
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

RON: One-Way Circular Shortest Routing to Achieve
Efficient and Bounded-waiting Spinlocks

Shiwu Lo, Han-Ting Lin, Yao-Hung Hsieh, and Chao-Ting Lin, National Chung Cheng
University; Yu-Hsueh Fang, National Cheng Kung University; Ching-Shen Lin,

National Chung Cheng University; Ching-Chun (Jim) Huang, National Cheng Kung
University; Kam Yiu Lam, City University of Hong Kong;

Yuan-Hao Chang, Academia Sinica, Taiwan

https://www.usenix.org/conference/osdi23/presentation/lo

RON: One-Way Circular Shortest Routing to Achieve Efficient and
Bounded-waiting Spinlocks

Shiwu Lo♡, Han-Ting Lin♡, Yao-Hung Hsieh♡, Chao-Ting Lin♡, Yu-Hsueh Fang△, Ching-Shen Lin♡,

Ching-Chun (Jim) Huang△, Kam Yiu Lam♢, Yuan-Hao Chang◦

National Chung Cheng University♡, National Cheng Kung University△, City University of Hong Kong♢,
Academia Sinica, Taiwan◦

Abstract
As the number of processor cores increases, the efficiency of
accessing shared variables through the lock-unlock method
decreases. A NUMA-aware algorithm, which only considers
the transmission delay between processors, may not fully
utilize the connection network of a multi-core processor. This
limits the scalability of a multi-core processor due to the large
amount of low- and variable-cost data sharing between cores.
The problem is that the reduction in communication cost
cannot compensate for the increase in the time complexity of
the spinlocks, and the farthest transmission distance becomes
longer with more cores.

We propose a method called Routing on Network-on-chip
(RON)1 to minimize the communication cost between cores
by using a routing table and pre-calculating an optimized
locking-unlocking order. RON delivers locks and data in a
one-way circular manner among cores to (1) minimize global
data movement cost and (2) achieve bounded waiting time.
Microbenchmarks provide quantitative analysis, while multi-
core benchmarks show performance under various workloads.

In terms of user space performance, RON improves the
performance of Google LevelDB by 22.1% and 24.2% com-
pared to ShflLock and C-BO-MCS, respectively. In the kernel
space, RON is 1.8 times faster than using ShflLock for Google
LevelDB. RON-plock solves the problem of oversubscription
with constant space complexity and achieves 3.7 times and
18.9 times better performance than ShflLock-B and C-BO-
MCS-B, respectively.

1 Introduction

This paper primarily focuses on addressing the lock-unlock
problem under high contention. Despite the significant in-
crease in the number of cores in a central processing unit
(CPU), a fully shared cache memory system can limit the
bandwidth of the cache memory, creating a performance

1The source codes of RON can be found at https://github.com/shiwulo/ron-
osdi2023.

bottleneck. To overcome this issue, CPUs can maintain pri-
vate caches, and processors sharing these private caches are
referred to as Cache Coherent Non-uniform Memory Ac-
cess(NUMA) processors (abbreviated as ccNUMA).

Spinlocks and atomic operations are provided to ensure
the coherency of shared data in the cache, and programs ac-
cess shared data in critical sections (CS) [5, 6]. However,
minimizing data access latency is a crucial issue that can sig-
nificantly impact CPU performance in accessing shared data
in ccNUMA [12, 13]. This depends on the topology of the
Network on Chip (NoC) and the movement of data between
caches, which is triggered by tasks executing in the CPU.

When multiple tasks compete to enter a CS, granting the
closest task to the one that just released the lock access can
reduce data access latency. However, this can still be costly
as core-to-core transmission latencies vary in a CPU [14].
Additionally, allowing the core with the shortest transmission
latency to enter the CS may lead to adjacent cores having
exclusive access, leading to poor throughput [41].

Inter-core communication limits multicore processor scala-
bility [19, 20]. Transmission latency can be fixed or distance-
dependent. While monolithic die processors such as Intel
Xeon [2] exhibit similar inter-core communication latency,
Multi-Chip-Module (MCM) processors like AMD EPYC [2]
and Apple M1 Pro [2] use MCM technology to increase the
number of cores on a processor affordably and at scale. Next-
generation Intel Xeons also use MCM [3], but MCM pro-
cessors may have varying transmission latency between and
within chips.

NUMA-aware spinlocks [25–31] enable cores from the
same “NUMA node” to enter the CS in batches. This approach
is suitable for multi-core processors, such as AMD EPYC,
that have different transmission latencies. We can minimize
handover costs by dividing the cores in a multi-core processor
into mini-nodes, such as the east and west parts shown in Fig-
ure 1, and using a NUMA-aware approach to schedule them.
However, transferring locks between cores in a mini-node
is not considered in these algorithms. A layered approach
(e.g., cohort [25]) can address this, but using too many layers

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 17

https://github.com/shiwulo/ron-osdi2023
https://github.com/shiwulo/ron-osdi2023

(e.g., C-TKT-TKT-TKT) can make spinlocks complex and
expensive. Modern processors have non-uniform computing
power [47], where higher computing power implies a greater
ability to acquire locks. Batch-based algorithms often set a
“maximal batch size” periodically to prevent starvation and
maintain fairness. However, reducing the batch size for fair-
ness can decrease performance. Unfair lock allocation causes
unbalanced resource distribution and reduces throughput, as
discussed in Section 2.3.

The optimization principle for low-cost communication is
similar to that of data routing in computer networks. Although
computer networks can use complex algorithms to produce
the best route, such methods are often too expensive for small
CS in multi-core processors. Therefore, we pre-calculate the
shortest circular route including all cores, and the spinlock al-
gorithm generates a path of threads to enter the CS according
to the pre-calculated route. The “one-way circular shortest
routing” shortens the distance between cores, while the “short-
est routing” produces a local optimal solution for handover
cost. The “one-way” optimizes handover costs by transferring
locks in the direction where more threads are waiting, and
the “circular” approach limits the number of times a thread
waits to enter the CS. Thus, we schedule tasks on the cores to
enter CS in a “one-way circular shortest routing” manner to
improve the performance and fairness.

This paper makes three main contributions. Firstly, we
propose the simple yet effective concept of “one-way circular
shortest routing” to solve the fairness and efficiency issues
in spinlocks. Secondly, we identify that long-term fairness
alone is insufficient for modern processors, which have cores
with varying capabilities to grab locks due to differences in
computing frequency. Finally, we provide insights on how
single-core spinlocks can work alongside multi-core spinlocks
without compromising efficiency and fairness.

In Section 2, we discuss the limitations of NUMA-aware
spinlocks in minimizing transmission latency in multi-core
processors and the negative impact of unfair spinlocks on
throughput. Section 3 presents related work in the field. In
Section 4, we propose our fair and efficient spinlock algo-
rithm for ccNUMA. Section 5 addresses performance under
oversubscription, while Section 6 compares RON with two
well-known algorithms. Section 7 discusses the advantages
and disadvantages of RON compared to ShflLock and Linux’s
qspinlock, and Section 8 concludes the paper.

2 Preliminary and Motivation

2.1 Data Coherence in ccNUMA
Figure 1 shows an example of the multi-core architecture, in
which the connection network of each core group is similar
to the CPU CompleX (CCX) of Advanced Micro Devices,
Inc. (AMD). In a multi-core architecture, data stored in the
cache memory can be shared among the cores. Cache coher-

ence non-uniform access (ccNUMA) uses snoop-based and/or
directory-based cache coherence algorithms to maintain con-
sistency of shared data in each cache memory [42]. The snoop
method broadcasts messages such as “some shared data has
been updated”, whereas the directory-based method allows
point-to-point communication between nodes. A node can be
a core or a group of adjacent cores.

system
 bus

C-to-C bus

core core

core
E

core
F

C-to-C bus

core
B

core
A

core
C

core
D

Figure 1: An example NoC architecture of ccNUMA.

2.2 Cost of Spinlocks on Multi-core CPUs

We define the serializing cost as the cost of allowing multiple
threads to have mutually exclusive access to shared data. Se-
rializing costs are divided into “contention” and “handover”.
The contention cost is the cost for determining the next task
that can enter the CS. It depends on the data structure and data
access method used by a spinlock. For example, the ticket
lock [43] is centralized, while MCS spinlock (or called “MCS”
for short) [44] is decentralized. In the ticket lock, all threads
continuously monitor a variable of the ticket lock, and this
can generate a lot of traffics in the NoC. The contention cost
also depends on how the threads are granted to enter the CS.
The raw spinlock (e.g., GNU’s pthread_spin_lock [46], ab-
breviated as “Plock”) relies on the NoC to determine when
the first thread can enter the CS. The MCS spinlock [44]
allows each thread to wait on a different variable. Therefore,
MCS spinlocks prevent atomic operations from triggering
excessive bus traffic.

The handover cost depends on the speed of transferring
shared data between the lock-holding thread and the succes-
sive thread. Because spinlock is a shared data structure, a
smaller handover cost can also slightly reduce the contention
cost. As the example in Figure 1 shows, the processor is di-
vided by two parts, i.e., the west and east parts. The two parts
are connected through a system bus. The handover cost of
using the C-to-C bus only is 1. The handover cost between
the core and the system bus is related to the distance between
the core and the system bus. B, C, and F are far away from
the system bus, so the handover cost is 3, and the handover
cost of A, D, and E is 2.

In conventional NUMA-aware spinlocks, the order
of entering the CS can be arbitrary, for example,
A→D→B→C→F→E. Since A, B, C, and D have the same
communication cost, they belong to the same group (i.e., mini-
node). The same goes for E and F. The handover cost of this
order is (A, 1, D, 1, B, 1, C, 3, 3, F, 1, E)=10. This paper pro-
poses to use one-way circular shortest routing to minimize

18 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

handover costs. By scheduling the order of entering the CS
as A→B→C→D→E→F, the handover cost is reduced to (A,
1, B, 1, C, 1, D, 2, 2, E, 1, F)=8. In this example, the one-way
circular shortest routing improves the performance by 20%
(i.e., 10−8

10).

2.3 Throughput or Fairness? Take Both !
Various locking techniques have been proposed [39] to im-
prove system throughput in varying levels of contention. Lock
algorithms such as Test-And-Set (TAS) [46] and Test-and-
Test-and-Set (TTAS) [46] can be used in low-contention
systems. Algorithms like C-BO-MCS [25] and Shuffling
(ShflLock) [26] were designed to reduce the handover cost
under high contention with hierarchical design or local spin-
ning.

Moreover, the fairness is an issue that needs to be consid-
ered to better utilize the protected resources. According to the
level of fairness, we define fairness as follows:

1. Probabilistic fairness: The chance of each task entering
the critical section is the same in probability.

2. Bounded waiting: The number of waiting tasks does not
exceed a certain multiple of the number of tasks.

Take Test-Test-And-Set (TTAS) [46] as an example. The
probability of each thread obtaining a lock on a single core
processor system is related to the proportion of the CPU
time that the thread can acquire. In such a situation, the
TTAS spinlock satisfies probabilistic fairness. Currently,
GNU’s Pthread library use TTAS spinlock to implement
pthread_spin_lock().

A spinlock algorithm is conformed to bounded waiting
when it can limit the number of times that other tasks are
inserted before a specific task. Ticket lock and MCS [44] are
bounded waiting spinlocks. Both of them are based on first-in-
first-out (FIFO) mechanism. Although FIFO allows all tasks
to enter CS in a fair manner, FIFO also limits the performance
of spinlocks on multi-core/NUMA machines. This is because
FIFO cannot shorten the data transmission latency.

Most NUMA-aware spinlocks algorithms balance perfor-
mance and fairness by preventing threads from waiting too
long, but some cores may have higher computing power than
others due to differences in manufacturing processes [47].
The slight difference in speed will result in the core with
the advantage always being able to acquire the lock success-
fully. Just like in a 100-meter race, the one who gets first
place is always Jamaica’s Usain Bolt, even though he is only
0.1 seconds faster than the second-place runner. In modern
multi-core processors like the AMD 2990WX, some cores
have significantly higher lock acquisition capabilities than
others. For instance, the lock acquisition capability of cores
0-7 is 20.6 times greater than that of cores 8-31 (refer to
Section 6.2.2). As a result, conventional NUMA-aware algo-
rithms may not be able to ensure equal access to the critical
section for all threads/cores within a reasonable period.

With joint consideration of both throughput and fairness,
we propose a spinlock method that creates one-way circular
shortest path and uses this path to minimize the handover cost
and ensure bounded waiting time.

3 Related Work

While TTAS spinlock [46] is a simple method to implement
POSIX spinlocks in GNU (abbreviated as “Plock”) and en-
sures the consistency of shared data, it is unfair because it
tends to provide locks to neighboring cores [21]. Unfairness
doubles the execution time of a multi-thread program and
causes starvation as shown in [41]. It also increases the vari-
ability of latency, making it difficult to guarantee the service
quality. The non-scalability of Plock is another serious prob-
lem. As shown in [22, 23], although most critical sections are
short, increasing the number of cores can cause a system to
collapse due to non-scalable locks.

Cohort [25] is a software framework that can combine two
NUMA-oblivious locks into a scalable NUMA-aware lock.
NUMA nodes compete for the global lock, and unless all
threads on the NUMA node leave the CS, the NUMA node
will not release the lock. Therefore, threads belonging to the
same NUMA node are grouped to enter the critical section,
reducing handover costs. Shuffle lock [26] and CNA [27] also
use grouping to improve performance. Both are suitable for
use with a Linux kernel. However, they cannot effectively re-
duce the latency of data transmission nor avoid unfairness in
a multi-core processor. To obtain good performance under the
more complex NUMA architecture, HMCS [28] is based on
the concept of Cohort [25] and changes the number of lock lev-
els from 2 to 4. The AHMCS [29] and CLoF [48] algorithms
include a mechanism for managing contention and multiple
locking methods, allowing different locking methods to be
used in different situations. CST-semaphore and CST-mutex
locks are applicable to NUMA that support parking [31].

Only dedicated threads or the threads currently holding the
lock can execute the code of the CSs of each thread in [32].
In [33], the researchers further proposed turning CSs into an
asynchronous execution. Although these methods can opti-
mize data access latency to global data, they take longer to
access local data because the code of a CS executes on a
specific core.

Programmers can optimize software to better utilize the
NoC of ccNUMA when the software uses data-level paral-
lelization and pipe-lining [7, 34, 37, 38]. Stefan Kaestle et al
proposed broadcast trees [4] to reduce the communication
cost of NUMA machines. However, for multi-threaded pro-
grams that use locking mechanisms to protect shared data,
these methods may not be suitable.

4 Routing On Network-on-Chip (RON)

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 19

In Section 4, we introduced RON, a NUMA-aware algo-
rithm that is specifically designed for highly competitive and
multi-core environments. In Section 5, we combined RON
with simple spin locks, such as plock or ticket lock, to achieve
scalability when the number of threads exceeds the number of
cores. As most applications typically have more threads than
cores, we utilized the RON-plock combination algorithm in
our application-level benchmarks.

4.1 The Idea

In this section, we propose a design called Routing On
Network-on-Chip (RON) that aims to minimize the handover
cost between cores with low contention cost while ensur-
ing fairness in scheduling the threads waiting to enter a
CS. Minimizing handover costs can also improve the effi-
ciency of atomic operations, which are based on atomic op-
erations, which rely on cache coherence protocols (such as
snoop+dictionary) on multi-core systems. This, in turn, can
improve the performance of locks that suffer from contention.

We propose a concept of reducing the total handover cost
by scheduling threads waiting to enter the CS in a specific or-
der. This order can be compared to a train passing through all
stations. The ownership of the lock is like the train, and each
core is like a station. All waiting threads acquire the lock own-
ership in order, reducing the total handover cost. Engineers
optimize train tracks to pass through all stations in the most
efficient way possible, even though the route from station A
to station B may not be the shortest. Please note that the train
track is a one-way circular route. Similarly, we define a global
schedule for all cores with waiting threads in the system based
on the minimum total handover costs, instead of determining
the scheduling order using handover costs alone. One-Way
Circular Routing can often achieve global optimization. By
minimizing total handover costs, we can also improve the
efficiency of atomic operations, thereby improving the perfor-
mance of locks that suffer from contention.

Since the code of spinlocks cannot be too complicated, it
is impractical to dynamically calculate the priority of threads
waiting to enter the CS. We assume that there is a thread on
each core waiting to enter the CS, and then pre-calculate an
optimal lock transfer path. The pre-calculate lock transfer path
called the Traveling Salesman Problem Order (TSP ORDER)
of the cores with an efficient TSP algorithm [40]. For the
same processor model, the TSP ORDER is the same. RON
follows the TSP ORDER to let threads that want to access
shared data enter the CS one by one.

To find the TSP ORDER for a multi-core processor, we
created a benchmark program to calculate the transmission
latency between cores (see Section 6.2.1). Using this informa-
tion, we built a fully connected weighted graph of cores and
solved the TSP problem with a widely-used algorithm [40].
This allowed us to obtain the TSP ORDER that passes through
all cores in the graph, which we use for lock ownership trans-

fer to reduce the handover cost with low contention cost.

4.2 The Algorithm
Algorithm 1 presents the RON procedure for one spinlock. We
use an array-based method and assume that each core has at
most one thread. This method can achieve higher performance
under high load compared to using a linked list (similar to
MCS [44]). For each spinlock, the array-based RON not only
has a “wait flag” for each core, but also places wait flags of
adjacent cores, so as to increase the cache efficiency. The data
structure of RON is similar to queue spinlock [24] and Linux’s
qspinlock with constant space complexity. However, queue
spinlock [24] cannot handle the situation in which there are
more threads than cores (i.e., oversubscription). In the case
of oversubscription, Linux’s qspinlock does not support all
tasks to enter CS in the FIFO order to guarantee bounded
waiting. Note that we will introduce how to support oversub-
scription based on an array-based RON in Section 5. It should
be noted that RON is a heuristic algorithm and can provide
decent solutions but cannot guarantee optimal solutions. The
worst case of RON occurs in low contention scenarios where
multiple cores access the same memory locations. To mitigate
this issue, cache prefetching can be used to predict and fetch
the data, reducing the number of cache misses and improving
performance.

The first four lines of Algorithm 1 define the variables:

• NUM_core: This variable indicates the total number of
cores on the system. It is a system-scope variable.

• TSP_ID_ARRAY[]: This array stores the mapping of
each core ID to its corresponding “TSP ORDER ID”
(i.e., TSP_ID), where TSP_ID is the lock transfer order
of a core. When a lock is transferred to a core, the thread
on this core can be checked to see whether it can enter
the CS. This is a per-process variable, and each process
can have its own routing path (TSP ORDER) because
each process owns a different number of cores and can
have a different TSP ORDER

• TSP_ID: This is the “TSP ORDER ID” of a core, and
each thread has its “local version” of TSP_ID. Thus, each
thread on a different core will get a different value when
it accesses the TSP_ID. This is a per-thread variable. We
used “thread_local”, a C11 keyword of C language, to
declare per-thread variable in Algorithm 1 (Line 2).

• InUse: If this is “false”, there is no thread in the CS.
This is a per-lock variable.

• WaitArray[]: This array is to indicate which cores’
threads are waiting to enter the CS protected by this
lock. When a thread wants to enter a CS, its correspond-
ing WaitArray[TSP_ID] is set to 1. When the other
threads set their corresponding flag in WaitArray[] to

20 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0, the thread can enter the CS. This is a per-lock array.
In Section 7, we will provide an algorithm for sharing
WaitArray[] between different locks.

In Algorithm 1, Lines 3 and 5–8 initialize the variables. Line
5 uses getcpu() to get the core ID of the running thread, and
uses the core ID to get the TSP ID of the core by looking up
the TSP_ID_Array[]. The spin_lock() in Line 10 informs
other threads that the caller thread wants to enter the CS.
When no other thread is in the CS, the caller thread can enter
the CS (Lines 14-16). Otherwise, it waits for the previous
thread in the TSP ORDER to leave the CS (Lines 12-13).
Because “checking whether there is no thread in CS (lines
19-21)” and “setting InUse (line 22)” cannot be executed
atomically, it is necessary to simultaneously check InUse
and waitArray[TSP_ID] in a while loop. Additionally, Line
14’s cmp_xchg() uses TTAS, a technique commonly used in
spinlock implementation to reduce coherence traffic on the
cache line.

Algorithm 1 The RON Algorithm

1 int TSP_ID_ARRAY [NUM_core] ; /*per-process*/
2 thread_local TSP_ID ; /*thread-local-storage*/
3 atomic_bool InUse=false ; /*per-lock*/
4 atomic_int WaitArray [NUM_core] ; /*per-lock*/
5 TSP_ID = TSP_ID_ARRAY [getcpu ()]
6 void spin_init ()
7 for (each element in WaitArray)
8 element = 0 ;
9 void spin_lock ()

10 WaitArray [TSP_ID]= 1 ;
11 while (1)
12 if (WaitArray [TSP_ID]== 0)
13 return ;
14 if (cmp_xchg(&InUse , false , true)) :
15 WaitArray [TSP_ID] = 0
16 return ;
17 void spin_unlock ()
18 for (int i=1 ; i<NUM_core ; i++)
19 if (WaitArray [(i+TSP_ID)%NUM_core]== 1)
20 WaitArray [(i+TSP_ID)%NUM_core]= 0 ;
21 return ;
22 InUse=false ;

The spin_unlock() in Lines 18-21 finds the next thread
that wants to enter the CS. Lines 18-20 treat WaitArray[]
as a circular queue. From the next position of the caller thread
(where i is between 1 and NUM_core.), it searches for the
first thread wanting to enter the CS. Because the thread that
wants to enter the CS will set WaitArray[] based on its
TSP_ID (Line 10), the first thread found in the loop of Lines
18-20 is the next thread in the TSP ORDER. In Line 20,
WaitArray[] of the next thread is set to 0, and the next thread
leaves spin_lock() (Lines 12-13) to enter the CS. If no
thread is waiting, InUse is set to false (Line 22).

4.3 Correctness

A method must satisfy the following three conditions to
ensure the correctness of a CS: (1) mutual exclusion, (2)
progress, and (3) bounded waiting. At a minimum, the algo-
rithm used in a software system must satisfy conditions 1
and 2. For instance, GNU’s pthread_spin_lock satisfies only
conditions 1 and 2, while RON satisfies all three. However,
we provide proof of bounded waiting only due to space limi-
tations.

Bounded Waiting: We will prove that the maximum number
of waits is the number of threads when each core has at most 1
thread. Each core has a unique TSP_ID, and these TSP_IDs of
cores form a circular queue. RON allows all threads to enter
a CS in the order of the TSP ORDER. In the worst case when
thread X is ready to enter a CS, all threads on the cores whose
TSP ORDERs are before the core of thread X want to enter
the CS. Assuming that the total number of threads is “num,”
thread X needs to wait for (num - 1) threads to leave the CS.
In Section 5, RON can support multiple threads on a core. In
this case, the maximum number of waits is also the number
of threads minus one.

4.4 An Example

RON does not prioritize threads for entering the CS based
on arrival order, but instead uses the TSP ORDER of each
core. While this approach may not generate the optimal solu-
tion in all cases, it provides a heuristic algorithm that works
efficiently. Let us use the CPU architecture of AMD as an
example to illustrate the mechanism of RON. As Figure 2
shows, two CPU CompleXes (CCXs) are connected by two
point-to-point buses. Each CCX contains four cores that are
fully connected by a high-speed network. First, we assume
that the TSP ORDER of the cores is 3 → 0 → 1 → 2 → 5
→ 6 → 7 → 4. The TSP ORDER of a core can be obtained
by TSP_ID_ARRAY[]. Taking core 3 as an example, we can
find that its TSP ORDER is 0 in TSP_ID_ARRAY[3]. We
also assume that at time t0, the thread on core 3 is ready to
enter the CS. Therefore, InUse is set to true (Line 14 in Al-
gorithm 1) and this thread on core 3 enters the CS. Then,
all entries of WaitArray[] in the graph are null (value 0)
at time t0. At time t1, the threads on cores 1, 5, 2, and 6 ar-
rive and are in the Lock Session (LS). Taking the thread on
core 1 as an example, its TSP ORDER is TSP_ID_ARRAY[1]
= 2. Therefore, WaitArray[2] is set to 1 (Line 10), and
the thread waits for either WaitArray[2] (Line 12) or
InUse (Line 14) to become 0. The TSP_IDs of cores 1, 5,
2, and 6 are 2 (TSP_ID_ARRAY[1]), 4 (TSP_ID_ARRAY[5]),
3 (TSP_ID_ARRAY[2]), and 5 (TSP_ID_ARRAY[6]), respec-
tively, and their WaitArray[] values are set to 1 accordingly.

At time t2, the thread on core 3 leaves the CS. Because
the TSP ORDER of core 3 is 0, the search will start from
next TSP ORDER (i.e., TSP_ID 1 in this case). Thus, the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 21

CCX 0

0

1

3

2
CCX 1

4

5

7

6

t0
1 1 1 1t1
1 1 1t2
1 1t3
1t4

t5

WaitArray changes
according to time.

t6

index 0 1 2 3 4 5 6 7

value 1 2 3 0 7 4 5 6

TSP_ID_ARRAY

Figure 2: An example of RON.

value of WaitArray[1] is examined (Lines 18-21), and the
first “1” appears in WaitArray[2]. Therefore, the thread in
core 3 sets WaitArray[2] to 0. Since the thread in core 1 has
been waiting for WaitArray[2] to become 0 (Line 12), it can
now enter the CS. Similarly, at times t3 and t4, the threads
in cores 2 and 5 enter the CS, respectively. At time t6, the
thread in core 6 wants to leave the CS, so it finds all entries
of WaitArray[] equal to 0. Therefore, it sets InUse to false
(Line 22).

In this example, we assume that the handover cost within
the same CCX is 1 and that across CCXs is 3. If the CS is
entered in the FIFO order (3, 1, 5, 2, 6) as in MCS and Ticket,
the total handover cost will be 1 + 3 + 3 + 3 = 10. However,
according to RON, it will be entered in the order 3, 1, 2, 5, 6,
so the total handover cost is only 1 + 1 + 3 + 1 = 6.

5 More Threads than Cores

In real applications, there may be a situation where the num-
ber of running threads is more than the number of cores. We
call this oversubscription. RON approach proposed in Sec-
tion 4.2 cannot handle oversubscription. In this section we
propose two methods to solve this problem: RON-ticket and
RON-plock. The former provides better fairness (i.e., bounded
waiting), while the latter provides better performance and
probabilistic fairness. In the following, we first point out that
it is not necessary to run all threads with NUMA-aware spin-
lock algorithms in Section 5.1. By utilizing this observation
without violating fairness, we present our solution on support-
ing oversubscription in Section 5.2.

5.1 Lock Contention Problems on a Core

In oversubscription, multiple threads can run on a single core,
which differs from the situation where competing threads
are spread across multiple cores. In Figure 3-(a), T hr1 to
T hr4 correspond to core1 to core4. core1 and core2 belong to
NUMA node1, and the other cores belong to node2. If Plock is
used and T hr4 releases the lock, T hr3 has more probability of
entering the CS because T hr3 and T hr4 are in the same node.

When T hr3 and T hr4 continue to request entering the CS,
then T hr1 and T hr2 may not have the opportunity to enter the
CS. In ticket lock, these threads enter the CS in FIFO order.

node1

core1 core2

Thr1 Thr2

core
node2

core3 core4

Thr3 Thr4

(a)

Thr1 Thr2 Thr3 Thr4

(b)

Figure 3: Threads on NUMA nodes vs. threads on a core.

Figure 3-(b) is the same as Figure 3-(a), but all threads
belong to the same core. Taking Linux as an example, the
execution order of threads on the same core depends on the
scheduler. If Plock is used, when T hr4 (abbreviation for thread
4) releases the lock, the next task that enters the CS is the task
executed after T hr4. Therefore, the chance of T hr1 to T hr3
entering the CS is proportional to their chance of getting CPU
time. Because RON guarantees that each core has an equal
chance of obtaining the lock, the fairness of threads obtaining
the lock on different cores depends on whether the scheduler
is fair. The fairness of the ticket lock is the same as in the
example shown in Figure 3-(a).

5.2 RON with Oversubscription Support
In RON, the element in WaitArray indicates whether a thread
on that core is waiting to enter the CS. In this section, each
element of WaitArray indicates how many threads are waiting
for the lock on that core (for RON-ticket and RON-plock) and
the order in which they enter the CS (for RON-ticket).

The RON-ticket is given in Algorithm 2. Each lock has an
array consisting of the elements corresponding to each core
and the elements consist of two variables: grant and ticket.

Each core has its own nWait variable, which behaves more
like thread-local storage. When a thread is waiting to enter
the CS from the LS, it uses the atomic_fetch_add(nWait, 1)
operation to check whether there is a thread in the CS or not.
This operation is performed on the nWait variable of the core
that the thread is running on. If no thread is in the CS, then
the waiting thread can enter. To enter the CS, the thread uses
the atomic_fetch_add(ticket, 1) operation to set the l_ticket
variable (Line 6). The thread then waits on the while loop
(Lines 7-10) until it is its turn to enter the CS. If the thread is
not the next thread that should enter the CS of the core (that
is, grant − l_ticket ̸= 1), the thread releases the CPU (Lines
8-9) and tries again later. When a thread leaves the CS, it first
checks to see if there is any waiting thread (Line 13). If there
is a waiting thread, it searches for a core with a waiting thread
(Lines 14-19). Once a core with a waiting thread is found, it
increases the grant of that core by 1 (Line 17), allowing the
waiting thread to enter the CS.

The RON-plock is shown in Algorithm 3. Each lock has an
array consisting of the elements corresponding to each core
and the elements consist of two variables: numWait and lock.

22 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2 The RON-ticket Algorithm

1 struct TicketLock {grant=0 , ticket=1 ; }
2 atomic_int nWait=0 ; //per-lock variable
3 TicketLock WaitArray [NUM_CORE] ; //per-lock

variable
4 TSP_ID = TSP_ID_ARRAY [getcpu ()]
5 void spin_lock ()
6 if (atomic_fetch_add(&nWait , 1) == 0) return ;
7 l_ticket = atomic_fetch_add(&WaitArray [TSP_ID

] . ticket , 1) ;
8 while (1)
9 if (WaitArray [TSP_ID] . grant−l_ticket ̸=1)

10 sched_yield () ;
11 if (l_ticket==WaitArray [TSP_ID] . grant) return ;
12 void spin_unlock ()
13 if (atomic_fetch_sub(&nWait , 1) == 1) return ;
14 next = (TSP_ID+1)%NUM_core ;
15 while (1)
16 if (WaitArray [next] . grant − WaitArray [next] .

ticket ≤ −2)
17 atomic_inc(&WaitArray [next] . grant , 1) ;
18 return ;
19 next = (next+1)%NUM_core ;

Each thread that wants to enter the CS must use atomic_inc()
to set the numWait to which it belongs. When the lock of a
core is HAS_LOCK, the thread currently executing on the
core can enter the CS (Lines 7-8). To increase cooperation be-
tween the lock-unlock algorithm and the scheduler, yield()
can be used when multiple threads are executing on a single
core. Although yield() is a system call and can have over-
head equivalent to futex(), for user-mode threads, it can be
a user-mode function that transfers control to other threads
on the same core. When the thread leaves the CS, it searches
for the next core whose numWait is not equal to 0 and sets
the lock of that core to HAS_LOCK. If necessary, yield()
can be used again to allow other waiting threads on the same
core to proceed. The proof of correctness is shown in the
supplementary material.

6 Performance Evaluations

6.1 Evaluation Platform and Settings

In the performance evaluation experiments, we used a AMD
Threadripper 2990WX with 64 cores (/32 physical cores) with
a GNU/Linux operating system. The kernel version was 5.4.
The compiler used gcc-9.3 with the optimization parameter
-march=znver1 -O3, which enabled gcc-9.3 to perform the
optimization for the Threadripper microarchitecture. All ex-
periments were conducted 100 times, and their results were
averaged. The source codes of RON in this section can be
found at https://github.com/shiwulo/ron-osdi2023.

For a more complete comparison with other methods, we
used the LiTL framework [39]. We compiled RON as a shared
library. We wrote Algorithm 3 into a program that is compiled

Algorithm 3 The RON-plock Algorithm

1 struct PLock {numWait=0 , lock=MUST_WAIT ; }
2 atomic_bool InUse=false ;//per-lock variable
3 PLock WaitArray [NUM_core] ; //per-lock variable
4 void lock ()
5 atomic_inc(&WaitArray [TSP_ID] . numWait) ;
6 while (1)
7 if (cmpxchg(&WaitArray [TSP_ID] . lock ,HAS_LOCK ,

MUST_WAIT))
8 return ;
9 if (cmpxchg(&InUse , false , true))

10 return ;
11 void unlock ()
12 atomic_dec(&WaitArray [TSP_ID] . numWait) ;
13 for (int i = 1 ;i < NUM_core+1 ;i++)
14 if (WaitArray [(TSP_ID+i)%NUM_core] . numWait>0)
15 WaitArray [(TSP_ID+i)%NUM_core]=HAS_LOCK ;
16 return ;
17 InUse=false ;

with LiTL. By using LD_PRELOAD, RON can be compared
with other methods on different benchmarks. AMD Thread-
ripper is a chip-NUMA. There are four dies in the chip. Each
die has two CCXs, each of which has four cores. Moreover,
the Linux numastat command shows that 2990WX has 4
NUMA nodes.

The cache coherence protocol operates at the cache line
granularity, which means that low latency also implies high
bandwidth. Therefore, the transmission latency obtained from
the experiments shown in Figure 4 not only informs the design
of inter-core locking algorithms but also provides insights into
the underlying hardware’s performance characteristics. By
profiling the inter-core latency, an operating system can op-
timize the lock-unlock algorithms accordingly. Furthermore,
detailed microarchitecture information about the NoC from
CPU vendors can lead to even better performance. In calcu-
lating the transmission latency from core X to core Y, we
make core X read 100 integers (2 cache lines in this case)
from DRAM, and then we calculate the time for core Y to
read the 100 integers from core X’s cache. As 2990WX is
a ccNUMA architecture, Y will read 100 integers from X’s
cache. It should be noted that not all dies on a 2990WX are the
same due to differences in the manufacturing process. AMD
puts the best cores on die 0, which means that the transmis-
sion latency of die 0 is lower. AMD and Intel support “AMD
Turbo Core” and “Turbo Boost Max 3.0”, respectively. The
operating system can learn how to make better use of the CPU
by being aware of the best die. However, traditional NUMA-
aware spinlocks cannot achieve the fairness they claim in such
processors, which will be discussed in Section 6.2.2.

After obtaining the handover time (i.e., transmission speed)
for each pair of cores, we used Google OR-Tools [40] (A
solver for NP-complete problems, providing a usable solu-
tion.) to determine the TSP ORDER for the cores as shown in
Figure 4. We see that the TSP-ORDER first visits all the cores

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 23

https://github.com/shiwulo/ron-osdi2023

in the same CCX and then the CCXs on the same die. Finally,
the TSP-ORDER visits each die in the clockwise direction.
Then, we generate TSP_ID_ARRAY[] according to the TSP
ORDER for Algorithm 1.

core-to-core
communications

TSP ORDER

CCX2
294ns

CCX3
288ns

CCX6
294ns

CCX7
289ns

565ns
556ns

CCX0
283ns

CCX1
277ns

CCX4
291ns

CCX5
284ns

563ns
554ns

435ns
428ns

571ns
563ns569ns

559ns

569ns
636ns

564ns
577ns

627ns
636ns

die 0

die 2 die 3

die 1

Figure 4: The core-to-core communication latencies and TSP
ORDER of AMD 2990WX

We used microbenchmarks in Section 6.2 to analyze the
characteristics of the algorithm, and used general benchmarks
in Section 6.3 to understand the performance under various
usage scenarios. We compared RON with the following al-
gorithms. Please note that what we describe below are the
performance characteristics of each algorithm, not the imple-
mentation details.

1. Plock: The GNU Pthread’s spinlock. A thread that in-
tends to enter a CS will test the lock until its value equals
to 0. When a thread leaves a CS, it sets the lock to 0. The
first core that observes that the lock is 0 can enter the
CS. The closer to the core the lock is released, the more
likely it is for the core to enter the CS.

2. Ticket: This method allows each task waiting to enter the
CS to have a “ticket” number. The thread waits until the
“grant” is equal to its ticket number. The wait loops of
all waiting threads use atomic instructions to continually
query the value of the “grant”, which consumes limited
NoC bandwidth.

3. MCS: Because all tasks waiting to enter the CS are
queued in a linked list, when a thread leaves the CS,
it only needs to set the “wait flag” of the next task to
false. Setting the wait flag of next thread is more efficient
than multicasting when the CPU supports a directory
cache coherence algorithm. MCS does not optimize the
interconnect latency in multi-core architectures.

4. C-BO-MCS: The thread should first acquire the MCS
lock of the NUMA node to which the thread belongs.
Then, it must compete with threads on other NUMA
nodes to obtain a back-off lock. If a core neighbors
to the core that obtains the C-BO-MCS lock, it has a
higher priority to enter the CS. With this method, threads
belonging to the same node can be grouped together to
reduce handover costs.

5. ShflLock (also known as Shuffle Lock): This also uses
grouping to improve performance. Shuffle can specify

that a thread in the queue is responsible for shuffling.
However, when the task that is allowed to enter the CS
is shuffling the queue, the thread cannot enter the CS
immediately and system performance may decrease.

6.2 Microbenchmarks for Quantitative Analy-
sis

6.2.1 Evaluation Platform and Settings

Here, we analyzed each spinlock method in a quantitative
manner through a controllable microbenchmark. In each set
of experiments in this section, each thread is bound (i.e.,
sched_setaffinity()) to a hardware thread and executes
Algorithm 4. Because we have SMT (Simultaneous multi-
threading) enabled, there are 2 hardware threads per core.
The total number of software threads is 64. In the while loop
(Lines 2–9), a thread in the lock section (LS) (Line 3) re-
quests entry into the critical section (CS) (Lines 4-5). Af-
ter the thread enters the CS, each entry in SharedData is
read and written, and the lock is released into the unlock
section (US) (Line 6) when the thread leaves the CS. The
clock_gettime(), defined in the POSIX.1-2001 standard,
is called in the non-critical section (nCS) (Lines 7-9) until the
elapsed time of the nCS exceeds the value of nCS_size±15%
in Line 9. We first evaluate the throughput (Figure 5) and
fairness (Figure 6) of each algorithm, and then analyze their
efficiency in terms of handover (Figure 7) and contention
(Figure 8). Please note that in these 4 experiments, except for
adding the code for measuring time (i.e., clock_gettime())
and the code for statistics, the experimental parameters are
the same.

Algorithm 4 Testing Program and Measurements

1 void thread () :
2 while (1) :
3 spin_lock () ; //LS
4 for (each element in SharedData) : //CS
5 element = element + 1 ; //CS
6 spin_unlock () ; //US
7 t = clock_gettime () ; //nCS
8 //syscall overhead, rdtscp implement in

userspace
9 while (clock_gettime () −t > nCS_size*rand

(0 . 85~1 . 15)) ;

6.2.2 Results of Microbenchmarks

As shown in Algorithm 4, a shorter nCS implies a heavier
workload because the lock request rate is higher. The upper
and lower parts of Figure 5 are the performance when the
contention is low and high, respectively. RON can provide
the best locking efficiency in both cases. Under low load
conditions (nCS = 400K∼120K), the performance of Plock

24 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

is second only to RON. When nCS is lower than 40K, the
performance of Plock drops rapidly when the load is heavy.
The performance curves of MCS and ShflLock are similar,
which may be because they queue tasks waiting for CS in a
linked list.

ShflLock and C-BO-MCS perform worse than MCS in
some cases (i.e., nCS > 10K). This is because these two
algorithms implicitly treat the handover costs between cores
belonging to the same die as equal. Therefore, they cannot
optimize the handover costs of different cores in different dies
(Please see the example in Section 2.2). Further, since the
difference in communication cost between 2990WX cores
is only 3.13 times at most, an algorithm with too-high time
complexity reduces the benefits that can be obtained. Because
RON uses a pre-calculated TSP ORDER that is optimized for
all cores, it can achieve higher performance at a lower cost.
According to our simulation results (in the supplementary
material), ShflLock and C-BO-MCS performs better when
the transmission latency between cores on the same chip/die
is almost the same. In other situations, RON performed best.

0

1

2

3

160K 120K 80K 40K 20K 10K 5K 2.5K 1K

RON ShflLock C-BO-MCS MCS Plock Ticket

(b) Locks per Second (millions/sec, high cont.)

0.99

1.01

1.03

1.05

400K 360K 320K 280K 240K 200K 160K 120K

(a) Locks per Second (normalized, low cont.)

Non-critical Section Size (nanoseconds)

m
ill
io
ns
/s
ec

no
rm

al
iz

ed
 s

ca
le

Figure 5: Locks per second under different loads

Figure 6 shows the number of locks acquired by each core
in the case of short-term (1 second) and long-term (10 sec-
onds). The lower the coefficient of variation (CV), the better
the fairness. In Figure 6, we see that RON, MCS, and Ticket
perform equally well, in terms of CV. That is almost equal
to 1%. In long-term fairness, when non-critical section (nCS)
< 80K ns, the CV of Plock starts to rise. When nCS < 20K
ns, the CV of ShflLock and C-BO-MCS both starts to rise.
In order to better understand the performance of spinlock
algorithms in long-term fairness, we let the ShflLock, C-BO-
MCS, and Plock execute for 1,000 seconds with nCS = 10K
and their CVs are 35%, 71% and 96%, respectively. Fairness
factor is described by Dice et al. [25]. It is the most common
metric to measure fairness. The value of fairness factor is be-
tween 0.5 and 1. A complete fair spinlock’s factor is 0.5 and
a complete unfair spinlock’s factor is 1. The fairness factor
of the ShflLock, C-BO-MCS andPlock are 0.68, 0.85 and 0.8,
respectively.

In terms of software design, each thread in Plock competes
fairly for locks. C-BO-MCS is based on two fair spinlocks,
namely backoff [44] and MCS. ShflLock allows threads on

the same node (i.e., die) of the lock holder to elevate their
positions in the queue for a limited number of times. Note that
it is difficult to analyze in detail why these algorithms do not
meet long-term fairness perfectly, so only Plocks is analyzed
to provide insights into the interaction between multicore
processors and spinlocks.

In the past, the multi-core processor had to execute at a
frequency that all cores could run correctly. The worst core
determines the maximum clock frequency that a multi-core
processor can run. Now each core can run on its highest fre-
quency [47]. According to the experimental results of the
Plock with nCS=10k, the ability of cores 0-7 and 32-39 to
obtain locks is 20.6 times that of cores 8-31 and 40-63. There-
fore, we roughly conclude that when the load becomes heavier,
algorithms that meet long-term fairness may not achieve the
expected fairness on modern multi-core processors. [47].

0%
40%
80%

120%

160K 120K 80K 40K 20K 10K 5K 2.5K 1K

RON ShflLock C-BO-MCS MCS Plock Ticket

(b) Long-term Fairness (CV, 10 secs)
0%

40%

80%

120% (a) Short-term fairness (CV, 1 sec)

Non-critical Section Size (nanoseconds)

C
V

C
V

Figure 6: Long-/short- fairness of different algorithms.

The experimental parameters of Figure 7 are the same as
Figures 5 and 6, but we changed the X coordinate from nCS
(Line 8 in Algo. 4) to the number of threads waiting to enter
CS (i.e., the number of threads in LS, Line 3 in Algo. 4). The
more the number of threads waiting, the better the perfor-
mance of a algorithm that can optimize the handover cost. In
Figure 7, the Y axis is the time required to access the shared
data. For example, in the case of RON under load nCS = 10K,
the number of threads in LS is 45, and the handover time
is 100 ns. Under the same load, the number of threads of
C-BO-MCS in LS is 52, and handover time is 190 ns. RON
is almost the best spinlock in terms of handover time. With
more tasks in the LS, the path formed by each task selected
by RON is closer to TSP ORDER, because each core has a
higher probability to have a thread waiting for entering the
CS. When the number of tasks in LS increases from 0 to 15,
the efficiency of accessing shared data doubles (from 210ns
to 100ns). When the LS changes from 60 to 62, the efficiency
is reduced by 7%. This is the reason for the reduced efficiency
when the nCS is 1K in Figure 5.

Plock is slightly better (0.07%) than RON when the
lock contention is very low (nCS=120K). Although Plock’s
handover cost is low, its performance is not good. Since
Plock uses cmp_xchg (compare_exchange) to solve the lock
contention problem, The hardware may need to execute
cmp_xchg continuously until the return value of only one
task is equal to true. This wastes the limited bandwidth of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 25

NoC and is time consuming. The handover time of C-BO-
MCS and ShflLock is better than MCS. However, these two
methods are too complicated, resulting in the performance
lower than expected. Both Ticket and MCS arrange tasks to
enter the CS in the order of their arrival. Since Ticket does
not give each thread a wait flag, all threads will constantly
monitor the wait flag, thus consuming a lot of NoC bandwidth.
Ticket has the worst handover cost.

50

100

150

200

250

300

0 10 20 30 40 50 60 70

Average Number of Threads in LS

Handover Time per CS (nanoseconds)

RON ShflLock C-BO-MCS MCS Plock Ticket

na
no

se
co

nd
s

Figure 7: Handover cost and the number of thread in LS.

In Figure 8, we set the size of the shared data accessed
in the critical section to 0 (Line 4 in Algorithm 4). The X
axis is the number of tasks waiting to enter the CS, and the
Y axis is the time of each thread executing one round (in-
cluding LS, US, CS and nCS, i.e., Lines 2-8). The size of
the non-critical section (Lines 7 and 8) ranges from 160K to
1K. Therefore, the main factor in performance is the locking
and unlocking efficiency of an algorithm. RON is almost the
best algorithm. Its performance is slightly worse than that of
Plock (0.2%) when the loading is extremely light. RON has
a better performance for two reasons. First, TSP ORDER is
pre-calculated. Second, the lower handover cost makes atomic
operations more efficient. We use experiments to analyze the
efficiency of atomic operations of RON. When we schedule
threads to perform atomic operations through TSP ORDER,
the efficiency of atomic operations is 1.6 times that of random
order.

0

40000

80000

120000

160000

200000

0 10 20 30 40 50 60 70
Average Number of Threads in LS

RON ShflLock C-BO-MCS MCS Plock Ticket

Lock-Unlock Time (Contention Overhead)

n
a
n
o
s
e
c
o
n
d
s

Figure 8: Contention cost.

6.2.3 Oversubscribe

In each set of experiments of this section, each thread binds
(i.e., sched_setaffinity()) to a core and executes Algo-
rithm 4. Each core has at most ⌈num_thread ÷num_core⌉
threads. Because RON-ticket shares a key property with RON,
that is, bounded waiting, RON-ticket was used for perfor-
mance evaluation in the previous section. In this section,

microbenchmarks are used to evaluate the performance of
RON-ticket and RON-plock. In the case of oversubscription,
two factors affect performance. The first one is whether the
thread holding the lock is scheduled out. Second, if the algo-
rithm specifies the next thread entering the CS, and whether
it is scheduled out.

In Figure 9, RON-plock and RON-ticket perform better in
the case of overbooking, where the y-axis denotes “millions
locks” per second. Although C-BO-MCS(-B) and ShflLock(-
B) also support oversubscription, the number of lock-unlock
operations per second is dropped quickly.

0.227
0.190

0.002

0.062

0.003
0.012

0.002
0.017

0.164

0.002

0.0

0.2

0.4

0.6

0.8

1.0

Oversubscribe

64 96 128 256 384 512 768 1024 geomean
m

ill
io

n
lo

ck
s

pe
r s

ec
on

d

RO
N-p

loc
k

RO
N-t
ick
et

Sh
flL
oc
k

Sh
flL
oc
k-B

C-B
O-M

CS

C-B
O-M

CS
-B

MC
S

MC
S-B Plo

ck
Tic
ket

Figure 9: Performance of algorithms under oversubscribe.

RON-plock and Plock use intuitive methods (e.g., test-test-
and-set) to solve the problem of oversubscribe. As long as the
lock-holder is not scheduled out, Plock will allow a thread to
enter CS (it is because that all threads wait on the same vari-
able.). RON-plock is similar to Plock, except that all threads
on the next core are scheduled out. Because RON-plock is
based on RON, the performance of RON-plock is better than
Plock. RON-ticket, ShflLock-B, and C-BO-MCS-B use sys-
tem calls (i.e., futex() and yield()) to prevent the thread from
spinning meaninglessly. ShflLock-B’s unlock() directly wakes
up the next thread. However, C-BO-MCS-B’s unlock() may
wake up all threads that can enter CS. RON-ticket makes
the next thread that can enter the CS busy waiting, and other
threads on that core enter the sleep state. For the same reason
as RON-plock, RON-ticket has better performance.

6.2.4 Scalability

In this section, we investigate how algorithm performance
changes with an increase in the number of threads used. Our
experiment was conducted on the 2990WX, which has SMT
technology. During the experiment, each thread accesses 100
integers in the critical section, while the non-critical section
takes 10,000 ±15% nanoseconds.

As shown in Figure 10, it indicate that the performance of
the RON-plock improves with an increase in the number of
threads when the thread count is less than 64. This experiment
yields results similar to those in Figure 5 because “executing
more threads simultaneously” and “having shorter non-critical
sections” both lead to greater competition for entering the

26 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

critical section. However, when the number of threads exceeds
64, the performance of these algorithms is determined by their
ability to handle the oversubscribe problem.

Figure 10: Locks per second under different number of threads

6.3 Application-level Benchmarks
We pick five different application-level benchmarks represent-
ing different performance bottlenecks. For the consistency
of the experiment, the RON implementation here uses RON-
ticket, which has identical features to RON (bounded waiting).

6.3.1 LevelDB (Key-value Database)

Here, we used Google’s LevelDB to test the performance of
the spinlock. The Horizontal axis of Figure 11 is the algorithm
tested, and the vertical axis is the time cost for every operation
reported by LevelDB. Because of the difference data scales,
“fillsync” is normalized to MCS and others normalized to
Ticket.

64
78 79 78 74

99

0

20

40

60

80

100

RON-ticket ShflLock C-BO-MCS MCS Plock TicketR
el

at
iv

e
O

pe
ra

tin
g

T
im

e
pe

r
O

P
 (

%
)

LevelDB Benchmark

fillseq fillsync fillrandom overwrite readrandom geonmean

Figure 11: Google’s LevelDB.

We use the db_bench in LevelDB to evaluate performance
with 1 million entries and 64 threads. For each spinlock,
fillseq, fillsync, fillrandom, overwrite, and readrandom have
been tested. The last one is the geometric average of Lev-
elDB’s 5 tests. RON-ticket, ShflLock and C-BO-MCS are
spin locks optimized for ccNUMA or NUMA. Please note
that RON-ticket is RON with oversubscribe support and it
also satisfies bounded waiting. Compared with ShflLock and
C-BO-MCS, the performance of RON is better by 22.1% and
24.2%, respectively.

MCS is slightly better than ShflLock and C-BO-MCS for
LevelDB, although the latter two are optimized for NUMA.

This may be because these two algorithms are designed to
overcome the huge transmission overhead between two CPUs.
However, there is not much difference in the communication
cost between the cores on AMD 2990WX. When the load
is high, ShflLock and C-BO-MCS may only perform local
optimization.

Consider the situation with four NUMA nodes, where
ShflLock and C-BO-MCS serve node X, and the load on
node X always has a thread waiting to enter the CS. At this
time, although there are many threads waiting for the CS on
other NUMA nodes to enter, ShflLock and C-BO-MCS tend
to let tasks on node X enter the CS. Since RON uses TSP
ORDER to arrange the cores to enter the CS, RON does not
suffer from the problem of local optimization.

6.3.2 Benchmarks in Different Contention Levels

We applied an additional four different application bench-
marks to evaluate the performance of different algorithms.
These algorithms are selected from LiTL [39] and cover both
high and low contention scenarios. Volrend and Raytrace are
from the SPLASH2x benchmark set representing extreme
and high levels of contention, respectively. For the extreme
level, more than 40 threads are waiting to acquire the same
lock instance. For the high level, there are about 10 to 40
threads waiting to acquire a lock. Dedup and Ferret are from
the PARSEC3.0 benchmark set and respectively represent
pressure on the memory and relatively low levels of con-
tention [39]. In Figure 12, the vertical axis is the elapsed time
of the benchmark task (including geomean of LevelDB Fig-
ure 11). Because of the different data scales, the numbers are
the percentage to where the algorithm performs the worst for
each task.

19

58
70 69

27

71

0
20
40
60
80

100

RON-ticket ShflLock C-BO-MCS MCS Plock TicketR
el

at
iv

e
R

un
tim

e

Benchmarks

raytrace volrend ferret dedup geomean

Figure 12: Applications with different contention level.

The bottleneck of Raytrace is a lock contention, protecting
a single counter with about a million acquisitions every sec-
ond. RON-ticket, MCS, and Plock accomplished the task with
around 70% of elapsed time. MCS is optimized for multi-core
systems with dedicated caches for each core to reduce the
overhead of lock contention and well fitted in high level of
contention. The code of Plock is not optimized for multi-core.
However, the core adjacent to the core that released the lock
is more likely to successfully perform the atomic operation
compare_exchange() to acquire the lock. Thus, Plock is
implicitly optimized for multi-core platforms.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 27

In the case of extreme levels of contention, the performance
of Plock and MCS starts to drop while the ShflLock and RON-
ticket can handle the stress. Under extreme level of contention
(Volrend), RON-ticket achieved its best performance, taking
only 24.3% of the elapsed time of the ticket to accomplish
task. The bottleneck of Volrend is the lock contention for pro-
tecting different task queues with around 40 threads waiting.
This benchmark verified that the RON algorithm generally
performs best under higher contention. With more cores pos-
sessed by threads spinning for the lock instance, the routing
path can massively reduce the handover cost.

However, under low levels of contention, RON-ticket only
performs second best in all six algorithms. Ferret is a paral-
lelized software with about 2000 times of acquisition for every
second. While RON-ticket uses around 20% of the elapsed
time, Plock takes only around 15.6% of the elapsed time of
C-BO-MCS, outperforming RON in this specific benchmark.
The lower contention of the lock leads to the sparseness of the
WaitArray, which results in leaping on the routing path and
lowers the benefit. Ticket guarantees fairness as threads keep-
ing querying the global variable to know whether they can
enter the CS. Ticket fits the task with low level of contention.
However, under higher pressure, the bandwidth consumed
by lock contention limits the bandwidth that can be used by
handover.

Moreover, according to the results of Dedup, RON-ticket
and Plock gave low memory pressure. Dedup allocates numer-
ous locks (266k) [39], which puts pressure on the memory if
the components of the lock are not reusable. The reusability
of components like WaitArray and Get_TSP_ID gives RON-
ticket the ability to handle numerous lock allocations.

In summary, RON algorithms can handle different levels of
contention, especially higher levels. With higher contention
RON algorithms achieve better performance relatively, but
Plock remains a better algorithm for low levels of contention.
With reusable components, Both Plock and RON put low pres-
sure on the memory while allocating numerous lock instance.

7 RON in GNU/Linux Kernel

7.1 Implementation
As shown in the performance evaluation section, RON is
more suitable for multi-core computers than methods that
support NUMA in user space applications. In this section,
we shows whether RON is suitable for Linux kernel. In our
implementation, the line of code (LoC) is 47.

In the Linux kernel, the lock-acquire and lock-release are
implemented by queued_spin_lock(struct qspinlock
*lock) and queued_spin_unlock(struct qspinlock
*lock), respectively. Both functions have only one parameter,
lock. By rewriting these two functions, we implement RON
in the Linux kernel. We use *lock as InUse in the RON
algorithm (Line 3 in Algorithm 1).

In order to achieve the same space efficiency as qspinlock,
only one WaitArray (Line 4 in Algorithm 1) is in kernel.
In user space, a task sets WaitArray[TSP_ID] (Line 10 in
Algorithm 1) to wait for entering the CS. In the Linux kernel,
the task writes the address of lock (that is the parameter
of queued_spin_lock) to WaitArray[TSP_ID] for entering
the CS. When the thread leaves CS, the thread will check one
by one whether there is an element with a value equal to
lock in WaitArray . Therefore, a busy-waiting task is only
awakened by the task holding the same lock.

If the space of the WaitArray has been used up, the other
tasks wait on InUse (that is *lock in kernel space). Tasks
waiting for InUse do not enter CS in TSP ORDER. This
design method is the same as Linux’s qspinlock, though it
is not perfect but good enough (compromise to O(1) space
complexity). In terms of memory usage, RON requires 4
bytes for each lock (that is the size of struct qspinlcok)
and 28 bytes for each core (28×64 = 1792 bytes for AMD
2990WX).

7.2 Evaluations

In this section, the Linux kernel version is 5.12.1. We ap-
ply the patch of ShflLock into the qspinlock.c of Linux.
Therefore, in this section, we will compare the performance
of the Linux kernel using qspinlock, ShuflLock and RON. We
use a microbenchmark and db_bench of Google LevelDB to
measure the performance of RON in Linux kernel. In the ex-
periment, we do not use LD_PRELOAD to change the behavior
of LevelDB. The purpose of microbenchmark is to measure
performance under high load conditions. The microbench-
mark is implemented by forking 64 child processes, and every
child process creates 2048 threads to execute 64 mmap() and
munmap() function calls. We use strace to evaluate the time
taken for each system call.

As shown in Figure 13, ShflLock doesn’t perform well on
both microbenchmark and LevelDB. ShflLock is suitable for
multi-socket NUMA machines but ours is a single-socket ma-
chine. RON performs better than qspinlock under high load
conditions. In terms of geometric average of microbenchmark,
the performance of Linux kernel with RON is 1.35 times that
of Linux kernel with qspinlock. In terms of LevelDB, RON
and qspinlock are about the same in terms of geometric aver-
age. In these five experiments, the performance of these three
algorithms on readseq are almost the same. RON performs
better than qspinlock in fillsync bacause the contention is
high. RON and qspinlock both have their own strengths.

Intuitively we can combine qspinlock and RON to achieve
better performance. qspinlocks can encode the first two tasks
that want to enter CS into the lock variable (the parameter
of queued_spin_lock()). In this way, the performance of
qspinlock is very good under low contention. The purpose
of this experiment is to explore the effectiveness of RON,
so we did not use Linux optimization techniques to improve

28 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

performance under low contention conditions.

system call mmap clone mprotect munmap geomean
qspinlock 923 183 252 43 207
ShflLock 2029 206 456 39 294
RON 592 185 264 19 153

microbenchmark (microseconds)

(a)

fillseq fillsync fillrandom overwrite readseq geomean
MB/sec op/sec MB/sec MB/sec MB/sec

qspinlock 20.2 511.4 17.8 17.2 487.3 68.8
ShflLock 7.9 390.5 7.5 7.1 485.3 38.1
RON 18.3 687.1 16.3 15.7 482.7 68.9

LevelDB

(b)

Figure 13: Performance comparisons on Linux kernel.

8 Conclusion

We propose a RON spinlock algorithm that delivers locks
and data in a one-way circular manner among cores with the
awareness of the performance differences of cores, so as to
minimize the system-level handover cost and achieve bounded
waiting for threads among cores. In particular, “one-way” is
for minimized system-level handover cost and “circular” is for
bounded waiting of threads to enter CS. In addition, the pro-
posed RON algorithm can also resolve the oversubscription is-
sue without losing its scalability. A series of experiments were
conducted to evaluate the efficacy of the proposed algorithm.
Compared with ShflLock and C-BO-MCS, the performance
of RON in google leveldb has increased by 22.1% and 24.2%
respectively. In terms of kernel space performance, compared
with using ShflLock, RON can improve the performance of
Google LevelDB by 1.8 times.

9 Future work

This paper addresses the issue of unfairness caused by differ-
ent execution frequencies on multi-core processors, as well as
the efficiency of inter-core data transfer. The proposed method
is particularly suitable for highly competitive scenarios. Al-
though high competition can be a bottleneck for performance,
low competition is a more common scenario where simple
algorithms often have good performance. Therefore, in future
research, we will investigate how to dynamically switch al-
gorithms (such as plock and RON) at runtime. We will also
evaluate the performance of RON by implementing it using
linked-list methods to offload the runtime of unlocking to the
locking process.

Acknowledgement

We thank our shepherd, Aurojit Panda, and the anonymous
reviewers for their valuable feedback and suggestions. This

work was supported in part by Ministry of Science and Tech-
nology (MOST) of Taiwan under grant nos. 111-2221-E-194
-017 -MY3, 111-2223-E-001-001, 111-2923-E-002-014-MY3,
111-2221-E-001-013-MY3, and 112-2927-I-001-508.

References

[1] L. T. Su, S. Naffziger and M. Papermaster, "Multi-chip
technologies to unleash computing performance gains
over the next decade," 2017 IEEE International Elec-
tron Devices Meeting (IEDM), 2017, pp. 1.1.1-1.1.8, doi:
10.1109/IEDM.2017.8268306.

[2] Nicolas Viennot (Sep 19, 2022). Measuring CPU core-
to-core latency. https://github.com/nviennot/core-to-core-
latency

[3] Sally Ward-Foxton (08.19.2021). Intel Brings
Chiplets to Data Center CPUs. EETimes.
https://www.eetimes.com/intel-brings-chiplets-to-
data-center-cpus/

[4] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz
Hoffmann, Sabela Ramos, Timothy Roscoe: Machine-
Aware Atomic Broadcast Trees for Multicores. OSDI
2016: 33-48

[5] https://www.freebsd.org/cgi/man.cgi?query=atomic&sektion=9&
format=html

[6] Daniel Sorin; Mark Hill; David Wood, “A Primer on
Memory Consistency and Cache Coherence,” Morgan
& Claypool, 2011.

[7] Pradip Kumar Sahu and Santanu Chattopadhyay. 2013. A
survey on application mapping strategies for Network-on-
Chip design. J. Syst. Archit. 59, 1 (January, 2013), 60–76.
DOI:https://doi.org/10.1016/j.sysarc.2012.10.004

[8] Rajesh Chopra, Yang-Trung, LinSailesh Kumar, “Gen-
erating physically aware network-on-chip design from
a physical system-on-chip specification, ” US Patents
US10218580B2, Application granted in 2019.

[9] C. Wu et al., “A Multi-Objective Model Oriented Map-
ping Approach for NoC-based Computing Systems,” in
IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 3, pp. 662-676, 1 March 2017.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta and
J. Hennessy, “The directory-based cache coherence proto-
col for the DASH multiprocessor,” In Proceedings of the
17th Annual International Symposium on Computer Ar-
chitecture (ISoA), Seattle, WA, USA, pp. 148-159, 1990.

[11] Chinya Ravishankar, James Goodman, “Cache Imple-
mentation for Multiple Microprocessors,”in Proceedings
of IEEE Computer Conference, pp. 346–350, Feb 1983.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 29

[12] Ruibo Wang, Kai Lu, and Xicheng Lu. 2009. In-
vestigating transactional memory performance on cc-
NUMA machines. In Proceedings of the 18th ACM
international symposium on High performance dis-
tributed computing (HPDC ’09). Association for
Computing Machinery, New York, NY, USA, 67–68.
DOI:https://doi.org/10.1145/1551609.1551625

[13] R. R. Iyer and L. N. Bhuyan, "Design and evaluation of
a switch cache architecture for CC-NUMA multiproces-
sors," in IEEE Transactions on Computers, vol. 49, no. 8,
pp. 779-797, Aug. 2000, doi: 10.1109/12.868025.

[14] K. A. Bowman, A. R. Alameldeen, S. T. Srini-
vasan and C. B. Wilkerson, "Impact of die-to-die and
within-die parameter variations on the throughput dis-
tribution of multi-core processors," Proceedings of the
2007 international symposium on Low power electron-
ics and design (ISLPED ’07), 2007, pp. 50-55, doi:
10.1145/1283780.1283792.

[15] "Ampere® Altra® offers up to 80 cores at up to 3.0
GHz", 80 cores, https://amperecomputing.com/altra/

[16] " AMD EPYC™ 7003 Series Proces-
sors scale from 8 to 64 cores", 64 cores,
https://www.amd.com/en/processors/epyc-7003-series

[17] "Intel® Xeon® Platinum 8380 Pro-
cessor (60M Cache, 2.30 GHz)", 40
cores,https://www.intel.com/content/www/us/en/products/details/
processors/xeon/scalable/platinum.html

[18] "Arm-based AWS Graviton2 processors", 64 vCPU,
https://aws.amazon.com/tw/ec2/instance-types/x2/

[19] Abdul Naeem, Xiaowen Chen, Zhonghai Lu, Axel
Jantsch. "Scalability of relaxed consistency models in
NoC based multicore architectures". ACM SIGARCH
Computer Architecture News. April 2010.

[20] B. K. Daya et al., "SCORPIO: A 36-core research chip
demonstrating snoopy coherence on a scalable mesh NoC
with in-network ordering," 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA),
2014, pp. 25-36, doi: 10.1109/ISCA.2014.6853232.

[21] scientiaesthete. 2012 “pthreads: thread starvation
causedby quick re-locking”, Retrieved June 20, 2019
fromhttps://stackoverflow.com/questions/12685112/pthreads-
thread-starvation-caused-by-quick-re-locking

[22] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Mor-
ris and Nickolai Zeldovich, “Non-scalable locks are
dangerous”, in Proceedings of the Linux Symposium
(OLS2012), Ottawa, Canada, July 2012.

[23] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. 2010. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX Association, Vancou-
ver, Canada, 1–16.

[24] J. M. Mellor-Crummey and M. L. Scott. “Algo-
rithms for scalable synchronization on shared-memory
multi-processors,” ACM Transactions on Computer Sys-
tems,9(1):21–65, 1991.

[25] David Dice, Virendra J. Marathe, and Nir Shavit.
2015. Lock Cohorting: A General Technique for De-
signing NUMA Locks. ACM Trans. Parallel Com-
put. 1, 2, Article 13 (January 2015), 42 pages.
DOI:https://doi.org/10.1145/2686884

[26] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng,
Changwoo Min, and Taesoo Kim. 2019. Scalable
and practical locking with shuffling. In Proceedings
of the 27th ACM Symposium on Operating Sys-
tems Principles (SOSP ’19). Association for Com-
puting Machinery, New York, NY, USA, 586–599.
DOI:https://doi.org/10.1145/3341301.3359629

[27] Dave Dice and Alex Kogan. 2019. Compact NUMA-
aware Locks. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19). Association for Com-
puting Machinery, New York, NY, USA, Article 12, 1–15.
DOI:https://doi.org/10.1145/3302424.3303984

[28] Milind Chabbi, Michael Fagan, and John Mellor-
Crummey. 2015. High performance locks for multi-level
NUMA systems. SIGPLAN Not. 50, 8 (August 2015),
215–226. DOI:https://doi.org/10.1145/2858788.2688503

[29] Milind Chabbi and John Mellor-Crummey. 2016.
Contention-conscious, locality-preserving locks. SIG-
PLAN Not. 51, 8, Article 22 (August 2016), 14 pages.
DOI:https://doi.org/10.1145/3016078.2851166

[30] Dave Dice, Virendra J. Marathe, and Nir Shavit. 2011.
Flat-combining NUMA locks. In Proceedings of the
twenty-third annual ACM symposium on Parallelism in
algorithms and architectures (SPAA ’11). Association
for Computing Machinery, New York, NY, USA, 65–74.
DOI:https://doi.org/10.1145/1989493.1989502

[31] S Kashyap, C Min, T Kim, Scalable numa-aware block-
ing synchronization primitives, USENIX Annual Techni-
cal Conference, 2017

[32] LOZI, J., DAVID, F., THOMAS, G., LAWALL, J., and
MULLER, G. “Remote Core Locking: Migrating Critical-
Section Execution to Improve the Performance of Multi-

30 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

threaded Applications.” USENIX Annual Technical Con-
ference ’12.

[33] David Klaftengger, Konstantinos Sagonas and Kjell Win-
blad, “Queue Delegation Locking”, IEEE Transaction
Parallel and Distributed Systems, vol. 29, no. 3, pp.687-
704, March 2018.

[34] B. K. Joardar, R. G. Kim, J. R. Doppa, P. P. Pande,
D. Marculescu and R. Marculescu, "Learning-Based
Application-Agnostic 3D NoC Design for Heterogeneous
Manycore Systems," in IEEE Transactions on Com-
puters, vol. 68, no. 6, pp. 852-866, 1 June 2019, doi:
10.1109/TC.2018.2889053.

[35] W. Amin et al., "Performance Evaluation of Application
Mapping Approaches for Network-on-Chip Designs,"
in IEEE Access, vol. 8, pp. 63607-63631, 2020, doi:
10.1109/ACCESS.2020.2982675.

[36] S. Das, J. R. Doppa, P. P. Pande and K. Chakrabarty,
"Monolithic 3D-Enabled High Performance and Energy
Efficient Network-on-Chip," 2017 IEEE International
Conference on Computer Design (ICCD), 2017, pp. 233-
240, doi: 10.1109/ICCD.2017.43.

[37] C. Wu et al., “A Multi-Objective Model Oriented Map-
ping Approach for NoC-based Computing Systems,”
in IEEE Transactions on Parallel and Distributed Sys-
tems,vol. 28, no. 3, pp. 662-676, 1 March 2017.

[38] Aryan Deshwal, Nitthilan Kanappan Jayakodi, Biresh
Kumar Joardar, Janardhan Rao Doppa, and Partha Pratim
Pande. 2019. MOOS: A Multi-Objective Design Space
Exploration and Optimization Framework for NoC En-
abled Manycore Systems. ACM Trans. Embed. Com-
put. Syst. 18, 5s, Article 77 (October 2019), 23 pages.
DOI:https://doi.org/10.1145/3358206

[39] Rachid Guerraoui, Hugo Guiroux, Renaud
Lachaize,Vivien Quéma, and Vasileios Trigonakis.
“Lock–Unlock:Is That All? A Pragmatic Analysis of
Locking in Soft-ware Systems,” ACM Transactions on
Computer Systems,Volume 36 Issue 1, March 2019.

[40] “OR-Tools | Google Developers”. Retrieved June, 28,
2019 from https://developers.google.com/optimization/

[41] Jonathan Corbet, “Ticket spinlocks,” Retrieved from
https://lwn.net/Articles/267968/

[42] J. Hennessey and D. Patterson, Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2017.

[43] David P. Reed and Rajendra K. Kanodia. 1979. Syn-
chronization with event counts and sequences. Com-
munications of the ACM 22, 2 (1979), 115–123.
DOI:https://doi.org/10.1145/359060.359076

[44] John M. Mellor-Crummey and Michael L. Scott.
1991. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transac-
tions on Computer Systems 9, 1 (1991), 21–65.
DOI:https://doi.org/10.1145/103727.103729

[45] D. M. Tullsen, S. J. Eggers and H. M. Levy, "Simulta-
neous multithreading: Maximizing on-chip parallelism,"
Proceedings 22nd Annual International Symposium on
Computer Architecture, 1995, pp. 392-403.

[46] Thomas E. Anderson. 1990. The performance of spin
lock alternatives for shared-memory multiprocessors.
IEEE Transactions on Parallel and Distributed Systems 1,
1 (1990), 6–16. DOI:https://doi.org/10.1109/71.80120

[47] Btarunr. Windows 10 2H19 Update to Have "Favored
Core" Awareness, Increase Single-threaded Performance.
online https://www.techpowerup.com/259688/windows-
10-2h19-update-to-have-favored-core-awareness-
increase-single-threaded-performance

[48] Rafael Lourenco de Lima Chehab, Antonio Pao-
lillo, Diogo Behrens, Ming Fu, Hermann Härtig, Haibo
Chen. CLoF: A Compositional Lock Framework
for Multi-level NUMA Systems. Proceedings of the
ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, October 2021, Pages 851–865. DOI:
https://doi.org/10.1145/3477132.3483557

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 31

	Introduction
	Preliminary and Motivation
	Data Coherence in ccNUMA
	Cost of Spinlocks on Multi-core CPUs
	Throughput or Fairness? Take Both !

	Related Work
	Routing On Network-on-Chip (RON)
	The Idea
	The Algorithm
	Correctness
	An Example

	More Threads than Cores
	Lock Contention Problems on a Core
	RON with Oversubscription Support

	Performance Evaluations
	Evaluation Platform and Settings
	Microbenchmarks for Quantitative Analysis
	Evaluation Platform and Settings
	Results of Microbenchmarks
	Oversubscribe
	Scalability

	Application-level Benchmarks
	LevelDB (Key-value Database)
	Benchmarks in Different Contention Levels

	RON in GNU/Linux Kernel
	Implementation
	Evaluations

	Conclusion
	Future work

