Failures: Load Shedding and Graceful Degrada-
tion. https://sre .google/sre-book/addressing-
cascading-failures/#xref_cascading-
failure_load-shed-graceful-degredation ,
2019.

[12] Haryadi S. Gunawi et al. Fail-Slow at Scale: Evidence
of Hardware Performance Faults in Large Production
Systems. In FAST’18, 2018.

[13] M.P. Herlihy and J.M. Wing. Specifying graceful degra-
dation. IEEE Transactions on Parallel and Distributed
Systems, 2(1):93–104, 1991.

[14] Hideaki Hibino, Kenichi Kourai, and Shigeru. Differ-
ence of Degradation Schemes among Operating Systems
— Experimental analysis for web application servers —.
In Proceedings of DSN 2005 Workshop on Dependable
Software - Tools and Methods, pages 172–179, 2005.

[15] David Ke Hong, Qi Alfred Chen, and Z. Morley Mao.
An Initial Investigation of Protocol Customization. In
Proceedings of the 2017 Workshop on Forming an
Ecosystem Around Software Transformation, FEAST
’17, 2017.

[16] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko.
Metastable Failures in the Wild. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 73–90, 2022.

[17] Lin Huang, I-Hong Hou, Sachin Sapatnekar, and Jiang
Hu. Graceful Degradation of Low-Criticality Tasks in
Multiprocessor Dual-Criticality Systems. pages 159–
169, 10 2018.

[18] Xiaofan Jiang, Jay Taneja, Jorge Ortiz, Arsalan Tavakoli,
Prabal Dutta, Jaein Jeong, David Culler, Philip Levis,
and Scott Shenker. An Architecture for Energy Manage-
ment in Wireless Sensor Networks. SIGBED Rev., 4(3),
jul 2007.

[19] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison
Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,
Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun
Song. Canopy: An end-to-end performance tracing and
analysis system. SOSP, 2017.

[20] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and
Francisco Hernández-Rodriguez. Brownout: Building
More Robust Cloud Applications. In Proceedings of the
36th International Conference on Software Engineering,
ICSE 2014, page 700–711, 2014.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 621

https://www.usenix.org/conference/srecon21/presentation/rodgers-prior
https://www.usenix.org/conference/srecon21/presentation/rodgers-prior
https://www.usenix.org/conference/srecon21/presentation/rodgers-prior
https://services.google.com/fh/files/misc/infrastructure_design_for_availability_and_resilience_wp.pdf
https://services.google.com/fh/files/misc/infrastructure_design_for_availability_and_resilience_wp.pdf
https://services.google.com/fh/files/misc/infrastructure_design_for_availability_and_resilience_wp.pdf
https://sre.google/sre-book/addressing-cascading-failures/#xref_cascading-failure_load-shed-graceful-degredation
https://sre.google/sre-book/addressing-cascading-failures/#xref_cascading-failure_load-shed-graceful-degredation
https://sre.google/sre-book/addressing-cascading-failures/#xref_cascading-failure_load-shed-graceful-degredation

[21] HyunJong Lee, Shadi Noghabi, Brian Noble, Matthew
Furlong, and Landon P. Cox. BumbleBee: Application-
Aware Adaptation for Edge-Cloud Orchestration. In
2022 IEEE/ACM 7th Symposium on Edge Computing
(SEC), 2022.

[22] Jingqiang Lin, Bo Luo, Jiwu Jing, and Xiaokun Zhang.
GRADE: Graceful Degradation in Byzantine Quorum
Systems. In 2012 IEEE 31st Symposium on Reliable
Distributed Systems, pages 171–180, 2012.

[23] Spyros Makridakis. Accuracy measures: theoretical and
practical concerns. International Journal of Forecasting,
1993.

[24] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry Li, Ryan McEl-
roy, Michael Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkat Venkataramani. Scal-
ing memcache at facebook. NSDI, 2013.

[25] Alessandro Vittorio Papadopoulos, Jakub Krzywda, Erik
Elmroth, and Martina Maggio. Power-Aware Cloud
Brownout: Response Time and Power Consumption
Control. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), 2017.

[26] Jeremy Philippe, Noel De Palma, Fabienne Boyer, and
et Olivier Gruber. Self-adaptation of Service Level in
Distributed Systems. Software: Practice and Experi-
ence, 40(3):259–283, 2010.

[27] Yasushi Saito, Brian N. Bershad, and Henry M. Levy.
Manageability, Availability, and Performance in Porcu-
pine: A Highly Scalable, Cluster-Based Mail Service.
ACM Trans. Comput. Syst., 18(3):298, aug 2000.

[28] Björn Schelter, M. Winterhalder, and J. Timmer. Hand-
book of Time Series Analysis: Introduction and
Overview, chapter 1, pages 1–4. 2006.

[29] Mohammad Shahrad, Cristian Klein, Liang Zheng,
Mung Chiang, Erik Elmroth, and David Wentzlaff. In-
centivizing Self-Capping to Increase Cloud Utilization.
In Proceedings of the 2017 Symposium on Cloud Com-
puting, SoCC ’17, page 52–65, 2017.

[30] Mohammad Shahrad and David Wentzlaff. Availability
Knob: Flexible User-Defined Availability in the Cloud.
In Proceedings of the Seventh ACM Symposium on
Cloud Computing, SoCC ’16, page 42–56, 2016.

[31] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Im-
proving Storage System Availability with D-GRAID.
ACM Trans. Storage, 1(2):133–170, may 2005.

[32] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat,
Akshay Chander, Zhe Wen, Aravind Narayanan, Patrick
Dowell, and Robert Karl. Holistic configuration man-
agement at facebook. SOSP, 2015.

[33] Kaushik Veeraraghavan, Justin Meza, Sankar-
alingam Panneerselvam Scott Michelson, Alex Gyori,
David Chou, Sonia Margulis, Daniel Obenshain, Ashish
Shah, Yee Jiun Song, and Tianyin Xu. Maelstrom:
Mitigating datacenter-level disasters by draining
interdependent traffic safely and efficiently. OSDI,
2018.

[34] Jagannadh Vempati, Ram Dantu, Syed Badruddoja, and
Mark Thompson. Adaptive and Predictive SDN Control
During DDoS Attacks. In 2020 IEEE International
Conference on Intelligence and Security Informatics
(ISI), pages 1–6, 2020.

[35] Julien Verlaguet and Alok Menghrajani. Hack:
a new programming language for hhvm.
https://engineering.fb.com/2014/03/20/developer-
tools/hack-a-new-programming-language-for-hhvm/,
2014.

[36] J. Robert von Behren, Eric A. Brewer, Nikita Borisov,
Michael Chen, Matt Welsh, Josh MacDonald, Jeremy
Lau, Steve Gribble, and David Culler. Ninja: A Frame-
work for Network Services. In 2002 USENIX Annual
Technical Conference (USENIX ATC 02), June 2002.

[37] Eugene Wiehahn and John Walker. Target Group
Load Shedding for Application Load Balancer.
https://aws .amazon.com/blogs/networking-
and-content-delivery/target-group-load-
shedding-for-application-load-balancer ,
2021.

[38] David Yanacek. Using load shedding to avoid overload.
https://aws .amazon.com/builders-library/
using-load-shedding-to-avoid-overload , 2020.

[39] Lidong Zhou, Vijayan Prabhakaran, Venugopalan Ra-
masubramanian, Roy Levin, and Chandramohan A.
Thekkath. Graceful Degradation via Versions: Spec-
ifications and Implementations. In Proceedings of the
Twenty-Sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’07, page 264–273,
2007.

622 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/blogs/networking-and-content-delivery/target-group-load-shedding-for-application-load-balancer
https://aws.amazon.com/blogs/networking-and-content-delivery/target-group-load-shedding-for-application-load-balancer
https://aws.amazon.com/blogs/networking-and-content-delivery/target-group-load-shedding-for-application-load-balancer
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload

	Introduction
	Background
	Data Center Capacity Management
	
	
	Graceful Feature Degradation

	Defcon
	

	Evaluation
	

	Lessons Learned
	Conclusion

