
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Honeycomb: Secure and Efficient GPU Executions
via Static Validation

Haohui Mai, PrivacyCore Inc.; Jiacheng Zhao, SKLP, Institute of Computing Technology,
CAS; Zhongguancun Laboratory; and UCAS; Hongren Zheng, IIIS, Tsinghua University;
Yiyang Zhao, SKLP, Institute of Computing Technology, CAS; and UCAS; Zibin Liu, BUPT;
Mingyu Gao, IIIS, Tsinghua University; Cong Wang, IDEA Shenzhen; Huimin Cui, SKLP,
Institute of Computing Technology, CAS; and UCAS; Xiaobing Feng, SKLP, Institute of

Computing Technology, CAS; Zhongguancun Laboratory; and UCAS;
Christos Kozyrakis, PrivacyCore Inc. and Stanford

https://www.usenix.org/conference/osdi23/presentation/mai

Honeycomb: Secure and Efficient GPU Executions via Static Validation

Haohui Mai ˇ “(∗ Jiacheng Zhao1,4,7† Hongren Zheng2 Yiyang Zhao1,7 Zibin Liu6

Mingyu Gao2 Cong Wang5 Huimin Cui1,7 Xiaobing Feng1,4,7 Christos Kozyrakis ˇ “(,3

SKLP, Institute of Computing Technology, CAS1 PrivacyCore Inc. ˇ “(IIIS, Tsinghua University2

Stanford3 Zhongguancun Laboratory4 IDEA Shenzhen5 BUPT6 UCAS7

Abstract
Graphics Processing Units (GPUs) unlock emerging use

cases like large language models and autonomous driving.
They process a large amount of sensitive data, where security
is of critical importance. GPU Trusted Execution Environ-
ments (TEEs) generally provide security to GPU applications
with modest overheads. Recent proposals for GPU TEEs are
promising, but many of them require hardware changes that
have a long lead time to deploy in production environments.

This paper presents Honeycomb, a software-based, secure
and efficient TEE for GPU applications. The key idea of Hon-
eycomb is to leverage static analysis to validate the security
of GPU applications at load time. Co-designing with the CPU
TEE, as well as adding OS and driver support, Honeycomb
is able to remove both the OS and the driver from the trusted
computing base (TCB). Validation also ensures that all ap-
plications inside the system are secure, enabling a concise
and secure approach to exchange data in plaintext via shared
device memory on the GPU.

We have prototyped Honeycomb targeting the AMD
RX6900XT GPU. Honeycomb is evaluated on five repre-
sentative benchmarks and 23 applications in total, covering
workloads of high performance computing, deep learning,
and image processing. The results show that Honeycomb is
both practical and efficient to secure real-world GPU applica-
tions. Validating applications to run on Honeycomb requires
modest developer efforts. The TCB is 18× smaller than the
Linux-based systems. Secure inter-process communication is
up to 529× faster. Moreover, running large language model
workloads like BERT and NanoGPT has ∼2% overheads.

1 Introduction

Innovations in hardware accelerators and deep neural net-
works continue to enable personalized experiences for our
physical and digital presences, reshaping areas ranging from

∗Haohui Mai is also affiliated with Hengmuxing Technologies.
†Jiacheng Zhao is the corresponding author.

smart homes [34], virtual reality [85], to personalized cancer
medicines [22]. Offering such intimate experiences heavily
relies on large amounts of valuable and sensitive user data,
which requires high levels of security and privacy support on
hardware accelerators such as GPUs.

Trusted Execution Environments (TEEs) [4] encapsulate
applications into enclaves to enhance security. TEEs enforce
strong isolation among enclaves and the untrusted host envi-
ronments, so that applications inside the enclaves can process
plaintext data securely at native speed. For each enclave, all
traffic that crosses its boundaries is encrypted to maintain
confidentiality and integrity. Recent prototypes [28,44,45,83]
realize GPU TEEs with modest overheads, via serializing
secure access to the GPU [28], augmenting the GPU hard-
ware [83], customizing the I/O bus [44], or leveraging the
sharing capabilities in device drivers [45].

This paper explores an alternative approach – using static
analysis to validate that mutually distrusted GPU applications
are confined to their enclaves. Intuitively, a validator inspects
the binary code of GPU kernel functions (GPU kernels for
short) to show that all possible execution traces maintain the
confidentiality and integrity of the system, therefore these
applications can safely share the GPU. This approach offers
three benefits. First, it can complement the hardware limita-
tions of existing GPUs. For example, low-cost GPUs such
as the VC4 used by Raspberry Pi allow arbitrary writes to
memory due to the lack of corresponding MMUs [16]. A val-
idator can detect insecure behaviors and thwart the attacks by
running standard static analysis such as def-use analysis and
range checks on the GPU kernels. Moreover, advanced static
analysis [59] might mitigate new attacks [19, 21] much faster
compared to deploying new hardware supports in production.

The second benefit is that it allows more efficient imple-
mentations of current GPU TEEs. Shifting the runtime checks
to load time removes them from the critical paths. Moreover,
validating that applications that always have disjoint contexts
might save the TEE implementation from flushing architec-
tural contexts, including TLBs and buffer queues during every
context switch [28], thus improving performances.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 155

Finally, validating every application provides a system-
wide security invariant asserting that all applications are
“good citizens”. The security invariant enables secure and
efficient communication among enclaves. Real-world appli-
cations such as autonomous driving [89] and video analyt-
ics [66, 70] process data in multiple-stage pipelines. Separat-
ing each stage of the pipeline into different enclaves and con-
necting them using Inter-Process Communication (IPC) not
only increases modularity and robustness, but also enables as-
sembling the pipelines using mutually distrusted components
from multiple vendors [63, 74]. Current GPU TEEs focus
on strengthening isolation, for example, enforcing exclusive
ownerships of GPU device memory [83]. Therefore two mu-
tually distrusted enclaves need to tunnel the data through an
encrypted shared buffer on the host memory for IPC. The
overheads are prohibitive for production applications. For
example, the GPUs on an autonomous vehicle process up
to 50 GB/s of uncompressed video streams to make timely
driving decisions [69]. Copying 50 GB/s of data to the host
already takes up 30∼40% of the total memory bandwidth
of a commodity, high-end AMD Zen3 server, let alone the
overheads of encrypting/decrypting the data. The capability
of exchanging plaintext data directly in GPU reduces the
overheads drastically, thus enabling real-world applications
to migrate towards a more modular and robust architecture.

This paper presents the design and implementation of Hon-
eycomb, a software-based, secure and efficient TEE for GPU
applications. Honeycomb runs multiple mutually distrusted
applications on the same GPU, and facilitates efficient and se-
cure data exchange between applications. It supports common
GPU workloads from simulations of molecular dynamics to
training and inference of neural networks. All these capabil-
ities of Honeycomb are built upon the idea of using static
analysis to confine the behaviors of GPU applications.

Honeycomb faces three challenges to realize the three ben-
efits and to provide a complete, real-world solution for GPU
TEEs. First, it must balance the trade-offs between the ca-
pabilities and the complexities of the validator. A validator
equipped with theorem provers gains their power, but then
Honeycomb must include the theorem provers in the TCB,
which is complex (e.g., Z3 4.12.2 has ∼525 K lines of code)
and occasionally error-prone [77]. On the other hand, a naïve
validator might be insufficient to validate common security
checks at load time, requiring inserting extra runtime checks
that sit squarely on the performance critical paths.

Second, Honeycomb must minimize the end-to-end TCB
to provide high confidence in security. The software/hardware
stack of GPU applications is quite complex. For example, the
compiler toolchain and the driver for the AMD RX6900XT
GPU each consist of two million lines of code. Defects and
vulnerabilities in these components are inevitable [23, 25, 26],
but they should not compromise the security of Honeycomb.

Finally, Honeycomb must provide system-level support for
secure and efficient IPC. The aforementioned plaintext IPC

among GPU enclaves can only be securely implemented if
the data copies are cautiously initialized by the Honeycomb
system and from/to strictly protected memory regions.

Honeycomb addresses the above challenges with three key
techniques. First, the validator of Honeycomb performs static
analysis of GPU kernels directly on binaries. It decodes the
instructions of the GPU kernels to reconstruct the control and
data flows. It models the memory access patterns using scalar
evolution [6] and polyhedral models [14]. Our evaluation
shows that the approach is effective to validate that the ma-
jority of memory accesses in GPU kernels are safe, because
real-world GPU kernels tend to be well-optimized, having
highly regular control flow structures and memory access pat-
terns. The few remaining cases can be handled by inserting
runtime checks, whose latencies are also well tolerated by the
GPU memory hierarchy (§5).

Second, Honeycomb leverages hardware isolation mech-
anisms, and uses security monitors [54, 79, 90] to validate
interactions in the system, so that it can minimize the trust on
the software/hardware stack. Honeycomb launches applica-
tions inside CPU TEEs powered by AMD SEV-SNP [4]. The
validator directly parses the GPU binaries to remove the com-
piler toolchain from the TCB. To remove both the user-space
and kernel-space GPU drivers from the TCB, Honeycomb
uses two security monitors to intercept and regulate all traf-
fic between the applications and the GPU: (1) a Secure VM
Service Module (SVSM) [4] running inside the application
enclave, which enforces security policies at the application
level (e.g., the application only launches validated kernels),
and (2) a security monitor running inside a sandboxing hy-
pervisor of the GPU, which regulates the behaviors of the
GPU driver (e.g., the driver should never map a private mem-
ory page into two applications). Additionally, Honeycomb
secures the data transfer between the CPU and the GPU to
protect the confidentiality and integrity of the data (§6).

For the final challenge, Honeycomb reserves dedicated re-
gions of the virtual address space for secure IPC to exchange
plaintext data. Particularly, Honeycomb divides the virtual
address space of each application into four regions: protected,
read-only, read-write, and private. The validator ensures that
application GPU kernels can only modify the private region.
Putting the metadata and the receiving buffers into the pro-
tected and read-only regions prevents user applications from
tampering with the IPC, reducing IPC in Honeycomb to copy-
ing plaintext data within the device memory (§7).

We have ported five representative benchmark suites, in-
cluding the SpecACCEL 1.2 benchmark suites [76], inference
applications of the ResNet18 neural network model [37] and
the BERT language model [29], an application that trains GPT
language models [48], and an image processing application
that performs Canny edge detection [20], i.e., 23 applica-
tions in total. We have evaluated them on a server equipped
with two AMD EPYC 7443 24-core processors and an AMD
RX6900XT GPU. The results are promising. The TCB is

156 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

18× smaller than the Linux-based systems. A concise val-
idator is sufficient to statically verify the security of large
parts of GPU applications. Validating inference workloads
on neural networks like ResNet18 and BERT requires adding
zero runtime checks into the GPU kernels. Large language
model workloads like BERT and NanoGPT have ∼ 2% run-
time overheads. IPC in Honeycomb is up to 529× faster than
exchanging data using an encrypted, shared buffer on the host.

This paper makes the following contributions:

• The use of static analysis on GPU kernels to confine
the behaviors of GPU applications to improve security.
Our evaluations on five representative benchmark suites
show that the analysis is both practical and effective to
determine whether real-world GPU kernels are safe at
load time with minimal additional runtime checks.

• The design and the implementation of a lightweight,
end-to-end secure execution environment for GPU appli-
cations based on static validation.

• An IPC primitive that enables secure and efficient com-
munications between GPU applications. The co-design
of static analysis and OS support leads to a highly con-
cise implementation.

2 Background

To understand the design of Honeycomb, it is important to first
review the architectures and the programming interfaces of
GPUs, as well as the basic concepts of polyhedral analysis [14,
35] used in this paper.

Architectures and programming interfaces of commodity
GPUs. Modern GPUs offer the single instruction, multiple
thread (SIMT) programming model to the applications. To
run a workload, an application submits a launch request to
the command queue of the GPU. The request specifies the
binary function (i.e., GPU kernel), its arguments, the number
of threads, and optionally, the size of a user-controllable, on-
die high-speed scratchpad (i.e., shared memory) to perform
the workload. Threads are organized into grids and blocks
uniformly. Each grid consists of the same number of blocks,
and each block consists of the same number of threads. Each
thread within the same block has its own vector registers but
shares access to the shared memory. The programming model
provides a conceptual view where each thread executes the
same instruction based on the values of its own registers. To
achieve parallelization, each thread loads the inputs into its
own registers and computes the outputs in parallel. Figure 1
presents an example of filling a region of memory to a specific
value under the SIMT model.

The hardware architecture of GPUs closely matches the
SIMT model above. A typical GPU consists of thousands of
processing elements (PE) that are grouped into a three-level

hierarchy. The lowest level is called a warp, consisting of 32 or
64 logical PEs executed in lock-step. The micro-architecture
(e.g., AMD GCN) might introduce parallel scalar units to per-
form uniform computation within a warp, or pipeline the com-
putations on physical PEs to hide execution latency. Warps
are further grouped into Compute Units (CU). A CU consists
of a pool of vector registers and shared memory. Finally, a
single GPU packages multiple CUs on the same die.

The hardware scheduler multiplexes the hardware re-
sources across applications. The minimal scheduling unit
is a warp. It always schedules all warps of a block within the
same CU, therefore all threads within a block divide the vec-
tor register pool and share the same allocated shared memory
inside the CU. The scheduler continuously schedules all the
blocks and grids until the execution is completed.

The GPU driver creates a virtual address space for each
GPU application. It allocates buffers for arguments and com-
mand queues out of the Graphics Translation Table (GTT)
memory from the host. The buffers are mapped into the virtual
address space on the GPU, from which the GPU kernels read
the arguments and the layouts of grids and blocks directly.

AMD SEV-SNP. AMD SEV-SNP [4] (Secure Encrypted
Virtualization-Secure Nested Paging) offers enhanced secu-
rity features at the hardware level for Virtual Machines (VMs)
running on an untrusted cloud system hypervisor. Similar to
other TEEs, SEV-SNP supports remote attestation as well
as both data confidentiality and integrity guarantees for the
application VMs against untrusted host hypervisors. A dedi-
cated hardware engine in the memory controller encrypts data
before sending them to the off-chip main memory. SEV-SNP
also tracks the ownership of each physical page with a Re-
verse Map Table (RMP) so that only the owner can write to a
memory region. It further validates the page mapping to pre-
vent malicious remapping of a single page to multiple owners.
In such ways, it is able to alleviate typical data corruption,
replay, memory aliasing, and memory remapping attacks.

In addition, SEV-SNP enables tagging each physical page
with Virtual Memory Privilege Levels (VMPLs). It is similar
to Ring 0-3 in the x86 architecture but for TEE VMs. One use
case of VMPL is to implement Secure VM Service Module
(SVSM). SVSM runs at VMPL0 and the guest operating
system runs at VMPL1. SVSM can intercept syscalls and
memory operations and serve as a security monitor.

Polyhedral model. The polyhedral model has been widely
used in automatic parallelization and optimization of GPU
programs [8, 14, 92]. Conceptually it represents each mem-
ory access as an affine expression (i.e. a linear combination)
over an ordered set of loop variables. Analyzing the effects of
memory access, such as aliasing and ranges, reduces to solv-
ing inequalities of integer variables. The polyhedral model
works well with GPU kernels because they implicitly loop
over the grids and the blocks, and performant GPU kernels
have regular memory access patterns.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 157

More concretely, an iteration vector I =(i0, i1, . . . , in)∈Ds

records the values of loop variables i0, . . ., in for an instruction
s. The domain Ds is called the iteration domain. Note that
the iterator vector usually includes the grid index (gid) and
the local thread index (lid) for instructions in GPU kernels.
An access function As (w.r.t. instruction s) takes an iterator
vector as input and outputs the actual memory address.

Note that when As is an affine function and Ds is an affine
space, all loops in I have fixed steps. For simplicity, we denote
an access function as a vector with each element represent-
ing the coefficients of the corresponding dimension of the
iteration vector. The dot product of the access function and
the iteration vector is the actual memory address. We also
introduce an extra dimension which always has the value 1 at
the end of the iteration vector so that the access function can
represent constant offsets in a uniform way.

Figure 2 shows the access functions of the kernel in Fig-
ure 1, a kernel filling a range of memory with a value. Affine
operations on the values directly translate to affine operations
on the vector forms of the corresponding access functions
(e.g., A5 = dim ·A3 +A4), provided that dim is a constant
throughout the analysis. The GPU kernel actually loads dim
from the memory, however. In this case, security invariants
in Honeycomb ensure that the value dim remains constant
throughout the executions so that the analysis remains valid.

3 Threat model

In this paper, we adopt a similar threat model to previous stud-
ies on secure execution environments for GPUs [44, 45, 83].
The adversary controls the entire software stack, including
the compiler toolchains, the operating system, the hypervi-
sor, and the device drivers. It also has physical access to the
server hardware and may sniff the PCIe traffic. We assume
that the host machine CPU features TEE capabilities such as
AMD SEV-SNP or Intel TDX [43], and the GPU features a
hardware random number generator or performance counters
to collect entropy for cryptographic uses. We also assume
that users have the specifications of the server hardware and
how it is connected, such as which PCIe slot that the GPU
is plugged in. Finally we assume that Honeycomb is able
to establish a trusted MMIO path with the GPU. Our proto-
type uses AMD SEV-TIO [1] to establish it, but such a path
can also be realized using other secure I/O buses [44, 65],
or alternatively, equipping the server with tamper detection
mechanisms [75] and establishing a trusted I/O path to the
GPU using a hypervisor [94]. We defer the details to §8.

The adversary can launch applications in Honeycomb, alter
the results of the compiler toolchains, and tamper with the
physical memory of the server. Additionally, the adversary can
tamper with the DMA buffers. However, we trust the device
memory of the GPU, since modern GPUs usually integrate the
device memory using 2.5D/3D silicon interposers inside the
same package. We assume that the adversary cannot observe

or corrupt the data stored in it [83]. Supporting integrated
GPUs is out of the scope of this paper.

Similar to previous GPU TEEs [44, 83], side-channel at-
tacks [17, 40, 82, 86] on trusted hardware are out of the scope
of this paper. Honeycomb relies on the rich set of orthogo-
nal work to alleviate these problems [9, 80]. Availability and
denial-of-service attacks are also out of scope.

Under this threat model, Honeycomb should ensure con-
fidentiality and integrity for multiple mutually distrusted ap-
plications running on the same GPU. The adversary cannot
tamper with the code, the data and the control flows of both
the CPU and GPU parts of the applications.

4 Overview

Figure 1 describes the overall architecture of Honeycomb.
Honeycomb offers unified TEEs that cover both the CPU and
GPU parts of the application. Honeycomb starts an applica-
tion inside an AMD SEV-SNP TEE VM. It first starts the
Secure VM Service Module (SVSM) at VMPL0. The SVSM
bootstraps the BIOS, the guest Linux kernel, and finally the
user-space application at VMPL1. SVSM regulates all inter-
actions between the applications and the GPU. Recall that in
CPU TEEs data are stored as plaintext within the CPU pack-
age. They are only encrypted when leaving for the off-chip
main memory. In Honeycomb data on the device memory are
stored decrypted, and the SVSM encrypts them when they are
sent to the host. The path of reading data is similar.

The application requests GTT memory from Honeycomb
to interact with the GPU. A piece of GTT memory can serve
as a staging buffer for memory copies, which is mapped into
the user-level address space, or serve as backing buffers for
command queues, which are only accessible by the SVSM.
In both cases the SVSM inspects the access to regulate secure
memory transfers between the GPU and the applications [83],
and launches validated GPU kernels with proper parameters.
Note that although the current implementation of Honeycomb
is based on AMD SEV-SNP, our design is applicable to other
VM TEEs such as Intel TDX.

Honeycomb isolates the GPU inside a sandbox VM. The
security monitor (SM) inside the sandbox is a hypervisor
running below the Linux kernel. The SM regulates all interac-
tions between the driver and the GPU. It ensures that the GPU
follows the expected initialization sequences, and keeps track
of the ownerships of the device memory pages to prevent
accidental sharing of device memory among applications.

To execute GPU kernels, an application first loads the GPU
binary that contains the GPU kernels into the device mem-
ory. The validator in Honeycomb takes both the binary code
of a GPU kernel and the accompanying preconditions as in-
puts. It validates that each memory instruction in the GPU
kernel can only access certain regions of the virtual address
space. Note that the actual target addresses sometimes cannot
be determined until the application executes the kernel with

158 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Sandbox VM

GPUCPU & Secure processor

Host OS + Hypervisor

SEV-SNP VM

App.

SVSM

Linux guest

VMPL 0

VMPL 1

Security monitor

Linux + GPU drivers

User space helper

blockDim.x == 256
0 ≤ blockIdx.x < 128
0 ≤ threadIdx.x < 256
base < VApriv - 0x20004

App App

Pr
ot

ec
te

d
R

O
RW

Pr
iv

at
e

248 - 1

0

metadataCode

Args./
Dispatch

void fill(int *base, int n, int b) {
 u32 dim = blockDim.x;
 u32 gid = blockIdx.x;
 u32 lid = threadIdx.x;
 u32 tid = gid * dim + lid;
 if (tid < n)
 base[tid] = b;
}

✓

✓

Preconditions

Validator
(Static analysis)

GPU virtual address space

Validator

System memory command queue

System memory (GTT)

Device memory

Private system memory

1
2
3
4
5
6
7
8

IPC

Spilling

IPC
send()

ABI registers

Figure 1: The overall architecture of Honeycomb. Left: Application VM and sandbox VM in their respective TEEs. Middle: Pre-conditions
and source code of the GPU application kernel. Right: Layout of the virtual address spaces for two GPU applications. Long dashed arrows
represent intercepted and validated requests by the validator (at load time) and the security monitors (at runtime). Dotted arrows represent
physical memory page mappings. VApriv is the topmost virtual address of the private region. Green boxes are components of the TCB.

D = {(gid, lid)|0 ≤ gid < gridDim;0 ≤ lid < blockDim}
A3 = (1,0,0)
A4 = (0,1,0)
A5 = dim ·A3 +A4 = (dim,1,0)
A7 = A5 +(0,0,base) = (dim,1,base)

Figure 2: The iteration domain and the access functions (in the
vector form) of the GPU kernel in Figure 1. The superscript denotes
the corresponding statement. The parameter spaces of all access
functions are (gid, lid,1). gridDim and blockDim describe the total
number of grids and the number of threads in a block.

the concrete values of the arguments (e.g., base in Figure 1).
Therefore we introduce preconditions, which specify the con-
straints on the arguments so that the validator can analyze
the bounds statically. Honeycomb checks the preconditions
at runtime to ensure the attacker cannot subvert the analysis.

The validator decodes the instructions of the GPU kernel to
reconstruct its control and data flows. It represents the target
address of each memory instruction as a symbolic expression
using scalar evolution and polyhedral models. It plugs in the
preconditions to reason about the bounds of the target address,
and ensures that the address stays within specified regions.
The analysis is sound, meaning that once an access is proven,
it is safe for all possible executions. For undecided cases like
an indirect memory access a[b[i]], Honeycomb requires
the developer to annotate and add runtime checks to pass the
validation. Our evaluation on real-world benchmark suites
shows that the overheads of both development and runtime
performance are modest – common production GPU kernels
like matrix multiplications tend to have regular memory ac-
cess patterns. The analysis is sufficient to capture the patterns,
thus requiring few to none annotations.

The validator enforces access control that effectively di-
vides the virtual address space of a GPU application into
four regions: protected, read-only (RO), read-write (RW), and
private, each of which has different access policies. For ex-
ample, the application is prohibited to modify the RO region,
but has full access to the private region. Honeycomb places
the binary code and the arguments in the RO region so that
a malicious kernel cannot modify the code on the fly after
passing the validation. Furthermore, Honeycomb implements
secure IPC through mapping the buffers into different regions.
Honeycomb maps the IPC buffers into the sender’s protected
and receiver’s RO region. The sender calls the trusted send()
endpoint to copy the plaintext data to the IPC buffer, where
both confidentiality and integrity are preserved.

5 Validator

The validator in Honeycomb checks the binary code for each
GPU kernel of the application conforms with the following
security invariants:

• No dangling accesses. A GPU kernel must never read
uninitialized values from hardware registers.

• All memory accesses reside in their regions. All mem-
ory accesses to the memory regions conform with their
access policies respectively.

• Control flow integrity. The execution must start at the
designated entry point of the GPU kernel. The kernel can
only transfer its control to the entry points of its basic
blocks.

Checking uninitialized uses of values. The validator starts
out parsing the binary code of the GPU kernel and building

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 159

s_load_dword s2, s[4:5], 0x4
s_load_dwordx2 s[0:1], s[6:7], 0x8
s_waitcnt lgkmcnt(0)
s_and_b32 s2, s2, 0xffff
v_mad_u64_u32 v[0:1], null, s8, s2, v[0:1]
v_cmp_gt_u32_e32 vcc_lo, s0, v0
s_and_saveexec_b32 s0, vcc_lo
s_cbranch_execz 12
s_load_dwordx2 s[2:3], s[6:7], 0x0
v_mov_b32_e32 v1, 0
v_mov_b32_e32 v2, s1
v_lshlrev_b64 v[0:1], 2, v[0:1]
s_waitcnt lgkmcnt(0)
v_add_co_u32 v0, vcc_lo, s2, v0
v_add_co_ci_u32_e32 v1, vcc_lo, s3, v1, vcc_lo
global_store_dword v[0:1], v2, off
s_endpgm

struct dispatch_pkt {
 u32 …;
 u16 wg_size_x;
};
struct kern_args {
 int *base;
 int n;
 int b;
};

Preconditions
v0⟷lid
s8⟷gid

s[4:5] ∈ [VArw, VAro - 8)
s[6:7] ∈ [VArw, VAro - 16)
val(s[4:5] + 0x4) == 256
val(s[6:7]) ≤ VApriv - 0x20004
0 ≤ v0 < 256
0 ≤ s8 < 128

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

ABIs

(u32)(v[0:1] + s[2:3])|15 = v2|11

(s8*s2+v0)|1*4

(u32)(s[6:7]|0+(0x8+0x4))

(u64)s[6:7]|0

(u16)(s[4:5]|0+0x4)

s1|2

A = (4 ·wg_size_x,4,base)
I = (s8,v0,1)
D = {(gid, lid,base)|0 ≤ gid < 128,0 ≤ lid < 256,

0 ≤ base < VApriv −0x20004}

Target address = A · I ≤ VApriv −0x4

Figure 3: Workflow of validating the binary code generated from Figure 1. Left: the assembly, preconditions and the ABIs. Top right: the value
chain of the symbolic expression that represents the target address of Line 16. Subscripts represent the line number on the left at which the
value should be considered. Bottom right: the access function A , the iteration vector I and the iteration domain D .

the Static Single-Assignment (SSA) representation and the
Control Flow Graph (CFG) for each kernel function. The
validator checks dangling accesses by inspecting whether the
SSA representation of the kernel function is valid.

Checking memory accesses. Figure 3 presents the overall
workflow when validating the program described in Figure 1.
For each memory instruction, the validator constructs a sym-
bolic expression and derives the access function A to rep-
resent the target address of each memory instruction. The
algorithm combines scalar evolution analysis and polyhedral
models, and is flow-sensitive and path-insensitive.

The validator further derives the iteration vector I and the it-
eration domain D from the application binary interface (ABI)
and the preconditions of the GPU kernel. Recall that the dot
product A · I computes the value of the target address. It is
sufficient to plug in D to compute the range of the target
address and to verify whether the memory access is inbound.

A closer look at Figure 3 shows that the validator must
address practical complexities when analyzing the binary
code. For example, the compiler promotes the load of
dispatch_pkt.wg_size_x into a 32-bit load instruction
(Lines 1 and 4). It also lowers a 64-bit addition into two
instructions (Lines 14-15). The validator heuristically redis-
covers their semantics when constructing the symbolic ex-
pressions. Additionally, the validator matches sequences of
instructions to rediscover semantics of divisions, modulus,
and min/max operators.

Another example is that conventional polyhedral models
require all multipliers to be constants. The value of s2 comes
from a load instruction (Lines 1 and 4), breaking the subse-
quent analysis when constructing a polyhedral representation
of the global ID (Line 5). The validator recognizes that the
instruction is loading from the RO region and it is safe to treat
it as a constant in the analysis. Such relaxation is essential to
derive A and eventually to validate that Line 16 is safe.

Aggressive compiler optimizations can create additional

burdens for analysis. For example, the definition and the usage
of a value could be scattered in two basic blocks separated
by other basic blocks in the CFG. They are guarded by the
same condition so the program is valid at runtime but a path-
insensitive algorithm fails to connect them. More powerful
analysis or language-level support [30,41,60] will address the
issue but we intentionally limit the capabilities of the validator
to bound the size of TCB. Honeycomb requires the developer
to alter the GPU kernel to pass the validation. Additionally,
the validator requires the developer to add runtime checks for
indirect memory accesses like a[b[i]] since it does not fully
track the memory access of the heap.

We found that the simple algorithm is effective against
commonly used production kernels such as matrix multiplica-
tions or element-wise transformations as the analysis perfectly
captures the regular and predictable memory access patterns
commonly seen in most GPU kernels.

Enforcing control flow integrity. It is relatively straightfor-
ward to decode GPU kernels since modern GPUs have RISC-
style instruction sets. The validator simply validates that all
branches jump to valid instructions. The validator does not
support indirect branches. Although based on our experience
they are rarely used in real-world GPU kernels, the developer
can turn indirect branches to a series of branches that have
explicit targets. The validator does not support self-modifying
code to ensure the integrity of the analysis.

6 Security monitors

There are two types of security monitors in Honeycomb to
regulate the interactions with the GPU. In Honeycomb every
application runs inside its own TEE VM. The SVSM regu-
lates the interactions between the application and the GPU.
The security monitor (SM) in the sandbox VM regulates the
interactions between the driver and the GPU. The SM also
keeps track of the ownership of memory pages to prevent ac-

160 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cidental sharing between applications. Together they are able
to remove the OS kernel and the GPU driver from the TCB.
Similar to existing GPU TEEs [83], Honeycomb implements
the following functionalities.

Initialization. Honeycomb enforces the untrusted GPU driver
to follow a correct sequence to initialize the GPU. However, to
our best knowledge, no public specifications are available for
our target device, the AMD RX6900XT GPU. We therefore
collect the trace of an initialization sequence on the baseline
platform and use it as the ground truth. We further inspect
the source code of the driver to build state machines to model
the initialization sequence. The SM intercepts all MMIO
traffic to ensure that the GPU driver follows the transitions
of the state machines. The SM directly passes the firmware
to the GPU since the hardware will validate its integrity with
cryptographic signatures.

Despite the fact that there is no specification, we were
able to find five bugs in the AMDGPU driver that violate
security. More specifically, there are two instances where the
parameters of the hardware queues are initialized with incor-
rect values, two instances where the queues are prematurely
enabled before all parameters are set, and one instance of
out-of-bound access on the hardware buffer. All five bugs are
confirmed by upstream developers, and their corresponding
fixes have been deployed since Linux 5.19.

Launching GPU kernels. Applications call the same user-
space APIs (e.g., the HIP APIs [2]) to launch GPU kernels on
Honeycomb. First, applications call hipModuleLoadData()
to load GPU binaries. The implementation of the API traps
into the SVSM, where the SVSM validates the kernels, then
copies the kernels into the protected region and records their
preconditions given that they have passed the validations.

Applications call hipLaunchKernel() to launch a GPU
kernel. Similarly, its implementation traps into the SVSM,
where the SVSM confirms the preconditions are valid with
respect to the actual arguments. It then updates the command
queue to enqueue the launch if preconditions are satisfied.

Isolating address spaces. On the CPU side, Honeycomb lever-
ages existing mechanisms in SEV-SNP TEE to enforce iso-
lation between different applications. SEV-SNP ensures the
integrity of VM data and protects against various vulnerabili-
ties, including replay and remapping attacks (§2).

On the GPU side, the SM intercepts all traffic between
the driver and the GPU to maintain a RMP table similar to
Graviton [83] to track the ownership of the pages. The Linux
driver allocates page tables inside the device memory and
updates them through MMIO requests. The SM intercepts
these requests and updates the RMP table. Additionally, the
SM prevents applications from mapping the page tables into
their address spaces to subvert the isolation.

Securing data transfers. Honeycomb implements secure data
communication channels between the GPU and the host CPU,
and coordinates all data transfers into and out of the GPU

device memory. All transfers between the host and the device
memory must be done via a special trusted kernel in Honey-
comb, with all transferred data encrypted and authenticated
under an ephemeral encryption key. Honeycomb disallows
the applications from mapping the host memory into their
address spaces or directly creating DMA queues.

One practical issue is how to bootstrap and maintain the
secure channel. Honeycomb uses the s_memrealtime instruc-
tion to get the value of the real-time counter on the AMD
RX6900XT GPU. Honeycomb launches a kernel to perform
reads, invalidating caches to generate entropy and extract
them. The entropy is used to establish a shared security key
using Diffie-Hellman key exchange [31]. Honeycomb stores
the entropy in the protected region to prevent user applications
from accessing it.

7 Secure and efficient IPC

Honeycomb enables two enclaves to securely exchange plain-
text data within the device memory. To make an IPC, Hon-
eycomb maps the IPC buffer to the sender’s protected region
and the receiver’s RO region. The sender calls send() to ini-
tiate the IPC. send() is a trusted endpoint that simply copies
the data into the protected region and updates the indices of
the IPC buffers. The GPU kernels on the receiver side can
read the RO region directly but need to update the indices
via recv() provided by Honeycomb. The scheme is secure
because no GPU kernels from the user applications can access
the protected region nor write to the RO region.

For simplicity, the current prototype of Honeycomb maps
all IPC buffers to the protected regions consistently across
all applications so that it is possible to identify the endpoints
using only the virtual addresses. Adding finer-grained access
control through capabilities [33] is relatively straightforward.

To summarize, the ultimate simplicity comes from the guar-
antee that none of the user-provided GPU kernels inside Hon-
eycomb is able to tamper with the data in the protected, RO
and RW regions, making exchanging data between two en-
clave applications in Honeycomb as simple as copying a piece
of memory.

8 Discussion

Establishing a trusted I/O path to the GPU. When the server
does not have AMD SEV-TIO or other secure I/O buses, Hon-
eycomb can leverage prior work [94] to establish a trusted
I/O path to the GPU. On the high level, Honeycomb acquires
exclusive control of the I/O paths at the beginning of the
boot-up process, before any untrusted components can ac-
cess the GPU. Particularly, the server first boots into the SM
where the whole boot-up process is validated and attested
via SecureBoot [55]. Second, the SM enumerates the PCIe
buses to discover the MMIO regions of the GPU and all of its

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 161

upstream PCIe switches. Then it initializes the IOMMU to
protect the MMIO regions from any unauthorized accesses by
the hypervisor and other devices’ DMA buffers. It further pro-
grams the PCIe Access Control Services (ACS) registers [5]
to stop unauthorized peer-to-peer PCIe transactions. After
these steps Honeycomb can continue the normal boot-up pro-
cess. By correctly configuring the IOMMU and by disabling
peer-to-peer PCIe accesses, the above initialization process
is sufficient to isolate the MMIO regions of the GPU from
the untrusted software components and other I/O devices in-
side the server [94]. Honeycomb relies on additional tamper
detection mechanisms to detect and mitigate physical attacks.

In the alternative setup above, the TCB must include all
components used in the boot-up process, such as the UEFI
BIOS. The SM and the untrusted hypervisor must be adopted
to support nested virtualization [11]. Legacy systems without
tamper detection mechanisms have a weaker threat model as
they are unable to defend against physical attacks.

Remote attestations. The user application needs to attest both
its own SEV-SNP VM and the sandbox VM to validate the
security of the execution environment. It follows the standard
procedures to attest its own VM. The attestation also guaran-
tees a valid execution context of the GPU since the SVSM is
part of the attestation, and it regulates the GPU execution con-
text. Note that the SM is part of the TCB. The SM maintains a
public-private key pair for the attestation of the sandbox VM.
The user application authenticates the SM using the key pair
to validate the security of the sandbox VM.

9 Security analysis

Attacking the software stack. An attacker might try to launch a
malicious GPU kernel by subverting the validation in Honey-
comb. Some possible attacks include invalidating the precon-
ditions with invalid arguments, subverting the data flows via
manipulating the values of spilled registers, and modifying the
code or the target addresses of a branch to hijack the control
flows [18]. Recall that SEV-SNP ensures that the user appli-
cation cannot tamper with the SVSM. The SVSM reevaluates
the preconditions with the arguments before executing the
GPU kernels to defend against the first attack. Honeycomb
protects the code and the spilling regions in the RO and RW
regions to defend against the second and third attacks. Par-
ticularly, the validator analyzes each global memory access
in the GPU kernel to ensure that it cannot tamper with the
reserved regions, maintaining the integrity of the validation.

An attacker might tamper with the system software stack,
including the GPU driver, the host operating system, and the
hypervisor, to subvert the security of Honeycomb. To gain
access to the plaintext information residing in the device
memory, they might execute code to craft malicious MMIO
requests, to initiate unauthorized DMA requests, or to map the
device memory from other applications to different address

spaces. This is ineffective because the SM in Honeycomb
regulates all MMIO and DMA requests from the system soft-
ware stack. By intercepting the MMIO requests, it enforces
isolation on address spaces and prevents accidental sharing.
It also enforces that data communication with the external
world is all encrypted and authenticated.

The attacker might alter the GPU firmware or divert from
the designated bootup sequences in order to control the GPU.
This is ineffective because the GPU hardware verifies the
integrity of the firmware [55], and the SM in Honeycomb
validates the bootup sequences during GPU initialization.

Attacking the hardware stack. An attacker might interpose
the host memory to try to alter the trusted components like
the SVSM in Honeycomb. This is ineffective because SEV-
SNP includes attestation procedures to verify the integrity of
the trusted components. SEV-SNP also incorporates memory
encryption and integrity to defend against the attack.

An attacker might interpose on the PCIe fabrics to insert
MMIO or DMA requests, or tamper with existing requests
to access the plaintext information residing in the device
memory. Alternatively, they might map the MMIO regions of
the GPU to another I/O device or initiate peer-to-peer PCIe
transactions to interact with the GPU. Both types of attacks
are ineffective when the GPU is attached to a secure I/O
bus [1, 44, 65]. When using the alternative initialization pro-
cess described in §8 to establish a trusted I/O path, Honey-
comb detects and stops the first type of attacks using tamper
detection mechanisms [75]. To defend against the second type
of attacks, Honeycomb programs the IOMMU and PCIe ACS
registers to acquire exclusive control on the MMIO regions
of the GPU before starting any untrusted components. Ad-
ditionally an attacker might write to the I/O ports that map
to the registers in the PCIe configuration space, in the hope
of relocating the MMIO regions of the GPU. Honeycomb is
able to identify and stop potential attacks as the hardware
topology uniquely determines the mappings [94]. An attacker
might also initiate peer-to-peer PCIe transactions between an
I/O device and the GPU bypassing the IOMMU. Honeycomb
stops the attacks because it programs the PCIe ACS registers
to prevent unauthorized peer-to-peer PCIe transactions.

Our threat model assumes that an attacker cannot snoop
or tamper with the device memory of the discrete GPU. The
attacker can also try to perform the row hammer attack [51],
which can be mitigated by orthogonal research [7, 67, 87].

Side-channel attacks. An attacker might try to exploit various
timing and power side channels. Defending them is out of the
scope of this paper and can leverage orthogonal work [9, 80].

10 Implementation

We have implemented Honeycomb on top of Rust 1.64.0
nightly with about 32,000 lines of code. The current prototype
supports the x64 architecture and the AMD RX6900XT GPU.

162 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We use the AES256-GCM [32] to encrypt and decrypt traffic
between the host and the GPU.

The validator understands the AMDGPU ELF binary for-
mat and disassembles the machine code of the GPU kernels
of the AMD RDNA2 ISA. The structures of scalar evolution
analysis and polyhedral representations closely resemble the
corresponding parts in LLVM [53].

We have implemented both the SVSM and the SM in Rust.
The SM is implemented as a Type I hypervisor. We have im-
plemented the user-space runtime, including the correspond-
ing bindings of HIP and OpenCL in C++, in around 8,500
lines of code. The user-space runtime is outside the TCB.

11 Evaluation

The evaluation of Honeycomb tries to answer the following
questions both qualitatively and quantitatively:

• Does static validation in Honeycomb improve security?

• Is Honeycomb practical for real-world applications?

• Where do the overheads in Honeycomb come from?

• How efficient is the IPC in Honeycomb?

• How much effort is required to adopt Honeycomb for
new applications?

11.1 Experiment setup
We evaluate Honeycomb on a server equipped with two 24-
core 2.85 GHz AMD EPYC 7443 CPUs, 128 GB DDR4 mem-
ory, and a 480 GB SAMSUNG PM893 SSD. The server has an
AMD RX6900XT GPU that has 16 GB of device memory. It
connects to a gigabit Ethernet with the Broadcom BCM5720
Ethernet adapter. The machine runs a patched Linux 5.15.0
kernel to support SEV-SNP VMs. Both the sandbox and the
application VM runs Linux 5.17.0 on top of QEMU 7.1.0. We
have not yet enabled SEV-SNP for the sandbox VM due to
complications of passing the AMD RX6900XT GPU directly
into the VM. We use the ROCm 5.4.0 [3] GPU driver when
running the baseline experiments. We pin all applications to
the first CPU socket where the GPU is attached.

11.2 TCB
Honeycomb provides a secure and efficient execution envi-
ronment for GPU applications. To quantitatively evaluate our
efforts, we count the lines of code (LOC) in the TCB of both
Honeycomb and the Linux platform using SCC [15]. The
current prototype of Honeycomb only supports a limited set
of hardware, thus we only count the lines of code for the
x64 platform and the essential parts of the driver for AMD
RX6900XT. Figure 4 presents the counts of LOC for the TCB
of both Honeycomb and the Linux platform.

Honeycomb provides security guarantees with respect to
the threat model in Section 3 with an order of magnitude
smaller TCB compared to the normal Linux platform. The
security of a GPU application running on Linux relies on
the correctness of both the kernel space and the user space
(ROCm) of the GPU driver. The result of the smaller TCB is
consistent with other systems that adopt the design of security
monitors [79, 90]. The SM and the validator in Honeycomb
separate the concerns of enforcing security from implement-
ing the required functionalities, removing the heavy-lifting
portions (e.g., Linux) of the system out of the TCB.

System LOC

Honeycomb 82,738
SVSM 9,839
SM+Sandbox VM 9,376
Validator 12,299
Rust runtime 50,864

Linux 5.17 ∼ 1,503,519
Core functionalities for x86 844,993
AMDGPU driver for AMD 6900XT 607,689
Kernel libraries (DRM & TTM) 50,837

ROCm 5.4.0 397,151
HIP Library 188,995
ROCR Runtime 73,241
ROCm Common Runtime 62,173
ROCR Thunk interface 72,742

Figure 4: Estimated LOC for TCBs of Honeycomb and Linux. It
also shows the LOC of some major components in the TCB.

11.3 End-to-end performance
We choose five representative benchmark suites to study how
Honeycomb performs on real-world workloads:
SpecACCEL. SpecACCEL is a performance test suite that rep-
resents high-performance computing applications like simula-
tions of computational fluid dynamics and molecular dynam-
ics. We evaluate all 19 OpenCL applications in the SpecAC-
CEL 1.2 benchmark suites. All benchmarks are evaluated
against the default parameters and the reference input size.
ResNet18. ResNet18 is an 18-layer convolutional neural net-
work model. It is a popular image classification model that
is used on low-power edge devices. We implement a bench-
mark that classifies 10 images using the ResNet18 model.
The model uses the single-precision, pre-trained weights
(IMAGENET1K_V1) from PyTorch 1.12.1 [64].
BERT. BERT is a large transformer model that powers various
natural language processing tasks. We derive a benchmark
from the NVIDIA FasterTransformer backend [62]. We use
the BERT_BASE configuration [29]. The model has 12 layers

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 163

0

0.5

1

1.5

2

101.tpacf

103.ste
ncil

104.lbm
110.fft

112.spmv

114.mriq

116.histo
117.bfs

118.cutcp

120.kmeans

121.lav
amd

122.cfd
123.nw

124.hotspot
125.lud

126.ge
127.sra

d

128.heartw
all

140.bplustre
e

ResNet
Canny

BERT

NanoGPT

R
el

at
iv

e
tim

e

Driver
Driver+SVSM

Driver+SVSM+Mem
Driver+SVSM+Mem+V

Figure 5: Relative execution time for the five benchmark suites evaluated on
Honeycomb.

0.01

0.1

1

10

100

32 128 512
2048

8192

V
al

id
at

io
n

Ti
m

e
(m

s)

Number of instructions in the kernel

SpecACCEL
ResNet18

BERT
NanoGPT

Canny

Figure 6: The time spent on validating GPU kernels
in wall clock vs. the size of the kernels.

and 110M parameters, preloaded with the single-precision,
pre-trained weights called bert-base-uncased [38]. The
benchmark reports the time of performing a single shot of
inference on BERT.

NanoGPT. NanoGPT is a minimal implementation of train-
ing medium-size Generative Pre-trained Transformer (GPT)
models. GPT models are often used to power chat bots or to
generate human-like content. We implement a benchmark that
fine-tunes the GPT2 model [68] using the tiny Shakespeare
dataset in the NanoGPT repository. We preload the weights
of its 124M parameters from [39]. The benchmark trains with
a batch size of 4 and uses ∼15 GB out of the 16 GB of total
device memory available.

Canny. Canny implements the Canny edge detection algo-
rithm to detect edges in images. We implement a benchmark
that detects edges on an image in the UHDSR4K dataset [91].
The resolution of the image is 3840× 2160.

Figure 5 presents the relative execution time of all five
benchmark applications. The relative execution time ranges
from 0.89 (104.lbm) to 1.27 (Canny). Large language models
in Honeycomb are particularly efficient: the relative slow-
downs of BERT and NanoGPT are 2% and 0%. This is be-
cause their execution time is dominated by matrix multiplica-
tions, whose memory accesses can be efficiently reasoned
about with scalar evolution analysis and polyhedral mod-
els. The validator requires no runtime checks to be inserted
into the performance-critical, general matrix multiplication
(GEMM) GPU kernels to pass validation. Honeycomb essen-
tially launches the exact same GPU kernels compared to the
baseline.

Figure 5 further breaks down the overheads into four cate-
gories: (1) Driver (slowdowns from an alternative driver), (2)
SVSM (validating the requests in the command queues), (3)
Mem (securing memory transfers) and (4) V (runtime checks).
The characteristics of runtime overheads vary among appli-
cations. First, the alternative driver is simpler and faster in
general but lacks the optimizations on large memory copies.
Running Canny on the alternative driver is 18% slower (7.16s

vs. 6.11s) because it loads an 8MB image into the GPU before
processing it. Second, to enforce security the SVSM must
inspect each request of kernel launch. The overhead is more
evident for applications that mostly consist of small, fast GPU
kernels like ResNet.

The third source of overheads is secure memory transfer.
For example, 117.bfs copies the frontier and the tail of the
BFS queue back and forth between the host and the device
in each iteration, transferring 400 bytes of data for 108,000
times. Enabling secure memory transfer results in a 42%
slowdown (13.97s vs. 9.82s). 116.histo also has significant
overheads because it uses memcpy() to zero out a piece of
device memory at the beginning of each iteration. Changing
it to memset() eliminates the overheads.

The final source of overheads comes from the runtime
checks in GPU kernels that are inserted to facilitate valida-
tions. Runtime checks slow down 121.lavamd by 19% (5.80s
vs. 4.87s). However, most of the overhead can be attributed to
one single runtime check. The GPU kernel writes to a[b[i]
+ threadIdx.x * j] in two-level nested loops. i and j are
loop variables thus b[i] remains constant in the outer loop.
Developer must insert a runtime check to aid the validation
since b[i] is a value from the memory where the validator
does not model. Note that the runtime check can be hoisted
to the outer loop since checking the indices at the first and the
last iterations of j is sufficient to guarantee safety. Hoisting
the check effectively eliminates the overheads (both 4.87s
for disabling runtime checks and hoisting the check to the
outer loop). The case of 128.heartwall is similar. Extending
the validation to understand hoisting is left to future work.

11.4 Overheads
The previous subsection has discussed the overheads on the
runtime checks inside the GPU kernels. This section further
studies other overheads introduced by the system design of
Honeycomb, namely:

• Validating the GPU kernels at load time.

164 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10−2

10−1

100

101

102

103

104

105

25 210 215 220 225 230

B
an

dw
id

th
(M

B
/s

)

Size of the memory copy (Bytes)

ROCm (Linux)
Secure memory transfer (Honeycomb)

Figure 7: Round-trip bandwidth of data copies
of various lengths between the host and the
GPU, with and w/o secure memory transfers.

10−1
100
101
102
103
104
105
106
107
108

4 16 64 256 1024 4096

Pe
rf

or
m

an
ce

(M
FL

O
PS

)

Size of the matrix

ROCm
Honeycomb

ROCm+Precondition
Honeycomb+Precondition

Figure 8: The achieved FLOPS in matrix mul-
tiplication on various sizes of the matrices.
Both the x and y axes are on log scales.

10−2

10−1

100

101

102

103

104

105

25 210 215 220 225 230

B
an

dw
id

th
(M

B
/s

)

Size of the IPC payloads (Bytes)

Insecure
Honeycomb IPC

Encrypted shared buffer (host)

Figure 9: Round-trip IPC bandwidth of the
ping-pong application with different sizes of
payloads.

• Securing memory transfers between the host and the
GPU.

• Checking the preconditions against the arguments and
launching the GPU kernels.

Overheads of validating GPU kernels. Figure 6 describes the
time spent on validating the GPU kernels in all five benchmark
suites we evaluate vs. the number of instructions they have.
The time used by validation is roughly linear with respect to
the size of the GPU kernel. Out of 149 GPU kernels we have
evaluated, the largest one is a GEMM GPU kernel that has
11297 instructions coming from rocBLAS [49]. The longest
time spent on validating an individual GPU kernel is around
30 ms (128.heartwall). At the application level, validating
NanoGPT training takes the longest time in our evaluation. It
consists of 73 GPU kernels, taking 162 ms in total to validate
all of them. Note that the validation is a one-time overhead
when loading the applications. Real-world GPU applications
like training execute the kernels continuously for days. The
evaluation shows that validating GPU kernels is efficient and
has negligible overheads on overall application performance.

Overheads of secure memory transfers. We study the over-
heads of secure memory transfers using a benchmark that
transfers data back and forth between the host and the GPU.
A round trip of a secure memory transfer includes (1) en-
crypting the data on the host CPU, (2) copying the encrypted
data to and from the GPU, and (3) decrypting the data. We
warm up the benchmark for 5 seconds and report the average
transfer bandwidth over a 30-second period for various sizes
of transfers. Figure 7 presents the round-trip data bandwidth
with and without secure memory transfers. The bandwidths
of both ROCm and Honeycomb first increase linearly with the
sizes of the payloads and then peak at 10.63 and 2.20 GB/s.
The bandwidth is bounded by AES encryption/decryption
throughput of a single CPU core.

Overheads of checking preconditions and launching GPU
kernels. We study the performance impacts of checking pre-
conditions in Honeycomb by measuring the performance of

multiplying two single-precision square matrices of various
sizes in Honeycomb. We implement the benchmark using the
GEMM GPU kernels from rocBLAS. The validator has veri-
fied that all global memory accesses in these GPU kernels are
safe, thus there are no extra runtime checks inside the GPU
kernels. We have further ported all checks on preconditions
directly into the benchmark, making precondition checking
the sole overhead in this benchmark.

Figure 8 presents the achieved FLOPS on both Linux and
Honeycomb against various sizes of the square matrices (from
2×2 to 8192×8192), with or without checking the precondi-
tions. Honeycomb performs 41 range checks on the kernel
arguments to validate the preconditions on each launch, tak-
ing roughly 0.04µs to complete. All GEMM GPU kernels in
the benchmark have the identical function signature. Both the
number of checks on preconditions and the performance are
consistent.

Honeycomb is slightly slower than Linux when the size
of the matrices is less than 1024, because SVSM must check
each request to ensure that applications can only launch val-
idated kernels. We observe that the overhead is ∼ 8µs per
launch of GPU kernels. To cross-validate the overheads, we
compare the latency of launching a no-op kernel on Linux and
on Honeycomb. The average latencies over a million launches
on Linux and on Honeycomb are 13.15µs and 25.06µs. The
overhead of checking preconditions is two orders of magni-
tude smaller than launching a no-op kernel.

11.5 IPC performance

We study the case of exchanging data between two TEE appli-
cations on the same host. We compare the bandwidth between
exchanging the data via (1) an encrypted shared buffer on
the host, and (2) the IPC mechanism in Honeycomb, where
no encryption is needed. We have built two applications and
evaluated their performance: (1) a ping-pong application that
sends data back and forth, and (2) a two-stage image pro-
cessing application that mimics the perception pipelines in
autonomous vehicles. It ingests a video stream in an enclave

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 165

and performs edge detection in another one. The isolation not
only increases modularity and robustness, but also simplifies
the integrations with third-party vendor SDKs.

Figure 9 presents the effective bandwidth of the ping-pong
application with different sizes of IPC payloads, along with a
reference, insecure implementation that copies the payloads
within the device memory using hipMemcpyDtoD(). IPC in
Honeycomb is 2-529× faster compared to exchanging data
via a shared encrypted memory buffer on the host. The effec-
tive bandwidth of round-trip IPCs peaks at ∼233 GB/s (89%
of the reference insecure implementation) when sending pay-
loads of 32 MB, where three buffers of such size utilize the
shared L3 cache of the GPU (128 MB). In contrast, the band-
width of using an encrypted shared buffer for IPC peaks at
∼411 MB/s. We attribute the inefficiency to the fact that GPU
TEEs make secure memory transfers transparent to applica-
tions. Other GPU TEEs cannot give out the encryption keys
to the applications without compromising the security, so the
only way of sharing data securely is to re-encrypt the data
before sharing them, where the performance is bounded by
the CPU performance of encryption and decryption as shown
in Figure 7.

We have assembled the Canny application into a two-stage
image processing pipeline. The end-to-end latencies of pro-
cessing a single frame of 4K image are 679 µs and 18579 µs
when using direct IPC and an encrypted shared buffer on the
host, where 617 µs is spent on actual computation.

11.6 Developer experience
Figure 10 presents the metrics on the kernels and develop-
ment efforts of the five benchmark suites we have evaluated.
It presents the number of GPU kernels, the number of memory
instructions, the number of runtime checks inserted, and the
number of preconditions written for each application. Neural
network applications ResNet18, BERT, and NanoGPT are
considerably bigger, where the GEMM kernels contribute to
more than 70% of the total number of instructions. RocBLAS
launches different GEMM kernels based on the sizes of ma-
trices for optimal performances.

Experience with neural network models and the Canny edge
detector. We have ported 109 GPU kernels in total for
ResNet18, BERT, Nano and Canny. We are able to classify
the GPU kernels used in neural network models into three
categories: (1) element-wise operations, (2) matrix opera-
tions, including multiplication, transposition and convolution,
and (3) special-purpose GPU kernels such as Im2d2col or
radix sort. Note that developers do not directly write the GPU
kernels. The GPU kernels either come from well-optimized
libraries such as MIOpen [49] or are generated by PyTorch.

We found that GPU kernels in the first two categories have
well-optimized, regular memory access patterns. Scalar evolu-
tion analysis and polyhedral models are sufficient to verify the
safety of the memory accesses, meaning that no extra runtime

checks are required. However, it is important to extend the
polyhedral models to treat the values of some kernel argu-
ments as constants (§5) to complete the analysis. Many of
these GPU kernels are generic library functions. They take
the shape and the length of the data as arguments, which are
often used in calculating addresses. GPU kernels used in the
Canny edge detector also fall within the first two categories.

GPU kernels in the third category require case-by-base
discussion. The class of Im2d2col GPU kernels used by
ResNet18 essentially unrolls a matrix into a long vector un-
der different configurations. The challenge of analyzing their
memory access is that the GPU kernels use division and mod-
ulo operations to transform the basis of indices. For exam-
ple, the statements out_x = inner_lid % out_cols_wg;
out_y = inner_lid / out_cols_wg; repartition the index
inner_lid based on the value of out_cols_wg. It is easy
to see such accesses are inbound but neither the standard
scalar evolutions nor polyhedral representations can model
them. Such repartitions are often parts of the tight loops thus
extra runtime checks can incur significant performance over-
heads. Fortunately, we found out that the compiler generates
pretty stable code sequences for these statements. We have
implemented a pattern matching algorithm to iterate over the
instructions to uncover the semantics of repartitions, so that
the validator can verify these Im2d2col GPU kernels without
the need of runtime checks.

Radix sorts are introduced to speed up the training of neural
networks on GPUs. Particularly, during the backward propa-
gation pass the training application sorts the sparse gradients
before propagating the values in order to improve locality and
to save the precious memory bandwidth. While radix sorts
are efficient on GPUs, they pose challenges for validation
due to the presence of indirect memory references. It is a
non-goal for the validator in Honeycomb to verify the safety
of indirect memory references, so we have added runtime
checks to the sorting kernels in the NanoGPT training appli-
cation. The overall overheads are insignificant as radix sorts
are accountable for less than 0.02% of the total running time.
Replacing radix sort with an algorithm like merge sort that is
more friendly to validation may be a good alternative.

Many preconditions are mechanical and usually straight-
forward (e.g., ensuring that the whole matrix is in the private
region). Since GPU kernels take data shapes as inputs, all of
which must be specified in the preconditions. For instance,
each GEMM kernel requires 30 preconditions. Writing these
preconditions is tedious, and we have developed a script to
generate the preconditions automatically.

In short, it requires inserting zero runtime checks into
ResNet18, BERT and Canny to pass validation in Honey-
comb. We introduce runtime checks in the NanoGPT training
application with negligible performance overheads. Devel-
oping preconditions for the GPU kernels requires modest
effort. Patching frameworks like PyTorch to use the validated
versions of the GPU kernels, however, turns out to be a big-

166 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Benchmark 10
1.

tp
ac

f

10
3.

st
en

ci
l

10
4.

lb
m

11
0.

ff
t

11
2.

sp
m

v

11
4.

m
ri

q

11
6.

hi
st

o

11
7.

bf
s

11
8.

cu
tc

p

12
0.

km
ea

ns

12
1.

la
va

m
d

12
2.

cf
d

12
3.

nw

12
4.

ho
ts

po
t

12
5.

lu
d

12
6.

ge

12
7.

sr
ad

12
8.

he
ar

tw
al

l

14
0.

bp
lu

st
re

e

R
es

N
et

18

B
E

R
T

N
an

oG
PT

C
an

ny

Kernels 1 1 1 1 1 2 5 2 1 2 1 5 2 1 3 2 6 1 2 24 14 67 4
Mem. instrs. 15 15 30 9 9 21 77 14 10 14 7 119 76 8 105 20 60 121 46 1,531 1,768 7,202 55

Checks 0 0 0 0 5 0 1 8 3 0 5 5 0 0 0 0 6 14 16 0 0 44 0
Preconds. 5 8 5 6 9 13 29 16 8 12 4 29 20 8 9 13 45 25 19 443 181 1,529 18

Figure 10: Metrics on the kernels and development efforts to validate GPU kernels in the five evaluated benchmark suites.

ger practical challenge. We eventually end up patching the
userspace runtime to load the validated GPU kernels.

Experience with the SpecACCEL benchmark suites. We have
ported all 19 benchmarks (40 kernels in total) in the SpecAC-
CEL 1.2 benchmark suites to Honeycomb. We classify the re-
quired changes into three categories: (1) adding optimization,
(2) undoing optimization, and (3) indirect heap references.
Adding optimization. The validator can benefit from opti-
mizing the GPU kernel. For example, 110.fft has a division
instruction in the kernel. The divisor is a power-of-2 constant.
Propagating it into the GPU kernel reduces the division into
bit shifts, simplifying the validation.
Undoing optimization. Aggressive optimization in compilers
issue instruction sequences that are difficult to model in scalar
expression. For example, the compiler compiles the expres-
sion -1-bx in 123.nw to a single instruction s_not_b32 bx.
It is difficult for the validator to model such an instruction
as a scalar expression. We have to rewrite the expression to
undo the optimization so that the validator can recognize the
expression.
Indirect heap references. There are 9 benchmarks that have
indirect heap references in the code. Each instance of irregular
heap access requires adding a runtime check which incurs
runtime overheads. For example, 118.cutfp casts a float to the
index of an array; other benchmarks like 112.spmv expose
patterns like a[b[i]]. All these instances require adding
runtime checks to pass the validations.

12 Related work

TEE designs on GPUs. GPU TEEs enforce isolation among
mutually distrusted enclaves. Graviton [83] augmented the
GPU hardware with RMP tables to isolate physical memory
pages among enclaves. Telekine [42] was built upon Graviton
to remove a side channel regarding the execution time of GPU
kernels, enhancing the overall isolation confidence. HIX [44]
and CRONUS [45] relied on the GPU driver’s isolation mech-
anisms to properly protect and isolate applications. However,
modern GPU drivers are inherently complex, and even secu-
rity features like isolation are prone to vulnerabilities [24,27].
StrongBox [28] leveraged the secure IOMMU on the SoC to

isolate enclaves on integrated GPUs. It required updating the
IOMMU and flushing the IOMMU TLB to switch between
different execution environments.

HETEE [95] deployed a cluster of tamper-resistant servers
with commodity GPUs. These servers accessed secure accel-
erator boxes through a centralized FPGA-based controller,
achieving isolation through physical separation. Visor [66]
focused on privacy-preserving video analytics in the cloud. It
combined oblivious algorithms at the application level and a
hybrid TEE at the system level to provide isolation.

Honeycomb enforces isolation via confining the behav-
iors of GPU applications with static analysis. Honeycomb’s
approach complements the hardware limitations of existing
GPUs, reduces overheads, and creates opportunities for op-
timizations like directly sharing data via IPC. Performing
IPC in current GPU TEEs requires copying the data back and
forth through an encrypted shared memory buffer on the host.
Honeycomb combines confinements from static analysis and
system-level designs to reduce IPC into copying plaintext
within the device memory. IPC in Honeycomb is up to two or-
ders of magnitude faster than conventional methods, enabling
real-world applications to adopt a more modular architecture
with modest overheads.

GPU TEEs also enforce isolation between enclaves and
the untrusted host environment. They need to establish secure
communication channels between the application running
inside the CPU TEE and the GPU. Prior work implemented
end-to-end secure communication channels in the GPU hard-
ware [83], in the PCIe fabrics [44], or leveraging the secure
IOMMU inside the SoC [28, 45]. Honeycomb leverages ex-
isting work on secure I/O bus [1, 44, 65] or software-based
solutions [94] to establish secure communication channels.

Crypto-based secure computing on GPUs. Recent advances
in modern cryptography offer theoretically provable solutions
for privacy-preserving computing, such as Multi-Party Com-
putation (MPC), Garbled Circuit (GC) and Homomorphic
Encryption (HE). These algorithms have been used to real-
ize secure GPU computations for machine learning and data
analytics. On top of GAZELLE [47], Delphi [56] used GPU
to accelerate the HE-based linear operations, and also selec-
tively replace the expensive GC-based nonlinear ReLU opera-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 167

tors with polynomial approximations. CryptGPU [78] further
implemented both linear and nonlinear operations in MPC-
based protocols on GPUs. It embedded the secret-shared value
computations into floating-point operations, effectively uti-
lizing GPU hardware units. GForce [61] instead focused on
inference and addressed the high latency of non-linear opera-
tors by applying new quantization approaches and employing
GPU-friendly protocols. Finally, Piranha [84] was a general
and modular framework for accelerating secret-sharing-based
MPC protocols on GPUs, leveraging optimized integer-based
GPU kernels and memory-efficient in-place computations.

The cryptographic solutions do not keep the plaintext val-
ues in the untrusted platforms, so they are more resistant
to side-channel vulnerabilities. However, their substantially
higher computational cost causes huge slowdown compared
to native processing. Specialized hardware [50, 71, 72] and
trusted hardware units [93] have been proposed to accelerate
HE and MPC, but all require non-trivial hardware changes.

Slalom [81] took a different approach. It used a CPU TEE
to compute the non-linear parts, and offloaded encrypted data
to the untrusted GPU to process linear operations. Both con-
fidentiality and integrity are guaranteed. DarKnight [36] fur-
ther optimized the flow with a better encryption method that
greatly reduced the communication cost between CPU and
GPU as well as the computations involved in the CPU TEE.

Secure operating systems. There is fruitful research on improv-
ing the security of operating systems, including explicitizing
the security policies [73, 90], applying safe languages in the
OS kernel [13, 41], and proving properties via formal veri-
fications [52, 54]. Honeycomb utilizes techniques including
security monitors and virtualization [10, 79] to remove the
Linux kernel and the device driver out of the TCB.

Software fault isolation (SFI). Lightweight fault isolations [46,
57, 88] have been proven effective on the x86 architecture.
Essentially, validation in Honeycomb is a form of SFI for
GPU kernels. Honeycomb, however, combines the SFI with
an alternative memory layout and other system-level supports
to extend the fault isolation to a secure execution environment.

Polyhedral analysis. There is rich literature on utilizing
polyhedral representations for loop analysis and transforma-
tions [8,14,35,58]. Researchers have extended the approaches
to more general cases [12]. Honeycomb uses the polyhedral
analysis to model the effects of GPU memory access and to
ensure that the memory access conforms with the security
policy.

13 Conclusion

Honeycomb demonstrates that static analysis (validation) is a
practical and flexible technique to enforce security for GPU
applications. Combining with hardware and OS support, Hon-
eycomb’s validation guarantees powerful system-wide invari-
ants like every memory access in the applications conforms

with the security policies. As a result, Honeycomb has re-
duced the size of TCB by 18×, and provided a secure IPC
primitive that is 529× faster than conventional approaches.

The evaluation of Honeycomb on five representative bench-
mark suites, 23 applications in total, shows that Honeycomb
is practical and efficient to provide secure GPU TEEs for real-
world applications. It requires inserting few or none runtime
checks into the GPU kernels to validate them, thus the run-
time overhead is minimal. Large language model workloads
like BERT and NanoGPT have ∼2% runtime overheads on
Honeycomb.

The boom of GPU applications today requires continuous
innovations in GPU software/hardware stack. Our experience
on Honeycomb shows that static analysis has a lot of potential
to help explore novel designs in the full software/hardware
stack and to speed up innovations.

Acknowledgments

We would like to thank our shepherd, Christopher Rossbach,
and the anonymous reviewers for their comments and feed-
back on our work. We thank Quanxi Li, Shuoming Zhang
for their contributions on an early implementation of this
work. We also thank the Stanford Platform Lab and its affili-
ates. This work was partially supported by the National Key
R&D Program of China (2021ZD0110101) and the National
Natural Science Foundation of China (62072262, 62090024,
62232015).

References

[1] Advanced Micro Devices, Inc. AMD SEV-TIO: Trusted
I/O for secure encrypted virtualization. https://www.
amd.com/system/files/documents/sev-tio-whi
tepaper.pdf.

[2] Advanced Micro Devices, Inc. HIP: C++ heterogeneous-
compute interface for portability. https://github.c
om/ROCm-Developer-Tools/HIP.

[3] Advanced Micro Devices, Inc. ROCm. https://gith
ub.com/RadeonOpenCompute/ROCm.

[4] Advanced Micro Devices, Inc. AMD SEV-SNP:
Strengthening VM isolation with integrity protection
and more. White paper, 2020.

[5] Advanced Micro Devices Inc. and Hewlett-Packard Inc.
PCI express access control services (ACS), 2006.

[6] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Com-
pilers: Principles, Techniques, and Tools. Pearson Edu-
cation, Inc., 2007.

168 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm

[7] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd Austin. ANVIL: Software-based protection
against next-generation rowhammer attacks. In ASPLOS,
2016.

[8] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In CGO, 2019.

[9] Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Be-
lay, M. Frans Kaashoek, and Nickolai Zeldovich. Effi-
ciently mitigating transient execution attacks using the
unmapped speculation contract. In OSDI, 2020.

[10] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mazières, and Christos Kozyrakis. Dune:
Safe user-level access to privileged CPU features. In
OSDI, 2012.

[11] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky,
Michael Factor, Nadav Har’El, Abel Gordon, Anthony
Liguori, Orit Wasserman, and Ben-Ami Yassour. The
Turtles project: Design and implementation of nested
virtualization. In OSDI, 2010.

[12] Mohamed-Walid Benabderrahmane, Louis-Noël
Pouchet, Albert Cohen, and Cédric Bastoul. The
polyhedral model is more widely applicable than you
think. In CC, 2010.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility safety and performance in the SPIN Operat-
ing System. In SOSP, 1995.

[14] Uday Bondhugula, Albert Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral pro-
gram optimization system. In PLDI, 2008.

[15] Ben Boyter. Sloc Cloc and Code. https://github.c
om/boyter/scc.

[16] Broadcom Inc. Videocore IV 3D architecture reference
guide. https://docs.broadcom.com/doc/12358545.

[17] David Brumley and Dan Boneh. Remote timing attacks
are practical. Computer Networks, 2005.

[18] Erik Buchanan, Ryan Roemer, Hovav Shacham, and
Stefan Savage. When good instructions go bad: Gener-
alizing return-oriented programming to RISC. In CCS,
2008.

[19] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,

Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX King-
dom with transient Out-of-Order execution. In USENIX
Security, 2018.

[20] John Canny. A computational approach to edge de-
tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1986.

[21] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yin-
qian Zhang. Defeating speculative-execution attacks on
SGX with hyperrace. In DSC, 2019.

[22] Francis S Collins and Harold Varmus. A new initia-
tive on precision medicine. New England journal of
medicine, 2015.

[23] CVE. CVE-2020-5991. https://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2020-5991.

[24] CVE. CVE-2021-1098. https://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2021-1098.

[25] CVE. CVE-2022-20186. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=2022-20186.

[26] CVE. CVE-2022-21821. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-21821.

[27] CVE. CVE-2022-31609. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-31609.

[28] Yunjie Deng, Chenxu Wang, Shunchang Yu, Shiqing
Liu, Zhenyu Ning, Kevin Leach, Jin Li, Shoumeng Yan,
Zhengyu He, Jiannong Cao, and Fengwei Zhang. Strong-
Box: A GPU TEE on arm endpoints. In CCS, 2022.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding, 2019.

[30] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
SAFECode: Enforcing alias analysis for weakly typed
languages. In PLDI, 2006.

[31] Whitfield Diffie and Martin E. Hellman. New directions
in cryptography. IEEE Transactions on Information
Theory, 1976.

[32] Morris Dworkin, Elaine Barker, James Nechvatal, James
Foti, Lawrence Bassham, E. Roback, and James Dray.
Advanced encryption standard (AES), 2001.

[33] Petros Efstathopoulos, Maxwell Krohn, Steve VanDe-
Bogart, Cliff Frey, David Ziegler, Eddie Kohler, David
Mazières, Frans Kaashoek, and Robert Morris. Labels
and event processes in the Asbestos Operating System.
In SOSP, 2005.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 169

https://github.com/boyter/scc
https://github.com/boyter/scc
https://docs.broadcom.com/doc/12358545
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5991
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5991
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1098
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1098
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-20186
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-20186
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21821
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21821
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31609
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31609

[34] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Security analysis of emerging smart home applications.
In IEEE S&P, 2016.

[35] Tobias Grosser, Armin Groesslinger, and Christian
Lengauer. Polly - performing polyhedral optimizations
on a low-level intermediate representation. Parallel
Processing Letters, 2012.

[36] Hanieh Hashemi, Yongqin Wang, and Murali An-
navaram. DarKnight: An accelerated framework for
privacy and integrity preserving deep learning using
trusted hardware. In MICRO, 2021.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[38] Hugging Face Inc. BERT base model. https://hugg
ingface.co/bert-base-uncased.

[39] Hugging Face Inc. GPT-2. https://huggingface.co
/gpt2.

[40] Ralf Hund, Carsten Willems, and Thorsten Holz. Prac-
tical timing side channel attacks against kernel space
ASLR. In IEEE S&P, 2013.

[41] Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the software stack. SIGOPS Oper. Syst. Rev.,
2007.

[42] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely,
Yige Hu, Christopher J. Rossbach, and Emmett Witchel.
Telekine: Secure computing with cloud GPUs. In NSDI,
2020.

[43] Intel. Intel trust domain extensions. https://www.in
tel.com/content/www/us/en/developer/articl
es/technical/intel-trust-domain-extensions.
html.

[44] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethu-
madhavan, and Jaehyuk Huh. Heterogeneous isolated
execution for commodity GPUs. In ASPLOS, 2019.

[45] Jianyu Jiang, Ji Qi, Tianxiang Shen, Xusheng Chen,
Shixiong Zhao, Sen Wang, Li Chen, Gong Zhang, Xi-
apu Luo, and Heming Cui. CRONUS: Fault-isolated,
secure and high-performance heterogeneous computing
for trusted execution environment. In MICRO, 2022.

[46] Evan Johnson, David Thien, Yousef Alhessi, Shravan
Narayan, Fraser Brown, Sorin Lerner, Tyler McMullen,
Stefan Savage, and Deian Stefan. Trust but verify: SFI
safety for native-compiled Wasm. In NDSS, 2021.

[47] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. GAZELLE: A low latency framework
for secure neural network inference. In USENIX Secu-
rity, 2018.

[48] Andrej Karpathy. NanoGPT. https://github.com/k
arpathy/nanoGPT.

[49] Jehandad Khan, Paul Fultz, Artem Tamazov, Daniel
Lowell, Chao Liu, Michael Melesse, Murali Nandhi-
mandalam, Kamil Nasyrov, Ilya Perminov, Tejash Shah,
Vasilii Filippov, Jing Zhang, Jing Zhou, Bragadeesh
Natarajan, and Mayank Daga. MIOpen: An open source
library for deep learning primitives, 2019.

[50] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim,
Wonkyung Jung, John Kim, Minsoo Rhu, and Jung Ho
Ahn. BTS: An accelerator for bootstrappable fully ho-
momorphic encryption. In ISCA, 2022.

[51] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM
disturbance errors. In ISCA, 2014.

[52] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In SOSP,
2009.

[53] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In CGO, 2004.

[54] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge
King, and Parthasarathy Madhusudan. Verifying secu-
rity invariants in ExpressOS. In ASPLOS, 2013.

[55] Microsoft Inc. Secure boot. https://docs.microso
ft.com/en-us/windows-hardware/design/devic
e-experiences/oem-secure-boot.

[56] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks.
In USENIX Security, 2020.

[57] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-
Baptiste Tristan, and Edward Gan. RockSalt: Better,
faster, stronger SFI for the x86. In PLDI, 2012.

[58] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bond-
hugula. PolyMage: Automatic optimization for image
processing pipelines. In ASPLOS, 2015.

170 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/gpt2
https://huggingface.co/gpt2
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot

[59] Mayur Naik, Alex Aiken, and John Whaley. Effective
static race detection for Java. In PLDI, 2006.

[60] George C. Necula. Proof-carrying code. In POPL, 1997.

[61] Lucien K. L. Ng and Sherman S. M. Chow. GForce:
GPU-friendly oblivious and rapid neural network infer-
ence. In USENIX Security, 2021.

[62] NVIDIA Inc. FasterTransformer 5.3. https://github
.com/NVIDIA/FasterTransformer.

[63] NVIDIA Inc. Developing a Linux kernel module using
RDMA for GPUDirect. Technical report, 2022.

[64] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in PyTorch. 2017.

[65] PCI-SIG. Integrity and data encryption (IDE) ECN.
https://members.pcisig.com/wg/PCI-SIG/docum
ent/16599.

[66] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath
Setty, Stavros Volos, and Raluca Ada Popa. Visor:
Privacy-Preserving video analytics as a cloud service.
In USENIX Security, 2020.

[67] Moinuddin Qureshi, Aditya Rohan, Gururaj Saileshwar,
and Prashant J. Nair. Hydra: Enabling low-overhead
mitigation of row-hammer at ultra-low thresholds via
hybrid tracking. In ISCA, 2022.

[68] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are un-
supervised multitask learners. 2019.

[69] Adam Rodnitzky. Sensing breakdown: Waymo jaguar
I-pace robotaxi. https://www.tangramvision.co
m/blog/sensing-breakdown-waymo-jaguar-i-pac
e-robotaxi, 2022.

[70] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar,
and Christos Kozyrakis. Llama: A heterogeneous &
serverless framework for auto-tuning video analytics
pipelines. In SoCC, 2021.

[71] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev,
Srinivas Devadas, Ronald Dreslinski, Christopher Peik-
ert, and Daniel Sanchez. F1: A fast and programmable
accelerator for fully homomorphic encryption. In MI-
CRO, 2021.

[72] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev,
Nathan Manohar, Nicholas Genise, Srinivas Devadas,
Karim Eldefrawy, Chris Peikert, and Daniel Sanchez.
CraterLake: A hardware accelerator for efficient un-
bounded computation on encrypted data. In ISCA, 2022.

[73] Alan Shieh, Dan Williams, Emin Gün Sirer, and Fred B.
Schneider. Nexus: A new operating system for trustwor-
thy computing. In SOSP, 2005.

[74] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. GPUfs: Integrating a file system with GPUs.
In ASPLOS, 2013.

[75] Paul Staat, Johannes Tobisch, Christian Zenger, and
Christof Paar. Anti-tamper radio: System-level tam-
per detection for computing systems. In IEEE S&P,
2022.

[76] Standard Performance Evaluation Corporation. The
SPEC ACCEL benchmark suite. https://www.spec
.org/accel.

[77] Zhendong Su. Refutation unsoundness issue on a
QF_UFNIA instance. https://github.com/Z3Prove
r/z3/issues/6693, 2023.

[78] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu.
CryptGPU: Fast privacy-preserving machine learning
on the GPU. In IEEE S&P, 2021.

[79] Shuo Tang, Haohui Mai, and Samuel T. King. Trust and
protection in the Illinois Browser Operating System. In
OSDI, 2010.

[80] Mohammadkazem Taram, Ashish Venkat, and Dean
Tullsen. Context-sensitive fencing: Securing speculative
execution via microcode customization. In ASPLOS,
2019.

[81] Florian Tramèr and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. In ICLR, 2019.

[82] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In USENIX Security, 2017.

[83] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno.
Graviton: Trusted execution environments on GPUs.
In OSDI, 2018.

[84] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa.
Piranha: A GPU platform for secure computation. In
USENIX Security, 2022.

[85] Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael
Taylor, and Shuaiwen Leon Song. Q-VR: System-level
design for future mobile collaborative virtual reality. In
ASPLOS, 2021.

[86] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In IEEE S&P, 2015.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 171

https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://members.pcisig.com/wg/PCI-SIG/document/16599
https://members.pcisig.com/wg/PCI-SIG/document/16599
https://www.tangramvision.com/blog/sensing-breakdown-waymo-jaguar-i-pace-robotaxi
https://www.tangramvision.com/blog/sensing-breakdown-waymo-jaguar-i-pace-robotaxi
https://www.tangramvision.com/blog/sensing-breakdown-waymo-jaguar-i-pace-robotaxi
https://www.spec.org/accel
https://www.spec.org/accel
https://github.com/Z3Prover/z3/issues/6693
https://github.com/Z3Prover/z3/issues/6693

[87] A. Giray Yağlikçi, Minesh Patel, Jeremie S. Kim, Rokn-
oddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Has-
san, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, Saugata Ghose, and Onur Mutlu. BlockHam-
mer: Preventing rowhammer at low cost by blacklisting
rapidly-accessed DRAM rows. In HPCA, 2021.

[88] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
IEEE S&P, 2009.

[89] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu,
and Yuhao Zhu. Building the computing system for
autonomous micromobility vehicles: Design constraints
and architectural optimizations. In MICRO, 2020.

[90] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler,
and David Mazières. Making information flow explicit
in HiStar. In OSDI, 2006.

[91] Kaihao Zhang, Dongxu Li, Wenhan Luo, Wenqi Ren,
Björn Stenger, Wei Liu, Hongdong Li, and Ming-Hsuan
Yang. Benchmarking ultra-high-definition image super-
resolution. In ICCV, 2021.

[92] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei
Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun Cheng,
Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. AKG:
Automatic kernel generation for neural processing units
using polyhedral transformations. In PLDI, 2021.

[93] Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao.
PPMLAC: High performance chipset architecture for
secure multi-party computation. In ISCA, 2022.

[94] Zongwei Zhou, Virgil D. Gligor, James Newsome, and
Jonathan M. McCune. Building verifiable trusted path
on commodity x86 computers. In IEEE S&P, 2012.

[95] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang,
Jiangfeng Cao, Boyan Zhao, Zhongpu Wang, Yuhui
Zhang, Jiameng Ying, Lixin Zhang, and Dan Meng. En-
abling rack-scale confidential computing using hetero-
geneous trusted execution environment. In IEEE S&P,
2020.

172 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background
	Threat model
	Overview
	Validator
	Security monitors
	Secure and efficient IPC
	Discussion
	Security analysis
	Implementation
	Evaluation
	Experiment setup
	TCB
	End-to-end performance
	Overheads
	IPC performance
	Developer experience

	Related work
	Conclusion

