
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

AlpaServe: Statistical Multiplexing with Model
Parallelism for Deep Learning Serving

Zhuohan Li and Lianmin Zheng, UC Berkeley; Yinmin Zhong, Peking University;
Vincent Liu, University of Pennsylvania; Ying Sheng, Stanford University;

Xin Jin, Peking University; Yanping Huang and Zhifeng Chen, Google;
Hao Zhang, UC San Diego; Joseph E. Gonzalez and Ion Stoica, UC Berkeley

https://www.usenix.org/conference/osdi23/presentation/li-zhuohan

AlpaServe: Statistical Multiplexing with Model Parallelism
for Deep Learning Serving

Zhuohan Li1,∗ Lianmin Zheng1,∗ Yinmin Zhong2,∗ Vincent Liu3 Ying Sheng4

Xin Jin2 Yanping Huang5 Zhifeng Chen5 Hao Zhang6 Joseph E. Gonzalez1 Ion Stoica1

1UC Berkeley 2Peking University 3University of Pennsylvania
4Stanford University 5Google 6UC San Diego

Abstract
Model parallelism is conventionally viewed as a method to

scale a single large deep learning model beyond the memory
limits of a single device. In this paper, we demonstrate that
model parallelism can be additionally used for the statistical
multiplexing of multiple devices when serving multiple mod-
els, even when a single model can fit into a single device. Our
work reveals a fundamental trade-off between the overhead
introduced by model parallelism and the opportunity to ex-
ploit statistical multiplexing to reduce serving latency in the
presence of bursty workloads. We explore the new trade-off
space and present a novel serving system, AlpaServe, that
determines an efficient strategy for placing and parallelizing
collections of large deep learning models across a distributed
cluster. Evaluation results on production workloads show that
AlpaServe can process requests at up to 10× higher rates or
6× more burstiness while staying within latency constraints
for more than 99% of requests.

1 Introduction
Advances in self-supervised learning have enabled exponen-
tial scaling in model sizes. For example, large pretrained mod-
els like BERT [14] and GPT-3 [5] have unlocked a plethora of
new machine learning (ML) applications from Copilot [18]
to copy.ai [7] and ChatGPT [35].

Serving these very large models is challenging because
of their high computational and memory requirements. For
example, GPT-3 requires 325 GB of memory to store its pa-
rameters as well as a requisite amount of computation to run
inference. To serve this model, one would need at least 5 of
Nvidia’s newest Hopper 80 GB GPUs just to hold the weights
and potentially many more to run in real-time. Worse yet, the
explosive growth of model sizes continues unabated [6, 17].
Techniques like model compression and pruning are not suf-
ficient in face of the exponential growth in model sizes and
often come at the expense of reduced model quality [15].

∗Equal contribution.

(a) No colocation

GPU 1 Model A

GPU 2 Model B

R1 R2 R3 R4

R5 R6

Burst 1:
4 requests of model AModel placement Burst 2:

2 requests of model B

(b) Colocation with model parallelism

GPU 1 A.0

GPU 2 A.1

R1 R3R2 R4

Burst 1:
4 requests of model AModel placement Burst 2:

2 requests of model B

B.0

B.1 R1 R3R2 R4

R5 R6

R5 R6

Figure 1: Two placement strategies for serving two models on
two GPUs. In each subfigure, the left part shows the model
placements and the right part shows the timeline for handling
bursty requests. At the time of "Burst 1", 4 requests of model
A come at the same time. Colocation with model parallelism
can reduce the average completion time of bursty requests.

Provisioning sufficient resources to serve these models can
be arduous as request rates are bursty. For example, using
common workload traces, we observe frequent spikes in de-
mand of up to 50× the average [54]. Meeting the service level
objective (SLO) of latency usually means provisioning for
these peak loads, which can be very expensive; additional
devices allocated for this purpose would remain underutilized
most of the time. Making matters worse, it is increasingly
common to serve multiple models and multiple variations of
the same large model in situations like A/B testing or serving
fine-tuned models for specific domains (§2).

This paper studies how to efficiently serve multiple large
models concurrently. Specifically, we explore the underappre-
ciated benefits of model parallelism in online model serving,
even for smaller models that can fit on a single device. Model
parallelism refers to partitioning and executing a model on dis-
tributed devices (§2.1). The benefits of model parallelism have
been well studied [23, 27, 31, 56] in the throughput-oriented
training setting. However, its effects for model serving under
latency-sensitive settings remains largely untapped.

We observe that there are fundamental transition points in

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 663

the model serving design space that challenge prior assump-
tions about serving, even for models that fit on a single device.
For example, consider the scenario with two models and two
GPUs, each of which has sufficient memory to hold one com-
plete model. As shown in Fig. 1(a), the natural approach
assumed by almost all existing serving systems [9, 33, 34] is
to allocate one dedicated GPU for one model. This approach
appears rational because partitioning the model across GPUs
would incur communication overheads that would likely in-
crease the prediction latency. However, we find that inducing
additional model parallelism (to the point where per-example
execution time actually increases) enables a wider range of
placement strategies, e.g., model co-location, which can im-
prove the statistical multiplexing of the system under bursty
workloads. In Fig. 1(a), assuming the execution time of a
model is y, the average end-to-end latency of request 1 through
4 is (1y+ 2y+ 3y+ 4y)/4 = 2.5y. In Fig. 1(b), assuming a
10% model-parallel overhead, the average latency of request 1
through 4 is reduced to (1.1y+1.6y+2.1y+2.6y)/4= 1.85y.
Co-location with model parallelism can utilize more devices
to handle bursty requests and reduces the average comple-
tion time, despite its overheads (§3.1). Even if we batch the
requests, the case still holds (§6.5).

Unfortunately, the decision of how to optimally split and
place a collection of models is complex. Although leverag-
ing model parallelism as above has its benefits, it still adds
overheads that may negate those benefits for less bursty work-
loads. For example, we find that a particularly influential axis
on the efficacy of model parallelism is per-GPU memory ca-
pacity (§3.2), although other factors (e.g., the arrival pattern,
SLO) can also have a significant effect. Further, besides the
inter-op model parallelism presented in Fig. 1, another kind
of model parallelism, intra-op parallelism, presents its own
distinct tradeoffs (§3.3). Ultimately, different styles of paral-
lelism and their tradeoffs create a complex, multi-dimensional,
and multi-objective design space that existing systems largely
ignore and/or fail to navigate. However, not leveraging model
parallelism in the serving setting is typically not an option for
large models, and not addressing this trade-off space directly
results in significant increases in cost and serving latency.

To that end, we present AlpaServe2, a system that automat-
ically and efficiently explores the tradeoffs among different
parallelization and placement strategies for model serving.
AlpaServe takes a cluster resource specification, a set of mod-
els, and a periodic workload profile; it then partitions and
places the models and schedules the requests to optimize
SLO attainment (i.e., the percentage of requests served within
SLO). To assist the design of AlpaServe, we first introduce a
taxonomy and quantify the tradeoffs between different paral-
lelization strategies in model serving (§3). We then present
key algorithms to navigate the tradeoff space (§4). We de-
sign an iterative simulator-guided model placement algorithm

2https://github.com/alpa-projects/mms

to optimize the colocation of models and a group partition
algorithm to search for the best way to partition the cluster
into disjoint model-parallel groups. In addition, we extend the
existing auto-parallelization algorithms for training to make
them more suitable for inference.

We evaluate AlpaServe with production workloads on a
64-GPU cluster (§6). Evaluation results show that, when opti-
mizing one metric at a time, AlpaServe can choose to increase
the request processing rate by 10×, achieve 2.5× lower la-
tency deadlines, or tolerate 6× burstier traffic compared to
previous state-of-the-art serving systems.

In summary, we make the following contributions:
• A detailed analysis of the tradeoff space of different

model parallel strategies for efficient model serving.
• Novel model placement algorithms to incorporate model

parallelism in a serving system.
• A comprehensive evaluation of AlpaServe with both

synthetic and production workloads.

2 Background
Over the past few years, increasingly capable models have
been developed for everything from recommendations to text
generation. As a result, serving predictions from these mod-
els has become an essential workload in modern cloud sys-
tems. The structure of these workloads often follows a simple
request-response paradigm. Developers upload a pre-trained
model and its weights ahead of time; at runtime, clients (either
users or other applications) submit requests for that model
to a serving system, which will queue the requests, dispatch
them to available GPUs/TPUs, and return the results.

The requirements of these model-serving systems can be
stringent. To satisfy user demand, systems often must ad-
here to aggressive SLO on latency. At the same time, serving
systems that must run continuously need to minimize their
operational costs associated with expensive accelerators. Min-
imizing serving costs can be challenging because dynamically
scaling compute resources would be too slow on the critical
path of each prediction request: it can take multiple seconds
just to swap a large model into accelerator memory [37]. Fur-
thermore, there is significant and unpredictable burstiness
in the arrival process of user requests. To meet tight SLO,
contemporary serving systems are forced to over-provision
compute resources, resulting in low cluster utilization [48].

Another pattern that emerges in serving large models is the
use of multiple instances of the same or similar model archi-
tectures. This is commonly seen in the practice of pretraining
on large unlabeled data and fine-tuning for various down-
stream tasks [14], which can significantly boost accuracy but
results in multiple instances of the same model architecture.
For example, Hugging Face serves more than 9,000 versions
of fine-tuned BERT [24]. They either share a portion of the
parameters or do not share any parameters at all for better
accuracy. Prior works have [44, 57] exploited the property of
shared parameters, but we do not consider the shared parame-

664 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ters in this paper because AlpaServe targets general settings
and full-weight tuning is still a major use case.

2.1 Model Parallelism in Model Serving
Distributed parallel model execution is necessary when at-
tempting to satisfy the serving performance requirements or
support large models that do not fit in the memory of a single
device. At a high level, distributed execution of deep learning
models can be classified into two categories: intra-operator
parallelism and inter-operator parallelism [56].

Intra-operator parallelism. DL models are composed of a
series of operators over multidimensional tensors, e.g., matrix
multiplication over input and weight tensors. Intra-operator
parallelism is when a single operator is partitioned across
multiple devices, with each device executing a portion of
the computation in parallel [43, 45, 50]. Depending on the
specific partitioning strategy and its relationship to prior and
subsequent operators in the model, partitioning can require
communication among participating GPUs to split the input
and then merge the output.

The benefit of intra-operator parallelism for single-request
execution is twofold. First, it can expand the total amount of
computation available to the target model, reducing its end-
to-end latency. In a similar fashion, it can expand the total
memory available to the model for storing its inputs, weights,
and intermediate values. The cost is the aforementioned com-
munication overhead.

Inter-operator parallelism. The other type of parallelism
available to DL models is inter-operator parallelism, which
assigns different operators of the model’s execution graph
to execute on distributed devices in a pipeline fashion (a.k.a.
pipeline parallelism) [23, 28, 30]. Here, devices communicate
only between pipeline stages, typically using point-to-point
communication between device pairs.

Unlike intra-operator parallelism, pipeline parallelism does
not reduce the execution time of a single request. In fact, it
typically increases the execution time due to modest amounts
of communication latency between pipeline stages, although
the total amount of transferred data is often lower than it is in
intra-operator parallelism. Instead, the primary use of inter-
operator parallelism in traditional serving systems is to allow
the model to exceed the memory limitation of a single GPU.

3 Motivation and Tradeoff Analysis
As mentioned, both types of model parallelism reduce per-
device memory usage by partitioning a model on multiple
devices. A key motivation for this work is that we can use this
property to fit more models on one device, enabling better
statistical multiplexing of the devices when handling bursty
requests. We explore this idea through a series of empirical
examinations and theoretical analysis, starting with an illus-
trative example (§3.1), followed by an empirical analysis of
when model parallelism is beneficial (§3.2), the overhead of

model parallelism (§3.3), and a queueing theory-based analy-
sis (§3.4). All the experiments in this section are performed
on an AWS EC2 p3.16xlarge instance with 8 NVIDIA 16GB
V100 GPUs.

3.1 Case Study: A Two-model Example

We start with an illustrative experiment to show how model
parallelism can benefit the serving of multiple models. We use
two GPUs to serve two Transformer models with 6.7 billion
parameters each (13.4 GB to store its FP16 weights). Because
each GPU has 16 GB of memory, it can fit one and only one
model. A single request takes around 0.4 s to process on one
GPU.

We compare the following model placements, correspond-
ing to the strategies in Fig. 1. The first is simple placement,
where we place one model on each GPU due to the memory
constraint. The second is model-parallel placement, where we
use inter-op parallelism to partition each model to a 2-stage
pipeline and let each GPU execute half of each model.

We evaluate the two placements when the requests to each
model follow an independent Poisson process with an arrival
rate of 1.5 request/s. Fig. 2a shows the cumulative distribu-
tion function (CDF) and average of request latency (which
includes the GPU execution time and queuing delay). Model-
parallel placement reduces the average latency of the simple
placement from 0.70s to 0.55s, a 1.3× speedup. The speedup
comes from the better burst tolerance: when a burst arrives
that exceeds the capability of a single GPU, simple placement
must begin queuing requests. However, as long as the other
model does not receive many requests, the model parallel
placement can use both GPUs to serve the requests for the
popular model via statistical multiplexing of the GPUs.

This effect becomes more pronounced with higher bursti-
ness, which we can demonstrate using a Gamma request ar-
rival process with the same average request rate as above but a
higher coefficient of variance (CV) of 3. As shown in Fig. 2b,
the speedup on mean latency is now increased to 1.9×. Fig. 2d
shows a representative trace of the corresponding total cluster
utilization over time. Note that for each request burst, model-
parallel placement can use the whole cluster and only take
half of the time to process, while simple placement can only
use half of the cluster.

In addition, we also evaluate the case where one model re-
ceives more requests than another. In Fig. 2c, we use Poisson
arrival but let 20% of the requests ask for model 1 and 80% ask
for model 2. Although replication performs slightly better for
model 1 requests, it is drastically worse on model 2 requests
compared to the model-parallel placement. For model-parallel
placement, because both GPUs are shared across two models,
the requests to both models follow the same latency distri-
bution. Overall, model-parallel placement reduces the mean
latency by 6.6×.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 665

0 1 2 3 4
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Simple Placement
Simple Placement Mean Latency
Model Parallelism
Model Parallelism Mean Latency

(a) Poisson arrival.

0 10 20 30
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Simple Placement
Simple Placement Mean Latency
Model Parallelism
Model Parallelism Mean Latency

(b) High CV Gamma arrival.

0 5 10 15 20 25
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Simple Placement

Simple Placement Model 1
Simple Placement Model 2
Simple Placement Mean Latency
Model Parallelism
Model Parallelism Model 1
Model Parallelism Model 2
Model Parallelism Mean Latency

(c) Different rates.

0 5 10 15 20 25
Time (s)

0

50

100

Ut
iliz

at
io

n
(%

)

Simple Placement Model Parallelism

(d) Cluster utilization.

Figure 2: Latency CDF and cluster utilization in the 2-model example.

GPU 1

A

GPU 2

B

GPU 3

C

GPU 4

D

A
B

B
C

C
D D

A

C
B

D

A

C
B

D

A

C
B

D

A

C
B

D

1x

2x

4x

A

GPU 1 GPU 2 GPU 3 GPU 4

A

C
B

D

A

C
B

D

A

C
B

D

A

C
B

D

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

A1 B1

C1 D1

A2 B2

C2 D2

A1 B1

C1 D1

A2 B2

C2 D2

Mem

(a) Replication （b) Model Parallelism

Figure 3: Replication and model parallel placement illustra-
tion with different memory budgets, where the memory bud-
gets are set to be multiples of a single model’s size.

10 20 30 40
Memory Budget (GB)

1

2

M
ea

n
La

te
nc

y
(s

)

Model Parallelism
Replication
GPU Memory Bound

10 20 30 40
Memory Budget (GB)

5

10

P9
9

La
te

nc
y

(s
) Model Parallelism

Replication
GPU Memory Bound

Figure 4: Serving performance with changing per-GPU mem-
ory budgets. Model parallelism is beneficial for limited mem-
ory budget. The dashed vertical line is the real per-GPU mem-
ory bound of a 16GB V100. The value is around 13GB due
to the need to store activations and other runtime context.

3.2 When is Model Parallelism Beneficial
To further explore the nuances of model parallelism in serving,
we increase the size of the deployment to 8 GPUs and 8
Transformer models with 2.6B parameters each. As a base
setting, we set the requests to each model as a Gamma process
with an average rate of 20 request/s and CV of 3; we then
vary a range of factors to see their effects. Note that some
of the settings we evaluate are impossible on real hardware
(e.g., exceeding the memory capacity of a single device) so
we leverage the simulator introduced in §5. The fidelity of the
simulator is very high as verified in §6.1.

The model in this case is smaller (5.2GB), so one GPU
can also store multiple models without model parallelism.
We compare two placement methods: (1) Replication. In this
setting, we replicate the models to different devices until each
device cannot hold any extra models. Because all the models
receive equal amounts of loads on average, we replicate each
model the same number of times (Fig. 3a). (2) Model Paral-

0 10 20
Total Rates (req/s)

0.50

0.75

1.00

M
ea

n
La

te
nc

y
(s

) Model Parallelism
Replication

0 10 20
Total Rates (req/s)

1

2

3

4

P9
9

La
te

nc
y

(s
) Model Parallelism

Replication

Figure 5: Serving performance with changing arrival rates.
Model parallelism is beneficial for smaller rates.

0 2 4 6 8
Coefficient of Variance

0

2

4

6
M

ea
n

La
te

nc
y

(s
)

Model Parallelism
Replication

0 2 4 6 8
Coefficient of Variance

0

10

20

P9
9

La
te

nc
y

(s
) Model Parallelism

Replication

Figure 6: Serving performance with changing CVs. Model
parallelism is beneficial for larger CVs.

lelism. Here we use inter-operator parallelism and uniformly
assign the Transformer layers to different GPUs.

Device memory. We evaluate the mean and the tail latency
of the two placement methods under different device memory
capacities. For replication, more GPU memory can fit more
models onto a single GPU. For model parallelism, more GPU
memory can also reduce the number of pipeline stages and
reduce the overhead as in Fig. 3b. The resulting mean and P99
latency is shown in Fig. 4. With more memory, more models
can fit into a single GPU, so the benefit of statistical multi-
plexing diminishes because replication can also effectively
use multiple devices to serve the bursty requests to a single
model. When the GPU memory capacity is large enough to
hold all models, there is no gain from model parallelism.

Request arrival. We vary the parameters of the arrival pro-
cess and compare the replication placement with the model-
parallel placement with 8-stage pipeline parallelism. The
mean and P99 latency results of changing arrival rate are
shown in Fig. 5. When the arrival rate is low, model paral-
lelism can greatly reduce the serving latency. However, when
the arrival rate approaches the peak serving rate of the clus-
ter, the benefit of model-parallel placement starts to diminish.
Eventually, it starts to perform worse than replication. This is
because when all models are equally saturated, the replication

666 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 10 15 20
SLO Scale

0

50

100

SL
O

At
ta

in
m

en
t (

%
)

Model Parallelism
Replication

(a) Real model latency.

5 10 15 20
SLO Scale

0

50

100

SL
O

At
ta

in
m

en
t (

%
)

Model Parallelism (α=1.0)
Model Parallelism (α=1.1)
Model Parallelism (α=1.2)
Model Parallelism (α=1.3)
Model Parallelism (α=1.4)
Model Parallelism (α=1.5)
Replication

(b) Changing overhead.

Figure 7: SLO attainment with changing SLOs. Model paral-
lelism is beneficial for smaller SLOs.

placement is able to achieve efficient cluster utilization and
there is no benefit to the statistical multiplexing afforded by
model parallelism. Instead, the overhead of model parallelism
(§3.3) starts to become a significant factor.

The mean and P99 latency results of changing CV are in
Fig. 6. With a higher CV, the requests become more bursty,
and the benefit of model parallelism becomes more significant.
As shown in the results, with a higher CV, model parallelism
can greatly outperform the performance of replication.

Service level objectives. In prediction serving settings, it
is common to have tight latency SLO and predictions made
after these deadlines are often discarded [19]. For example,
advertising systems may choose not to show an ad rather
than delay rendering user content. In this case, the goal of the
serving system is to optimize the percentage of requests that
can be finished within the deadline, i.e., SLO attainment.

In this experiment, we measure how SLOs affect the perfor-
mance of the placement methods. We compare the replication
and the model-parallel placement with 8-stage pipeline par-
allelism. During execution, we drop the requests that will
exceed the deadline even if we schedule it immediately. We
scale the SLO to different multiplies of the single device exe-
cution latency (SLO Scale in Fig. 7a) and compare the SLO
attainment of the two methods.

As in Fig. 7a, when SLO is tight (< 10× model latency),
model parallelism can greatly improve SLO attainment. How-
ever, when the SLO becomes looser, its SLO attainment
plateaus but that of the replication placement keeps grow-
ing. This result shares the same core logic as previous ex-
periments: When SLO becomes looser, more requests can
stay in the waiting queue, and thus the effective burstiness of
the requests decreases. When many requests are queued, the
system is bounded by its total processing capability, which
might be affected by the model parallelism overhead. In the
real world, the SLO requirement is often less than 5× of the
model execution latency [19], where model parallelism can
improve SLO attainment.

Summary: Model parallelism benefits model serving
through statistical multiplexing when the device mem-
ory is limited, the request rate is low, the request CV is
high, or the SLO is tight.

1 2 4 8
Number of GPUs

0.0

0.1

0.2

0.3

La
te

nc
y

(s
)

Compuation
Communication Overhead
Uneven Partition Overhead

(a) Inter-op parallelism.

1 2 4 8
Number of GPUs

0.00

0.05

0.10

0.15

0.20

0.25

La
te

nc
y

(s
)

Compuation
Communication Overhead

(b) Intra-op parallelism.

Figure 8: The overhead decomposition. The overhead of inter-
op parallelism mainly comes from uneven partition while the
overhead of intra-op parallelism comes from communication.

3.3 Overhead of Model Parallelism
In this section, we further investigate the overheads of dif-
ferent model parallel strategies and how they affect serving
performance. Similar to the setup in Fig. 7a, we manually
modify the overhead of model parallelism. Specifically, let
the latency of a single model executing on the GPU be L and
the number of pipeline stages be n. We set the total latency of
pipeline execution to be αL and the latency of each pipeline
stage to be αL/n, where α is a parameter that controls the
overhead. When α = 1, model parallelism does not have any
overhead and larger α means higher overhead.

We show the results in Fig. 7b. If model parallelism does
not have any overhead (α = 1), it can always outperform repli-
cation due to its ability to multiplex the devices. When the
overhead becomes larger and the SLO is low, model paral-
lelism still outperforms replication. However, with a larger
SLO, the effective burstiness is reduced and the performance
is dominated by the overhead.

Given that the overhead can greatly affect serving perfor-
mance, we perform a detailed study of the multiple sources
of model-parallel overhead in Fig. 8. For inter-op parallelism,
when partitioning a single model into multiple stages, dif-
ferent stages need to communicate the intermediate tensors,
and we denote this overhead as the communication overhead.
In addition, the pipeline execution will be bottlenecked by
the execution time of the slowest stage, making the effective
latency to be the number of pipeline stages times the latency
of the slowest stage [23]. We denote this as the uneven par-
tition overhead. As in Fig. 8a, for inter-op parallelism, most
overhead comes from the latency imbalance among different
pipeline stages, instead of the communication between stages.
While our previous discussion mainly focuses on inter-op
parallelism, the other type of model parallelism, intra-op par-
allelism, has very different performance characteristics. Its
overhead is merely brought by the collective communication
across multiple devices [31], which cannot be overlapped
with the neural network computation due to data dependency.
From Fig. 8b, we can see that the communication overhead of
intra-op parallelism is much higher than inter-op parallelism.

Finally, we compare the latency, throughput, and memory
consumption of different model-parallel placements and the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 667

2 4 6 8
#GPUs

0.0

0.1

0.2
La

te
nc

y
(s

)

Inter-op Parallelism
Intra-op Parallelism
Replication

(a) Single input latency.

2 4 6 8
#GPUs

10

20

30

Th
ro

ug
hp

ut
 (r

eq
/s

)

Inter-op Parallelism
Intra-op Parallelism
Replication

(b) Throughput.

2 4 6 8
#GPUs

10

20

30

40

M
em

or
y

(G
B)

Inter-op Parallelism
Intra-op Parallelism
Replication

(c) Total memory usage.

Figure 9: The latency, throughput and memory usage vs. #GPUs for inter-op parallelism, intra-op parallelism, and replication. In
subfigure (c), the lines for inter-op and intra-op parallelism overlap.

replication placement in Fig. 9. Because of the sequential
dependence between the different stages, inter-op parallelism
cannot reduce the execution latency of a single input data. In-
stead, the latency is slightly higher due to the communication
between the stages. On the other hand, intra-op parallelism
can largely reduce the latency via the parallel execution of dif-
ferent GPUs (Fig. 9a). However, because inter-op parallelism
can pipeline the execution of different stages and only com-
municate a relatively small amount of data, it attains higher
throughput compared to intra-op parallelism (Fig. 9b). Be-
cause both parallel methods split the model weight tensors
across different GPUs, the total memory usage stays con-
stant with increasing numbers of GPUs (Fig. 9c). This makes
the statistical multiplexing of different GPUs across multiple
models possible.

In the end, the tradeoff between parallelization strategies
and their interplay with cluster resources, arrival patterns, and
serving objectives forms an intricate design space.

3.4 Queueing Theory Analysis
In this section, we use queuing theory to mathematically ver-
ify the conclusions in §3.2 and §3.3. Specifically, we analyze
the case where the inputs follow the Poisson arrival process.
Since the execution time of a deep learning inference task is
highly predictable [19], we assume the request serving time is
deterministic. For the single device case, suppose the request
rate to a model is λ0 and the single device latency is D with
the utilization λ0D < 1, then the average number of requests
LQ and the average latency W in this M/D/1 queue [46] are:

LQ =
λ0D

2(1−λ0D)
, W = D+LQD = D+

λ0D2

2(1−λ0D)
.

Now consider the example in §3.1. Let pλ,(1− p)λ be the
average request rates for the two models respectively, where
p ∈ [0,1] controls the percentage of requests for both models.
Then for the simple placement, the average latency can be
derived as the average latency of two independent queues:

Wsimple = D+
p2λD2

2(1− pλD)
+

(1− p)2λD2

2(1− (1− p)λD)
.

0.0 0.5 1.0 1.5 2.0
λD

1.0

1.2

1.4 α
β

Figure 10: Maximal communication overhead α and uneven
partition overhead β satisfy Wpipeline ≤Wsimple as a function
of total utilization λD.

Note that Wsimple reaches minimum when p = 1/2. Intuitively,
when p is not exactly half, one model receives more requests
than the other. This larger portion of requests have a longer
queueing delay, which leads to the higher overall mean la-
tency.

For the model-parallel case, the requests to both models
merged to a single Poisson Process with rate λ. For pipeline
parallelism, suppose the latency for a single input to be Ds
and the maximum stage latency to be Dm, then the average
latency would be

Wpipeline = Ds +
λD2

m

2(1−λDm)
.

Suppose there is no model-parallel overhead, then Ds =
2Dm =D. Let’s first consider the case where p= 1/2 (Fig. 2a).
We have

Wsimple = D+
λD2

4−2λD
, Wpipeline = D+

λD2

8−4λD
.

In this case, the waiting time for model-parallel execution is
half of the simple placement waiting time, as shown in the
vertical lines in Fig. 2a. When the p is not 1/2, Wsimple will
increase while Wpipeline will stay the same, so the gap between
Wsimple and Wpipeline will be even larger, as in Fig. 2c.

Next, we consider the case where model parallelism in-
curs overhead. We measure the two types of overheads in
§3.3 separately: With the overhead from communication,
Ds = 2Dm = αD, where α ≥ 1 is the overhead factor. With
the overhead from uneven stages, we suppose Ds = D still
holds, but Dm = βD/2 where β ≥ 1 is the overhead factor.
To keep Wpipeline ≤Wsimple, we can get the maximal α and

668 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Controller
HTTP Requests

Model a

Model b

Model c

GPU GPU GPU GPU

Model Parallel Runtime

Model a

Model d

Model e

GPU GPU GPU GPU

Model Parallel Runtime

Model f

Model g

GPU GPU

Model Parallel Runtime

Group 1 Group 2 Group 3

Figure 11: AlpaServe Runtime System Architecture

β as a function of the total utilization λD separately and we
visualize the function in Fig. 10. When the utilization is high,
the benefit of statistical multiplexing diminishes, and thus
the overhead needs to be low, as in §3.2. On the other hand,
when the utilization is very low, most requests will not be
queued, and thus the communication overhead α needs to
be low to keep the processing latency to be low. Note that
the maximal overhead here is based on a uniform Poisson ar-
rival distribution. A more bursty or more non-uniform arrival
distribution will make the simple placement performs worse
and make the model-parallelism placement outperforms the
simple replication placement with even higher overhead.

4 Method
From §3, we can see that there are several key challenges to
effectively utilize model parallelism for deep learning serving:

• Derive efficient model parallel strategies for inference to
reduce the overhead of model parallelism. Specifically,
find a partitioning strategy that minimizes the stage im-
balance for inter-operator parallelism.

• Determine model-parallel placements according to the
arrival pattern to maximize SLO attainment.

We built AlpaServe to specifically tackle these challenges.
The runtime architecture of AlpaServe is shown in Fig. 11. Al-
paServe utilizes a centralized controller to dispatch requests to
different groups.3 Each group hosts several model replicas on
a shared model-parallel runtime. This section describes the ar-
chitecture of AlpaServe and the key algorithms for efficiently
leveraging model parallelism in a model serving system.

4.1 Automatic Parallelization for Inference
Since different parallelization configurations have different
latency and throughput trade-offs, we need to enumerate mul-
tiple possible configurations for every single model and let the
placement algorithm choose the best combination for all mod-
els in the whole cluster. Therefore, given a model, AlpaServe
first runs an auto-parallelization compiler with various con-
straints to generate a list of possible configurations. We build
several extensions on top of an existing auto parallelization
training system, Alpa [56], to make it suitable for generating
serving parallelization strategies. Alpa includes two passes

3For a larger service, AlpaServe can be extended as a hierarchical deploy-
ment with each controller only managing a subset of devices as in [52].

for generating efficient model parallel partitions: inter-op pass
and intra-op pass. The inter-op pass uses a dynamic program-
ming (DP) algorithm to figure out the optimal inter-op parallel
plan, and it calls the intra-op pass for each potential pipeline
stage, which is formulated as an integer linear programming
(ILP) problem, to profile its latency with the optimal intra-
op parallel plan. In AlpaServe, we keep the two compilation
passes, but extends both passes for serving.

The inter-op pass in Alpa optimizes the overall pipeline
execution latency, which includes the time of forward and
backward propagation and weight synchronization. However,
in serving workloads, only forward propagation is being exe-
cuted and there is no need for weight synchronization. There-
fore, we reformulate the dynamic programming in AlpaServe
to merely focus on minimizing the maximal stage latency.
Specifically, denote F(s,k) to be the maximum latency when
slicing layers 1 to k into s stages. We can derive F as

F(s,k) = min
1≤i≤k

{max{F(s−1, i−1), latency(i,k)}} ,

where latency(i,k) denotes the latency of a stage composes
of layer i to k. In Alpa, the latency function of all possible
O(K2) combinations is being profiled by the intra-op pass
because of the complicated dependency between forward and
backward passes. In AlpaServe, because the pipeline stages
only perform forward propagation and only communicate
intermediate results once between layer boundaries, we can
accelerate the profiling by only profiling K layers and letting
latency(i,k) to be the sum of the latencies for layer i to k.
This acceleration enables us to efficiently enumerate different
inter- and intra-op device partition setups and generate a list
of parallel strategies for the placement algorithm in §4.2.

For the intra-op pass, we extend the ILP in Alpa to drop
all configurations that use data parallelism. For serving work-
loads, because there is no need for weight synchronization,
data parallelism can be achieved by the replication placement.
We leave the decision of whether to replicate a model to the
placement algorithm in §4.2.

4.2 Placement Algorithm
Given a set of models and a fixed cluster, AlpaServe parti-
tions the cluster into several groups of devices. Each group
of devices selects a subset of models to serve using a shared
model-parallel configuration. Different groups can hold the
same model as replicas. The requests for a model are dis-
patched to the groups with the requested model replica. We
call a specific cluster group partition, model selection, and
parallel configuration as a placement. Our goal is to find a
placement that maximizes the SLO attainment.

However, finding the optimal placement is a difficult combi-
natorial optimization problem. The overall placement config-
uration space grows exponentially with the number of devices
and the number of models. To make things worse, the objec-
tive “SLO attainment” has no simple analytical formula for

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 669

Algorithm 1 Simulator-Guided Greedy Model Selection.

Input: Model list M, device group list G, group parallel con-
figurations P, workload W , beam size k (default = 1).

Output: The model selection best_sel.
best_sel← /0

beam_sels←{ /0}
while true do

new_sels← /0

for sel ∈ beam_sels do
for (m,(g, p)) ∈M× (G,P) do

// Parallelize the model as in §4.1.
mparallelized← parallelize(m,g, p)
sel′← sel.add_model_to_group(mparallelized,g)
if sel′ is in memory constraint then

sel′.slo_attainment← simulate(sel′,W)
new_sels.append(sel′)

if new_sels = /0 then
break

beam_sels← top-k_SLO_attainment(new_sels)
sel∗← pick_highest_SLO_attainment(beam_sels)
if sel∗.slo_att > best_sel.slo_att then

best_sel← sel∗

return best_sel

an arbitrary arrival distribution. Existing tools and approxima-
tions from queueing theory can only analyze simple cases in
§3.4 and cannot model more complex situations [46]. There-
fore, we resort to a simulator-guided greedy algorithm that
calls a simulator to compute SLO attainment.

To compute the SLO attainment with a given set of requests
and placement, in AlpaServe, we assume we know the arrival
process in advance. Although short-term burstiness is impos-
sible to predict, the arrival pattern over longer timescales (e.g.,
hours or days) is often predictable [48]. Given this predictabil-
ity, AlpaServe either directly uses the history request traces
or fits a distribution from the trace and resamples new traces
from the distribution as the input workload to the simulator
to compute the SLO attainment.

We design a two-level placement algorithm: Given a cluster
group partition and a shared model-parallel configuration for
each group, Algorithm 1 uses a simulator-guided greedy algo-
rithm to decide which models to select for each group. Then,
Algorithm 2 enumerates various potential cluster partitions
and parallel configurations and compares the SLO attainment
from Algorithm 1 to determine the optimal placement.

Given a cluster group partition with a fixed model-parallel
configuration for each group, Algorithm 1 selects model repli-
cas iteratively as a beam search algorithm: At each iteration,
it enumerates all possible (model, group) pairs, parallelizes
the model on the device group with the algorithms in §4.1,
and checks whether the model can be put on the group under
the memory constraint. For all valid selections, it runs the

Algorithm 2 Enumeration-Based Group Partition and Model-
Parallel Configuration Selection.

Input: Model list M, cluster C, workload W .
Output: The placement best_plm.

best_plm← /0

B ← get_potential_model_buckets(M)
for (B1,B2, . . . ,Bk) ∈ B do

H ← get_potential_device_buckets(C,B,k)
for (H1,H2, . . . ,Hk) ∈H do

// Get the placement for each bucket individually.
for i from 1 to k do

plm∗i ← /0

G ← get_potential_group_partitions(Hi)
for G ∈ G do

P ← get_potential_parallel_configs(G)
for P ∈ P do

plm← greedy_selection(Bi,G,P,W)
if plm.slo_att > plm∗i .slo_att then

plm∗i ← plm
plm∗← concat(plm∗1, ...,plm∗k)
if plm∗.slo_att > best_plm.slo_att then

best_plm← plm∗

return best_plm

simulator and computes SLO attainment. It then picks the
top-k solutions and enters the next iteration. The algorithm
terminates when no more replicas can be put into any groups.

The complexity of Algorithm 1 is O(MGRSB), where M
is the number of models, G is the number of groups, R is
the number of replicas we can put according to the memory
constraint, S is the number of requests in the workload (the
simulation time is proportional to the number of the requests)
and B is the beam size. It runs reasonably fast for our medium-
scale cluster when the number of requests is small. When the
number of requests is very large, we propose another heuristic
to accelerate: Instead of using the simulator to evaluate all
(model, group) pairs at each iteration, we can run the simu-
lator only once and place a model with the most unserved
requests in an available group with the lowest utilization. This
reduces the time complexity to O((M+G)RS). We find this
heuristic gives solutions with SLO attainment higher than
98% of the SLO attainment get by the original algorithm in
our benchmarks.

Algorithm 2 enumerates different group partitions and
model-parallel configurations and picks the best one via mul-
tiple calls to Algorithm 1. When designing Algorithm 2,
the first phenomenon we notice is that putting small and
large models in the same group causes convoy effects, where
the requests of small models have to wait for the requests
of large models and miss the SLO. Therefore, in Algo-
rithm 2, we first cluster models into model buckets. Each
bucket contains a set of models with relatively similar sizes

670 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and every model is assigned to one and only one bucket.
Specifically, the function get_potential_model_buckets
returns all the possible model bucket partitions that sepa-
rate models whose latency difference is larger than a thresh-
old into different disjoint buckets. We then enumerate all
the potential ways to assign the devices to each bucket in
get_potential_device_buckets.

Because different buckets include a disjoint set of models,
we can then figure out the optimal placement for each bucket
individually. For each bucket, we enumerate possible ways
to partition the devices in the bucket into several groups in
get_potential_group_partitions and enumerate the po-
tential parallel configurations for each group with the method
in get_potential_parallel_configs. We then call Al-
gorithm 1 with greedy_placement to place models in the
model bucket to the groups in the device bucket. We send the
whole workload W to Algorithm 1, which ignores the requests
that hit the models outside of the current bucket. Finally, a
complete solution is got by concatenating the solutions for
all buckets. The algorithm returns the best solution it finds
during the enumerative search process.

Enumerating all possible choices can be slow, so we use
the following heuristics to prune the search space. Intuitively,
we want the different buckets to serve a similar number of
requests per second. Therefore, we eliminate the bucket con-
figurations with high discrepancies in the estimated num-
ber of requests it can serve per second for each bucket.
Additionally, in get_potential_group_partitions and
get_potential_parallel_configs, we assume all groups
have the same size and the same parallel configurations except
for the last group which is used when the number of devices
is not divisible by the group size.

4.3 Runtime Scheduling
We use a simple policy to dispatch and schedule the requests at
runtime. All requests are sent to a centralized controller. The
controller dispatches each request to the group with the short-
est queue length. Each group manages a first-come-first-serve
queue. When a group receives a request, it checks whether
it can serve the request under SLO and rejects the request if
it cannot. This is possible because the execution time of a
DNN model is very predictable and can be got in advance by
profiling [19]. In most of our experiments, we do not include
advanced runtime policies such as batching [19], swapping,
and preemption [21]. These techniques are complementary to
model parallelism. Nevertheless, we discuss how they fit into
our system.

Batching. Batching multiple requests of the same model to-
gether can increase the GPU utilization and thus increase the
throughput of a serving system. In our system, we do find
batching is helpful, but the gain is limited. This is because we
mainly target large models and a small batch size can already
fully saturate the GPU, which is verified in §6.5. To isolate
the benefits of model parallelism and make the results more

explainable, we decide to disable any batching in this paper
except for the experiments in §6.5.

Preemption. The optimal scheduling decision often depends
on future arrivals, and leveraging preemption can help cor-
rect previous suboptimal decisions. The first-come-first-serve
policy may result in convoy effects when models with signifi-
cantly different execution times are placed in the same group.
We anticipate a least-slack-time-first policy with preemption
can alleviate the problems [12].

Swapping. The loading overheads from the CPU or Disk to
GPU memory are significant for large models, which is the
target of this paper, so we do not implement swapping in Al-
paServe. We assume all models are placed on the GPUs. This
is often required due to tight SLOs and high rates, especially
for large models. The placement of models in AlpaServe can
be updated in the periodic re-placement (e.g., every 24 hours).

Fault tolerance. While the current design of AlpaServe does
not have fault tolerance as a focus, we acknowledge several
potential new challenges for fault tolerance: With model par-
allelism, the failure of a single GPU could cause the entire
group to malfunction. Additionally, the use of a centralized
controller presents a single point of failure.

5 Implementation
We implement a real system and a simulator for AlpaServe
with about 4k lines of code in Python. The real system is
implemented on top of an existing model-parallel training sys-
tem, Alpa [56]. We extend its auto-parallelization algorithms
for inference settings to get the model-parallel strategies. We
then launch an Alpa runtime for each group and dispatch
requests to these groups via a centralized controller.

The simulator is a continuous-time, discrete-event simula-
tor [39]. The simulator maintains a global clock and simulates
all requests and model executions on the cluster. Because the
simulator only models discrete events, it is orders of magni-
tude faster than the real experiments. In our experiment, it
takes less than 1 hour for a 24-hour trace. The fidelity of the
simulator is very high because of the predictability of DNN
model execution, which is verified in §6.1.

6 Evaluation
In this section, we evaluate AlpaServe’s serving ability under
a variety of model and workload conditions. The evaluation is
conducted on a range of model sizes, including those that do
and do not fit into a single GPU, and we show that AlpaServe
consistently outperforms strong baselines across all model
sizes. In addition, we evaluate the robustness of AlpaServe
against changing arrival patterns and do ablation studies of our
proposed techniques. Evaluation results show that AlpaServe
can greatly improve various performance metrics. Specifically,
AlpaServe can choose to save up to 2.3× devices, handle 10×
higher rates, 6×more burstiness, or 2.5×more stringent SLO,
while meeting the latency SLOs for over 99% requests.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 671

Name Size Latency (ms) S1 S2 S3 S4

BERT-1.3B 2.4 GB 151 32 0 10 0
BERT-2.7B 5.4 GB 238 0 0 10 0
BERT-6.7B 13.4 GB 395 0 32 10 0
BERT-104B 208 GB 4600 0 0 0 4
MoE-1.3B 2.6 GB 150 0 0 10 0
MoE-2.4B 4.8 GB 171 0 0 10 0
MoE-5.3B 10.6 GB 234 0 0 10 0

Table 1: The first three columns list the sizes and inference
latency of the models. The latency is measured for a single
query with a sequence length of 2048 on a single GPU. BERT-
104B’s latency is reported using a minimal degree of inter-op
parallelism. The latter columns list the number of instances
for each model in different model sets named as S1-S4.

6.1 Experiment Setup
Cluster testbed. We deploy AlpaServe on a cluster with 8
nodes and 64 GPUs. Each node is an AWS EC2 p3.16xlarge
instance with 8 NVIDIA Tesla V100 (16GB) GPUs.

Model setup. Since Transformer [47] is the default backbone
for large models, we choose two representative large Trans-
former model families: BERT [14] and GShard MoE [27]
for evaluation.4 In ML practice, the large model weights are
usually pretrained and then finetuned into different versions
for different tasks. Hence, for each model family, we select
several most commonly used model sizes [5], and then create
multiple model instances at each size for experimentation.
Also, we design some model sets to test the serving systems
under different model conditions; details about model sizes,
their inference latency on testbed GPUs, and the number of
model instances in each model set are provided in Tab. 1.

Metrics. We use SLO attainment as the major evaluation
metric. Under a specific SLO attainment goal (say, 99%), we
concern with another four measures: (1) the minimal num-
ber of devices the system needs, (2) the maximum average
request rate, (3) the maximum traffic burstiness the system
can support, and (4) the minimal SLO the system can handle.
We are particularly interested in a SLO attainment of 99% (in-
dicated by vertical lines in all curve plots), but will also vary
each variable in (1) - (4) and observe how the SLO attainment
changes.

Simulator fidelity. We want to study the system behavior
under extensive models, workload, and resource settings, but
some settings are just beyond the capacity of our testbed. Also,
it is cost- and time-prohibitive to perform all experiments on
the testbed for the days-long real traces. To mitigate the prob-
lem, we use the simulator introduced in §5 for the majority
of our experiments, noticing that DNN model execution [19]
has high predictability, even under parallel settings [27, 56].

4In this paper, we focus on non-autoregressive large models which per-
form inference with one forward pass, but note that the techniques proposed
in this paper can be extended to auto-regressive models like GPT-3.

SLO
Scale

Selective Replication AlpaServe
Real System Simulator Real System Simulator

0.5x 00.0% 00.0% 33.3% 33.3%
1x 00.0% 00.0% 53.5% 53.2%

1.5x 29.7% 30.2% 64.1% 64.7%
2x 36.9% 36.8% 79.0% 80.6%
3x 49.5% 48.5% 91.4% 92.1%
4x 58.6% 57.8% 96.4% 96.5%
5x 64.9% 64.0% 97.6% 97.9%
10x 83.1% 82.6% 100.0% 99.7%

Table 2: Comparison of the SLO attainment reported by the
simulator and the real system under different SLO scales.

We study the fidelity of the simulator in Tab. 2. Given two
model placement algorithms, we compare the SLO attain-
ment reported by the simulator and by real runs on our testbed
under different SLO Scales. The error is less than 2% in all
cases, verifying the accuracy of our simulator. Additionally,
we conduct experiments on cluster testbed for results in §6.3.

6.2 End-to-end Results with Real Workloads
In this section, we compare AlpaServe against baseline meth-
ods on publicly available real traces.

Workloads. There does not exist an open-source production
ML inference trace to the best of our knowledge. Therefore,
we use the following two production traces as a proxy: Mi-
crosoft Azure function trace 2019 (MAF1) [42] and 2021
(MAF2) [54]. They were originally collected from Azure
serverless function invocations in two weeks, and have been
repurposed for ML serving research [4, 25]. The two traces
exhibit distinct traffic patterns. In MAF1, each function re-
ceives steady and dense incoming requests with gradually
changing rates; in MAF2, the traffic is very bursty and is
distributed across functions in a highly skewed way – some
function receives orders of magnitude more requests than
others. Note that most previous works [19] are evaluated on
MAF1 only. Since there are more functions than models, fol-
lowing previous work [4, 25], given a model set from Tab. 1,
we round-robin functions to models to generate traffic for
each model.

Setup. SLO attainment depends on many factors. For each
metric (1) - (4) mentioned in §6.1, we set a default value, e.g.,
the default SLO is set as tight as 5× inference latency (SLO
Scale=5). This forms a default setting, given which, we then
vary one variable (while fixing others) at a time and observe
how it affects the resulting SLO attainment. To change the
two variables (3) and (4), which characterize traffic patterns,
we follow Clockwork [19] and Inferline [8] and slice the
original traces into time windows, and fit the arrivals in each
time window with a Gamma Process parameterized by rate
and coefficient of variance (CV). By scaling the rate and CV
and resampling from the processes, we can control the rate
and burstiness, respectively.

Baselines. We compare AlpaServe to two baseline methods:

672 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10 20 30 40 50
#devices

60

70

80

90

100
S1 @ MAF1

60 80 100 120
#devices

60

70

80

90

100
S2 @ MAF1

40 60 80
#devices

60

70

80

90

100
S3 @ MAF1

5 10 15
#devices

60

70

80

90

100
S1 @ MAF2

20 40 60
#devices

60

70

80

90

100
S2 @ MAF2

20 40 60
#devices

60

70

80

90

100
S3 @ MAF2

SL
O

At
ta

in
m

en
t (

%
)

AlpaServe Clockwork++ SR

0.002 0.004 0.006 0.008
Rate Scale

60

70

80

90

100

0.002 0.004 0.006 0.008
Rate Scale

60

70

80

90

100

0.002 0.004 0.006 0.008
Rate Scale

60

70

80

90

100

20 40 60 80 100
Rate Scale

60

70

80

90

100

20 40 60 80 100
Rate Scale

60

70

80

90

100

0 20 40 60
Rate Scale

60

70

80

90

100

SL
O

At
ta

in
m

en
t (

%
)

2 4 6 8
CV Scale

40

60

80

100

2 4 6 8
CV Scale

40

60

80

100

2 4 6 8
CV Scale

40

60

80

100

2 4 6 8 10
CV Scale

40

60

80

100

2 4 6 8 10
CV Scale

40

60

80

100

2 4 6 8
CV Scale

40

60

80

100

SL
O

At
ta

in
m

en
t (

%
)

2.5 5.0 7.5 10.0
SLO Scale

0

25

50

75

100

2.5 5.0 7.5 10.0
SLO Scale

0

25

50

75

100

2.5 5.0 7.5 10.0
SLO Scale

0

25

50

75

100

1 2 3 4
SLO Scale

0

25

50

75

100

1 2 3 4
SLO Scale

0

25

50

75

100

1 2 3 4 5
SLO Scale

0

25

50

75

100

SL
O

At
ta

in
m

en
t (

%
)

Figure 12: SLO attainment under various settings. In column S1@MAF1, we replay the MAF1 trace on the model set S1, and
so on. In each row, we focus on one specific metric mentioned in §6.2 to see how its variation affects the performance of each
serving system. If any, the dotted vertical line shows when the system can achieve 99% SLO attainment.

(1) Selective Replication (SR): use AlpaServe’s placement al-
gorithm without model parallelism, which mimics the policy
of a wide range of existing serving systems [9, 44]; (2) Clock-
work++: an improved version of the state-of-the-art model
serving system Clockwork [19]. The original Clockwork con-
tinuously swaps models into and out of GPUs. This helps for
very small models (e.g., w/ several million parameters) but
incurs significant swapping overheads on larger models. For
fair comparisons, we implement Clockwork++ in our simula-
tor, which swaps models following Clockwork’s replacement
strategy at the boundary of every two windows5 of the trace
using SR’s algorithm, but assuming zero swapping overheads.
We believe it represents a hypothetical upper bound of Clock-
work’s performance. Since all the baselines can only support
models that can fit into one GPU memory,6 we use model set
S1, S2 and S3 from Tab. 1 in this experiment.

SLO attainment vs. cluster size. Fig. 12’s first row shows
the SLO attainment with varying cluster sizes when serving
a specific (model set, trace) pair. AlpaServe outperforms the
two baselines at all times and uses far fewer devices to achieve
99% SLO attainment thanks to model parallelism. By splitting

5For MAF1, we follow Clockwork to set the window size as 60 seconds.
For MAF2, we set it as 5.4K seconds.

6In our cluster testbed, the per-GPU memory is 16GB, but the actual
available space for model weights is around 13GB due to the need to store
activations and other runtime context.

one model replica onto N devices, AlpaServe can achieve
similar throughput as if N replica were created for replication-
only methods; but note AlpaServe uses only one replica of
memory. Surprisingly, although we let Clockwork++ adjust
to the traffic dynamically with zero overhead, AlpaServe still
wins with a static placement; this is because model-parallel
placement is by nature more robust to bursty traffic.

It is worth noting that replication-only methods can at most
place 2 replicas of BERT-2.6B on a V100 (13GB memory bud-
get), resulting in a substantial memory fraction, while model
parallelism can avoid such memory fractions and enable more
flexible placement of models.

SLO attainment vs. rate. Fig. 12’s 2nd row varies the rate of
the workloads. For a stable trace like MAF1, AlpaServe can
handle a much higher rate than baselines. While for a skewed
and highly dynamic trace MAF2, whose traffic is dominated
by a few models and changes rapidly, the replication-based
methods have to allocate the majority of the GPUs to create
many replicas for “hot” models to combat their bursty traffic;
those GPUs, however, may go idle between bursts, even with
frequent re-placement as in Clockwork++. In AlpaServe, each
model needs fewer replicas to handle its peak traffic.

SLO attainment vs. CV. Fig. 12’s 3rd row varies the CV of
the workloads. The traffic becomes more bursty with a higher
CV, which aggravates the queuing effect of the system and
increases the possibility of SLO violation. The traditional

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 673

solution to handle burstiness is by over-provision, wasting a
lot of resources. AlpaServe reveals a hidden opportunity to
handle this by model parallelism.

SLO attainment vs. SLO. Fig. 12’s 4th row shows the effect
of different SLO. Previous work [19] which targets serving
small models usually sets SLO to hundreds of milliseconds,
even though the actual inference latency is less than 10 ms.
Thanks to the intra-op parallelism, AlpaServe can maintain
good performance under similar SLO when serving large
models, whose inference latency can be over 100 ms. When
SLO is tight, even less than the model inference time, Al-
paServe favors intra-op parallelism to reduce the inference
latency, which also reduces AlpaServe’s peak throughput due
to the communication overhead but can make more requests
to meet their SLO. When SLO becomes looser, AlpaServe
will automatically switch to use more inter-op parallelism to
get higher throughput.

6.3 Serving Very Large Models
Today’s large models may possess hundreds of billions of
parameters [5, 31, 53]. To serve large models at this scale,
the common practice in production is to choose the model
parallelism strategy manually and use dedicated GPUs for
each model [51]. To show AlpaServe has improved capability
in serving very large models, we deploy model set S4 on our
testbed, each requiring at least 16 GPUs to serve in terms of
memory usage. As baselines, for each model, we enumerate
all combinations of inter- and intra-op parallelisms on 16
GPUs. In contrast, AlpaServe searches for the optimal GPU
group allocation and model placement according to the arrival
traffic and tries to achieve statistical multiplexing.

Offered load. In the default setting, the traffic is generated
via a Gamma Process with an average rate of 8 requests/s and
CV of 4. We then split the requests to each model following
a power law distribution with an exponent of 0.5 to simulate
the real-world skewness.7 Similar to §6.2, we vary one of the
rate, CV, or SLO in the default setting to see how each factor
contributes to the resulting performance. It is worth noting
that all results presented in this section are obtained via real
execution on the testbed cluster.

SLO attainment. Fig. 13 shows the SLO attainment of each
system under various settings. Although enumerating par-
allelism strategies and selecting the best can improve per-
formance, it still remains a substantial gap compared to Al-
paServe. This means that the traditional way of using ded-
icated GPUs to serve large models is not ideal. We check
the solution of AlpaServe and find it slices the cluster evenly
into two groups, each with the (4, 8) inter-/intra-op parallel
configuration, and groups the models in a way that balances
the requests between two groups. This further proves that our
motivation in §3.1 still holds for extremely large models. By

7Uniform split yielded similar results.

2.5 5.0 7.5
Rate (r/s)

60

70

80

90

100

1 2 3 4
CV

60

70

80

90

100

2.5 5.0 7.5
SLO Scale

0

20

40

60

80

100

SL
O

At
ta

in
m

en
t (

%
)

AlpaServe (16,1) (8,2) (4,4) (2,8)

Figure 13: SLO attainment as we vary the rate, CV, and SLO
scale. (8,2) means 8-way inter-op parallelism and in each
pipeline stage using 2-way intra-op parallelism.

space-sharing the devices, AlpaServe can exploit new oppor-
tunities for statistical multiplexing, which is advantageous for
bursty workloads but largely under-explored by prior work.

6.4 Robustness to Changing Traffic Patterns
Until now, AlpaServe’s good performance is based on the
assumption we make in its placement algorithm that we know
the arrival process in advance. In practice, the arrival process
can be approximated using historical traces but the unavoid-
able real-world variance may make the prediction inaccurate.
In this experiment, we study how AlpaServe performs if the
traffic patterns change.

We reuse the same setting for S2@MAF1 in §6.2, but this
time for AlpaServe and SR, we randomly slice two one-hour
traces from MAF1, one is what their algorithms are assumed,
while the other one is used as the actual arrival process. While
for Clockwork++, we still run its algorithm directly on the
actual arrival process to respect its online nature. Similarly,
we vary different factors and compute the SLO attainment for
each system. We repeat the experiments three times and show
the average results in Fig. 14.

Unsurprisingly, SR’s performance drops significantly when
traffic changes. By contrast, AlpaServe maintains good per-
formance and still outperforms Clockwork++, an online ad-
justment algorithm, using a static placement generated from
substantially different traffic patterns. This confirms that, in
face of highly-dynamic traffic patterns, statistical multiplex-
ing with model parallelism is a simple and better alternative
than existing replication- or replacement-based algorithms.

6.5 Benefits of Dynamic Batching
Batching is a common optimization in other serving sys-
tems [19, 33, 34] and the choice of batch size is critical to
the performance because it can increase GPU utilization and
thus increase the system throughput. However, in large model
scenarios, the benefit of batching is limited mainly due to
two reasons. First, for large models, a small batch size will
saturate the GPU, which means there is little gain to batching
more requests. Second, the execution latency grows linearly
with the batch size [44], so when the SLO is tight (say SLO
Scale is less than 2), batching is simply not a choice.

To isolate the benefits of model parallelism and make the

674 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10 20 30 40 50
#devices

0

20

40

60

80

100

0.002 0.004 0.006 0.008
Rate Scale

0

20

40

60

80

100

2 4 6 8
CV Scale

0

20

40

60

80

100

2 4 6 8 10
SLO Scale

0

20

40

60

80

100
SL

O
At

ta
in

m
en

t (
%

)
AlpaServe Clockwork++ SR

Figure 14: The actual arrival traffic for AlpaServe and SR is different from what their algorithms are assumed, while Clockwork++
runs directly on the actual traffic.

0.0 2.5 5.0 7.5 10.0 12.5
SLO Scale

0

20

40

60

80

100

AlpaServe
AlpaServe (mb=2)
AlpaServe (mb=4)
AlpaServe (mb=8)
AlpaServe (mb=16)

0.0 2.5 5.0 7.5 10.0 12.5
SLO Scale

0

20

40

60

80

100

AlpaServe
Clockwork++
AlpaServe (mb=2)
Clockwork++ (mb=2)

SL
O

At
ta

in
m

en
t (

%
)

Figure 15: SLO Attainment when batching is enabled. mb=2
means the maximum batch size is 2.

results more explainable, we decide to disable any batching
in other experiments but prove that the batching strategy is
purely orthogonal to the scope of this paper in this subsection.
To prove this, we implement a standard batching algorithm in
AlpaServe and evaluate its performance.

Batching strategy. When a request arrives, it will get exe-
cuted immediately if any device group is available. Otherwise,
it will be put into a per-model requests queue for batching.
When a device group becomes idle, it will choose a model
which has a replica on it and batch as many requests as possi-
ble from the requests queue of the model while satisfying the
SLO requirements.

Setup. As the model size increases, the potential benefit of
batching decreases. Therefore, we choose to evaluate model
set S1. We generate a synthetic Gamma Process traffic with
an average rate of 4 requests/s and a CV of 4 for each model.

SLO attainment. Fig. 15 (left) shows the SLO attainment
achieved by AlpaServe with different maximum batch size set-
tings under various SLO scales. When the SLO requirement
is tight, any batching will violate the SLO so there is no gain
with batching enabled. Also, although we choose to serve the
smallest model in Tab. 1, a small batch size like 2 combined
with a long sequence length of 2048 already saturates the
GPU, so a larger maximum batch size brings no performance
improvement. Fig. 15 (right) compares the improvement for
AlpaServe and Clockwork++ with our batching algorithm
enabled.8 When the SLO requirement becomes loose, both
AlpaServe and Clockwork++ have better SLO attainment to

8SR is left out to make the figure clearer as it is worse than Clockwork++.

1 2 4 8
Number of GPUs

0.100
0.125
0.150
0.175
0.200
0.225
0.250

La
te

nc
y

(s
)

Compuation
Communication Overhead
Uneven Partition Overhead

(a) Transformer 1.3B.

1 2 4 8
Number of GPUs

0.20

0.22

0.24

0.26

0.28

0.30

La
te

nc
y

(s
)

Compuation
Communication Overhead
Uneven Partition Overhead

(b) Transformer 2.6B.

Figure 16: Comparison of the model parallel overhead be-
tween manual partition (lighter color) and the partition found
by the automatic algorithm (darker color).

some extent. Since AlpaServe’s performance is good even
without batching and batched requests with different batch
sizes will incur stage imbalance and pipeline bubble in inter-
op parallel, the absolute improvement of Clockwork++ is
slightly better.

6.6 Ablation Study
In this section, we study the effectiveness of our proposed
auto-parallelization (§4.1) and placement algorithms (§4.2).

Benefits of auto-parallelization. We show that the auto-
parallelization ability allows AlpaServe to not only gener-
alize to arbitrary model architectures but even also reduce
parallelism overheads – hence improved serving performance
(see §3.3 for more discussion). To see that, typical manual
model-parallel parallelization strategies offered in de facto
systems [1, 31, 32] is to assign an equal number of (trans-
former) layers to each pipeline stage. These strategies often
fail to create balanced workloads across distributed GPUs be-
cause contemporary large models have heterogeneous layers,
such as embedding operations. The extensions introduced in
§4.1 automatically partition the models at the computational
graph level and generate nearly-balanced stages. Empirically,
as shown in Fig. 16, for 8 pipeline stages, auto-parallelization
reduces the total overhead by 32.9% and 46.7% for Trans-
former 1.3B and 2.6B respectively, which is necessary for
achieving good serving performance when model parallelism
is used for serving.

Effectiveness of the placement algorithm. We now test the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 675

20 40 60 80 100 120
Rate (r/s)

60

65

70

75

80

85

90

95

100

Round robin
Greedy placement
Greedy placement + Group partitioning

2 4 6
CV

60

65

70

75

80

85

90

95

100

Round robin
Greedy placement
Greedy placement + Group partitioning

SL
O

At
ta

in
m

en
t (

%
)

Figure 17: Ablation study of placement algorithms.

effectiveness of our placement algorithm on a synthetic work-
load. We serve the most challenging model set S3 (Tab. 1)
on our testbed. The rate distribution of the models follows
a power law distribution. The arrival pattern of each model
is a Gamma process. Three variants of the placement algo-
rithms are evaluated. Round robin means placing models in a
round-robin fashion and using 4-stage pipelines for all groups.
Greedy placement uses our greedy placement and 4-stage
pipeline for all groups. Greedy placement + Group partition-
ing performs greedy placement plus group partitioning search.
As shown in Fig. 17, both placement and group partitioning
are necessary to achieve good SLO attainment. In the left
subfigure, the group partitioning increases the rate by 1.5×
compared to greedy placement without group partitioning
over 99% SLO attainment, while round robin can never reach
99% SLO attainment. In the right subfigure, the group parti-
tioning increases the traffic burstiness that can be handled to
meet 99% SLO attainment by 1.3×.

7 Related Work
Model serving systems. There has been a proliferation of
model serving systems recently. These range from general-
purpose production-grade systems like TensorFlow Serv-
ing [34] and NVIDIA Triton [33], which are widely used but
do not provide any support for automatic placement or latency
constraints. They also include systems that are optimized for
single-model serving [51] or serving of specific classes of
models (e.g., transformers) [16, 51, 57]. AlpaServe targets a
broader set of models and features than these systems.

For SLO-aware, distributed serving, most serving systems
ignore placement-level interactions between models. Clock-
work [19], for instance, primarily focuses on predictability;
when scheduling, it greedily loads and executes models on
available GPUs. Shepherd [52] utilizes preemption to correct
sub-optimal scheduling decisions. For large models, loading
model weights and preemption can easily overwhelm prac-
tical SLOs. Other systems like Clipper [9], Infaas [40], and
DVABatch [10] also do not reason about the latencies of
co-located models.

Nexus [44] is very related to our work in that it exam-
ines the placement of models; however, Nexus is an example
of a system that takes the traditional replication approach
described in §3 and, thus, misses a broad class of potential
parallelization strategies that we explore in this paper.

Inference optimizations for large models. AlpaServe is com-
plementary to another large body of work on optimizations
for inference over large models. These include techniques like
quantization [13], distillation [41], offloading [1], better oper-
ator parallelism [36], and CUDA kernel optimization [11, 26].
Some of these optimizations are intended to stem the tide
of increasing model sizes; however, all of these gains are
partial— the challenge of serving large models has continued
to escalate rapidly despite these efforts.

Model parallelism for training. AlpaServe is largely orthog-
onal to the large body of work on model parallelism in train-
ing [23, 28, 31, 37, 56]. As described in §3, serving presents
a unique set of constraints and opportunities not found in
training workloads. Where these systems do intersect with
AlpaServe, however, is in their methods for implementing
model parallelism along various dimensions. In particular,
AlpaServe builds on some of the parallelization techniques
introduced in [56].

Resource allocation and multiplexing. The problem of how
to multiplex limited resources to the incoming requests is one
of the oldest topics in computer science and has been stud-
ied in different application domains [3, 29, 38]. Recent work
on DL scheduling uses swapping [2], preemption [20], inter-
leaving [55], and space-sharing [49] to realize fine-grained
resource sharing. Rather, the contribution of this paper is a
deep empirical analysis of the applications of these ideas to
an emerging space: the serving of multiple large models.

8 Conclusion and Future Work
In this paper, we presented AlpaServe, a system for prediction
servings of multiple large deep-learning models. The key
innovation of AlpaServe is integrating model parallelism into
multi-model serving. Because of the inherent overheads of
model parallelism, such parallelism is traditionally applied
conservatively—reserved for cases where models simply do
not fit within a single GPU or execute within the required SLO.
AlpaServe demonstrates that model parallelism is useful for
many other scenarios, quantifies the tradeoffs, and presents
techniques to automatically navigate that tradeoff space.

In the future, we will extend AlpaServe to more com-
plicated scenarios, including serving multiple parameter-
efficient adapted models (e.g., LoRA [22]), models with de-
pendencies, and autoregressive models [5].

9 Acknowledgement
We thank the OSDI reviewers and our shepherd, Heming Cui,
for their valuable feedback. This work is in part supported by
NSF CISE Expeditions Award CCF1730628, NSFC under the
grant number 62172008, and gifts from Astronomer, Google,
IBM, Intel, Lacework, Microsoft, Nexla, Samsung SDS, Uber,
and VMware. Yinmin Zhong and Xin Jin are also with the
Key Laboratory of High Confidence Software Technologies
(Peking University), Ministry of Education.

676 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Reza Yazdani Aminabadi, Samyam Rajbhandari, Min-

jia Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, El-
ton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase,
et al. Deepspeed inference: Enabling efficient inference
of transformer models at unprecedented scale. arXiv
preprint arXiv:2207.00032, 2022.

[2] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
{PipeSwitch}: Fast pipelined context switching for deep
learning applications. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 499–514, 2020.

[3] Nirvik Baruah, Peter Kraft, Fiodar Kazhamiaka, Pe-
ter Bailis, and Matei Zaharia. Parallelism-optimizing
data placement for faster data-parallel computations.
Proceedings of the VLDB Endowment, 16(4):760–771,
2022.

[4] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei
Kang, Hongyang Sun, Aniruddha Gokhale, and Gabor
Karsai. Barista: Efficient and scalable serverless serving
system for deep learning prediction services. In 2019
IEEE International Conference on Cloud Engineering
(IC2E), pages 23–33. IEEE, 2019.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022.

[7] Copy.ai. Copy.ai: Write better marketing copy and con-
tent with ai. https://www.copy.ai/.

[8] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. Inferline: latency-aware provisioning and scal-
ing for prediction serving pipelines. In Proceedings of
the 11th ACM Symposium on Cloud Computing, pages
477–491, 2020.

[9] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 613–627, 2017.

[10] Weihao Cui, Han Zhao, Quan Chen, Hao Wei, Zirui
Li, Deze Zeng, Chao Li, and Minyi Guo. Dvabatch:

Diversity-aware multi-entry multi-exit batching for ef-
ficient processing of dnn services on gpus. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 183–198, 2022.

[11] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in
Neural Information Processing Systems, 2022.

[12] Robert I Davis, Ken W Tindell, and Alan Burns.
Scheduling slack time in fixed priority pre-emptive sys-
tems. In 1993 Proceedings Real-Time Systems Sympo-
sium, pages 222–231. IEEE, 1993.

[13] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. Advances in Neural Information
Processing Systems, 2022.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[15] Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad
Shokouhi, Xia Hu, and Ahmed Hassan Awadallah. What
do compressed large language models forget? robust-
ness challenges in model compression. arXiv preprint
arXiv:2110.08419, 2021.

[16] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient gpu serving system for
transformer models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 389–402, 2021.

[17] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learn-
ing Research, 23(120):1–39, 2022.

[18] Github. Github copilot: Your ai pair programmer.
https://github.com/features/copilot.

[19] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving {DNNs} like clockwork: Performance
predictability from the bottom up. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 443–462, 2020.

[20] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
GPU-accelerated DNN inferences. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 539–558, Carlsbad, CA,
July 2022. USENIX Association.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 677

https://www.copy.ai/
https://github.com/features/copilot

[21] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
{GPU-accelerated}{DNN} inferences. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 539–558, 2022.

[22] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large lan-
guage models, 2021.

[23] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

[24] Huggingface. Models - huggingface. https://
huggingface.co/models.

[25] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving deep learning models in a serverless
platform. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 257–262. IEEE, 2018.

[26] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang
Li, and Torsten Hoefler. Data movement is all you need:
A case study on optimizing transformers. Proceedings
of Machine Learning and Systems, 3:711–732, 2021.

[27] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. In International Conference on Learning Rep-
resentations, 2020.

[28] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang
Zhuo, Hao Zhang, Dawn Song, and Ion Stoica. Terapipe:
Token-level pipeline parallelism for training large-scale
language models. In International Conference on Ma-
chine Learning, pages 6543–6552. PMLR, 2021.

[29] Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang,
Eric Bouillet, and Dimitrios Pendarakis. Efficient re-
source provisioning in compute clouds via vm multiplex-
ing. In Proceedings of the 7th international conference
on Autonomic computing, pages 11–20, 2010.

[30] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[31] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’21, New York,
NY, USA, 2021. Association for Computing Machinery.

[32] NVIDIA. Fastertransformer. https://github.com/
NVIDIA/FasterTransformer.

[33] NVIDIA. Triton inference server.
https://developer.nvidia.com/
nvidia-triton-inference-server.

[34] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving. arXiv preprint arXiv:1712.06139, 2017.

[35] OpenAI. Chatgpt. https://chat.openai.com/chat.

[36] Reiner Pope, Sholto Douglas, Aakanksha Chowdh-
ery, Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff
Dean. Efficiently scaling transformer inference. arXiv
preprint arXiv:2211.05102, 2022.

[37] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[38] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
401–417, 2016.

[39] Stewart Robinson. Simulation: the practice of model
development and use. Bloomsbury Publishing, 2014.

[40] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated model-less in-
ference serving. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pages 397–411. USENIX
Association, July 2021.

[41] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

678 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://huggingface.co/models
https://huggingface.co/models
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://chat.openai.com/chat

[42] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218, 2020.

[43] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. Mesh-
TensorFlow: Deep learning for supercomputers. In Neu-
ral Information Processing Systems, 2018.

[44] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A gpu cluster engine for
accelerating dnn-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems Prin-
ciples, pages 322–337, 2019.

[45] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[46] John F Shortle, James M Thompson, Donald Gross, and
Carl M Harris. Fundamentals of queueing theory, vol-
ume 399. John Wiley & Sons, 2018.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[48] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. Mlaas in the wild: Workload analysis and
scheduling in large-scale heterogeneous gpu clusters. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 945–960, 2022.

[49] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu,
and Xin Jin. Transparent GPU sharing in container
clouds for deep learning workloads. In 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 69–85, Boston, MA, April
2023. USENIX Association.

[50] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
Gspmd: general and scalable parallelization for ml com-
putation graphs. arXiv preprint arXiv:2105.04663,
2021.

[51] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative mod-
els. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 521–538,
2022.

[52] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. {SHEPHERD}: Serving {DNNs} in the
wild. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pages 787–
808, 2023.

[53] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[54] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 724–739, 2021.

[55] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu,
Xuanzhe Liu, and Xin Jin. Multi-resource interleaving
for deep learning training. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 428–440, 2022.

[56] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez, et al.
Alpa: Automating inter-and intra-operator parallelism
for distributed deep learning. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), 2022.

[57] Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu
Sun. Pets: A unified framework for parameter-efficient
transformers serving. In 2022 USENIX Annual Tech-
nical Conference (USENIX ATC 22), pages 489–504,
2022.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 679

	Introduction
	Background
	Model Parallelism in Model Serving

	Motivation and Tradeoff Analysis
	Case Study: A Two-model Example
	When is Model Parallelism Beneficial
	Overhead of Model Parallelism
	Queueing Theory Analysis

	Method
	Automatic Parallelization for Inference
	Placement Algorithm
	Runtime Scheduling

	Implementation
	Evaluation
	Experiment Setup
	End-to-end Results with Real Workloads
	Serving Very Large Models
	Robustness to Changing Traffic Patterns
	Benefits of Dynamic Batching
	Ablation Study

	Related Work
	Conclusion and Future Work
	Acknowledgement

