
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

LVMT: An Efficient Authenticated Storage
for Blockchain

Chenxing Li, Shanghai Tree-Graph Blockchain Research Institute;
Sidi Mohamed Beillahi, University of Toronto; Guang Yang and Ming Wu,

Shanghai Tree-Graph Blockchain Research Institute; Wei Xu, Tsinghua University;
Fan Long, University of Toronto

https://www.usenix.org/conference/osdi23/presentation/li-chenxing

LVMT: An Efficient Authenticated Storage for Blockchain

Chenxing Li Sidi Mohamed Beillahi† Guang Yang Ming Wu Wei Xu‡ Fan Long†

Shanghai Tree-Graph Blockchain Research Institute
University of Toronto† Tsinghua University‡

Abstract
Authenticated storage access is the performance bottle-

neck of a blockchain, because each access can be amplified
to potentially O(logn) disk I/O operations in the standard
Merkle Patricia Trie (MPT) storage structure. In this paper, we
propose a multi-Layer Versioned Multipoint Trie (LVMT), a
novel high-performance blockchain storage with significantly
reduced I/O amplifications. LVMT uses the authenticated
multipoint evaluation tree (AMT) vector commitment proto-
col to update commitment proofs in constant time. LVMT
adopts a multi-layer design to support unlimited key-value
pairs and stores version numbers instead of value hashes to
avoid costly elliptic curve multiplication operations. In our
experiment, LVMT outperforms the MPT in real Ethereum
traces, delivering read and write operations six times faster. It
also boosts blockchain system execution throughput by up to
2.7 times.

1 Introduction

Blockchains that provide decentralized, robust, and pro-
grammable ledgers at an internet scale have recently gained
increasing popularity across various domains, including finan-
cial services, supply chain, and entertainment. For example,
smart contracts built on blockchain systems now manage dig-
ital assets worth tens of billions of dollars [3].

Early classical blockchain systems like Bitcoin [36] and
Ethereum [17] have serious performance bottlenecks in their
consensus protocols, which limit the system throughput at
under 30 transactions per second. Nevertheless, recent tech-
nique evolutions on consensus and peer-to-peer network pro-
tocols [8,22,23,26,29,31,33,35,37,44,45,51,52] have driven
the achievable blockchain throughput to more than thousands
of transactions per second. Consequently, transaction execu-
tion, which is dominated the storage access, has emerged as
the new system bottleneck. Our investigation (see Sec. 6)

shows that 81% of transaction execution time is consumed at
the storage layer.

This inefficiency in the blockchain storage layer orig-
inates from the requirement for authentication. A stan-
dard permission-less blockchain system has two types of
blockchain nodes: the full nodes and the light nodes. A full
node synchronizes and executes all transactions, maintain-
ing the blockchain ledger state. A light node (client) only
synchronizes the block headers, excluding transactions and
the blockchain ledger state. Blockchain ledger states take the
form of key-value pairs. When a light node needs to ascertain
the value of a given key, it queries a full node. However, since
blockchain nodes are permissionless, light nodes should not
trust the responses from full nodes. Therefore, the blockchain
protocol requires the block proposer to compute a commit-
ment (termed the state root) for the latest ledger state and
insert it into the proposed block header. A block header with
an incorrect commitment is deemed invalid. When responding
to the queries from light nodes, a full node can generate proofs
corresponding to the commitments to convince the queriers.
This leads to the naming of the ledger state as authenticated.

Typically, authenticated storage employs the Merkle Patri-
cia Trie (MPT) [5] structure, a specific variant of the Merkle
tree. Each leaf node in an MPT stores a value, and the path
from the root to the leaf node corresponds to the key of the
stored value. Each inner node in the MPT stores the crypto
hash of the concatenated contents of all its children. The
MPT’s root hash serves as the commitment of the blockchain
state for authentication.

Unfortunately, this authentication comes with a heavy per-
formance price. Modifying a key-value pair in the state re-
quires an MPT to update hashes of all nodes along the path
from the corresponding leaf node to the root. If not cached,
each state update operation could be amplify to O(logn) disk
I/O operations, where n represents the storage size. Note that
even a basic payment transaction involves at least two ledger

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 135

state updates, – decreasing the sender’s balance and increas-
ing the receiver’s. As the throughput of recent blockchains
approaches thousands of transactions per second, it is not
surprise that storage becomes the new bottleneck.

This paper presents LVMT, a novel high-performance au-
thenticated storage framework with significantly reduced disk
I/O amplifications. LVMT achieves high efficiency by in-
tegrating a multi-level Authenticated Multipoint evaluation
Tree (AMT) and a series of append-only Merkle trees. AMT
is a cryptographic vector commitment scheme that can update
commitment (i.e., the hash root) in constant time [50]. De-
spite its constant commitment update time, there are several
key challenges to address when incorporating AMT into the
LVMT design.

The first challenge arises from the expensive elliptic curve
multiplication operations employed by the AMT commitment
update algorithm. A naive approach would paradoxically re-
sult in a slower state update operation on the AMT than the
MPT, despite the theoretically reduced amplification. LVMT
addresses this challenge with its novel key-versioned-value de-
sign. It assigns each key a version, incrementing as the value
evolves. Rather than storing key-value pairs in the AMT,
LVMT employs AMT to keep key-version pairs and uses
Merkle Trees to maintain an append-only authenticated list
of key-version-value triples. Thus, every update in LVMT
results in an increment of the stored version within the AMT.
Since the AMT algorithm multiplies a precomputed elliptic
curve point with the difference between the old value and the
new value (i.e., one for a version increment) during a com-
mitment update, LVMT effectively eliminates the expensive
multiplication. Also, because the key-version-value triple list
is append-only, LVMT only needs to construct these Merkle
Trees once during the block commit time, and therefore the
process is very efficient.

The second challenge emerges from AMT’s limitation in
supporting the necessary bit-depth for blockchain state keys.
An AMT with k-bit key-space requires public parameters
with 2k elliptic curve points. To enable efficient update, the
AMT also requires pre-computation and caching of elliptic
curve points proportional to the public parameters’ size. Even
for a modest 32-bit key-space, the precomputed metadata
size would exceed 256 GB, which is untenable, given that
blockchain ledger keys typically comprise 256 bits. To ad-
dress this challenge, LVMT operates with a novel multi-level
multi-slot structure, integrating multiple AMTs. Each AMT
in this structure has a 16-bit key-space, and the structure can
automatically generate a sub-AMT on the next level to accom-
modate keys-version pair with collided prefix. Since collisions
are rare after the first level and creating sub-AMT will make
subsequent access more expensive, LVMT also makes each

entry in AMTs contain five slots. Therefore expansion to the
next level only occur when more than five collisions arise.

The third challenge lies in the costly maintenance of proof
generation metadata. While updating the root hash for AMT
incurs constant time, maintaining the proof generation meta-
data still requires O(logn) time and triggers the same degree
of I/O amplifications as MPT. LVMT confronts this issue with
a proof sharding technique, which distributes the proof gener-
ation metadata to multiple nodes. In LVMT, each full node
only maintains the proof generation metadata for a shard of
the blockchain state (e.g., keys sharing the same 4-bit prefix).
Our observation reveals that there are typically thousands
of full nodes in a production blockchain, and it’s unneces-
sary for all nodes to maintain proof generation capabilities
for all key-value pairs in the total state. Even sharded, for
any part of the state, there will still be enough nodes serving
proof generation requests from light clients. Within the cur-
rent Ethereum ecosystem, most light nodes access full nodes
from specialized providers, such as Infura, who operate sev-
eral full nodes to balance query workload. By maintaining
proof shards across their nodes, these providers can efficiently
generate proof for any key. Note that unlike other sharding
designs [18, 29, 34, 51, 53], our proof sharding does not al-
ter the essential obligation of each full node to synchronize
and validate blocks, process all transactions, and accurately
maintain the state root, thereby preserving security.

We have implemented LVMT [1] and integrated it into Con-
flux [2, 33], an open-sourced high-performance blockchain
production with smart contract support. We evaluated LVMT
against OpenEthereum’s MPT implementation, RainBlock’s
MPT structure [40], and LMPTs [20], considering both stand-
alone read/write workload and end-to-end blockchain pro-
cessing tasks. Our results show that LVMT achieves up to
10x higher throughput on random state read/write opera-
tions. When integrated end-to-end with a high-performance
blockchain, LVMT achieves up to 2.7x higher throughput for
simple payment transactions and up to 2.1x higher through-
put for ERC20 [41] token transfer transactions. This boost in
performance stems from the considerable reduction in disk
I/O amplifications. In terms of amplification, LVMT performs
up to 4.1x better than MPT on read operations and up to 8.2x
better on write operations.

2 Background

In this section, we recall some background on cryptographic
concepts that our system builds on. In particular, we intro-
duce the cryptographic building blocks of the Authenticated
Multipoint evaluation Tree (AMT) [50], an efficient vector
commitment protocol.

136 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Notations: We denote [n] as the integers in {x ∈ Z+|1≤ x≤
n}. G signifies an elliptic curve group and symbols in upper
cases like G,P represent elements in the elliptic curve groups.
Zp refers to an additive group with order p.

2.1 Authenticated Storage in Blockchain

In a standard permission-less blockchain system, blockchain
nodes can be distinguished into two types: full nodes and light
nodes. A full node synchronizes and executes all transactions,
maintaining the blockchain ledger state accordingly. A light
node (client) synchronizes only the block headers, excluding
transactions and blockchain ledger state.

When a full node proposes a new block, it is required to
execute transactions in that block and incorporate the commit-
ment of the post-execution ledger state into the block header.
The node keeps a write-back cache during transaction exe-
cution, committing all modifications to the storage after exe-
cuting all transactions in a block. The authenticated storage
needs to provide two interfaces to the execution engine:

• Get(k)→ v: Retrieves the value v associated a given key
k.

• Set({(k,v)i},e)→ comm: Flushes a series of key-value
pairs (k,v) to the storage with block number e, obtaining
the commitment comm of the ledger state after changes.

When a light node wants to know the value of a specific
key, it queries a full node, expecting a response of the value
along with proof with respect to the ledger commitment. The
light client examines whether the commitment exists within
the set of verified valid commitments, then checks the validity
of the associated proof. So the authenticated storage must
provide two algorithms for proof generation and verification:

• Respond(k)→ (v,π,comm): Returns the value v of key
k with proof π with respect to the most recent commit-
ment comm.

• Verify(k,v,π,comm) → true/false: Validates the re-
sponse from the full node.

2.2 Elliptic Curve Group

The elliptic curve group plays a fundamental role in var-
ious cryptographic protocols. This group conducts an ad-
ditive operation over points on an elliptic curve, such as{
(x,y) ∈ Z2

q | y2 = x3 + x+7
}

, where q is a large prime num-
ber. An infinite point is included as the identity element. The
operation a ·P represents P added to itself a times within the
group, where a is a positive integer, and P is a point on the
curve. An elliptic curve group is characterized by a starting
point G, from which a sequence of points G,2 ·G,3 ·G, · · · can
be generated. If the elliptic curve group is cryptographically
secure, this sequence exhibits the following properties:

1. n ·G is periodic in n, with the period being a large prime
integer p, i.e., n ·G = (n+ p) ·G;

2. For a randomly selected n, deriving n from n ·G is com-
putationally unfeasible.

2.3 KZG Commitment

Kate et al. proposed KZG polynomial commitment proto-
col [28], enabling someone to commit a polynomial function
f to a commitment, and prove the value f (x) of any given
position x with respect to that commitment.

The KZG commitment protocol is built on a bilinear map.
Consider G1 and G2 as the starting points of two elliptic
curve groups G1,G2 respectively, each with the same group
order p. The bilinear map e : G1×G2→GT is homomorphic
such that the equation e(a ·G1,b ·G2) = ab · e(G1,G2) holds
for any a,b ∈ Zp. Here, GT denotes another group of the
same order p. BLS12-381 [14] from BLS families [9] and
BN254 [11] from BN families [10] are widely-used deployed
systems implementing bilinear maps. The groups G1 and G2

are elliptic curve groups of order p, and G1 and G2 are their
perspective starting points.

For a given polynomial function f : Zp → Zp of degree
n, the KZG commitment assumes a series of public param-
eters τ ·G1,τ

2 ·G1,τ
3 ·G1, · · · ,τn ·G1 in a trusted setup and

commits function f to C := f (τ) ·G1. The public parameters
are generated by a trusted party using a random τ, which is
forgotten after generation. Secure multi-party computation
protocols [15, 16, 25] enable multiple participants to collab-
oratively generate these public parameters, ensuring that no
participant can ascertain the exact value of τ.

For any index i ∈ Zp, the expression x− i should divide
f (x)− f (i). This suggests that hi(x) := f (x)− f (i)

x−i is indeed a
polynomial. Hence, the proof π of f (i) is defined as hi(τ) ·G1.
Given that hi(x) is a polynomial, the prover can compute the
coefficients of hi(τ). Thus, hi(τ) ·G1 forms a linear combina-
tion of the public parameters with known coefficients. The
prover can compute it in a short time. A verifier, querying i
with answer y = f (i) and proof π := hi(τ) ·G1, can verify the
proof by checking if

e(π,(τ− i) ·G2) = e(C− y ·G1,G2).

If the proof π is correctly constructed, the check must pass
because

e(π,(τ− i) ·G2) = (h(τ) · (τ− i)) · e(G1,G2)

= e((f (τ)− f (i)) ·G1,G2)

= e(C− y ·G1,G2).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 137

If f (i) 6= y, h(x) becomes a fraction, making it difficult to
find a proper proof without knowing τ. Kate et al. proved the
binding property of this protocol [28].

The KZG commitment also supports the proof of a batch of
positions. To prove that f (x) equals to 0 at a set of positions
S, the proof π is constructed by f (τ)

∏i∈S(τ−i) ·G1.

A vector commitment scheme can be built with KZG com-
mitment by converting a vector ~a to a polynomial function
f by Lagrange interpolation. Formally, for an input vector
~a with n elements, the interpolated function f is defined by
f (x) = ∑

n
i=1 ai · Ii,n(x), where ai is the i-th element of ~a and

Ii,n(x) is a Lagrange function that satisfies Ii,n(i) = 1 and
Ii,n(x) = 0 for x 6= i and 1≤ x≤ n.

When updating the value at position i from ai to a′i, the
corresponding commitment C can be simply updated to

C′ :=C+(a′i−ai) · Ii,n(τ) ·G1. (1)

If the prover caches results Ii,n(τ) ·G1 for all i, updating
commitment requires only one multiplication and one addi-
tion on the elliptic curve G1, which takes O(1) time.

2.4 Authenticated Multipoint Evaluation Tree

Although the KZG commitment enables constant-time up-
dates to the commitment C, it requires O(n) time to construct
a proof for a given position or to maintain proofs for all posi-
tions. In a blockchain system, where the vector being commit-
ted to is frequently changing, the KZG commitment cannot
generate proofs efficiently for queries with arbitrary indices i.

To address this issue, Alin et al. proposed the Authenti-
cated Multipoint evaluation Trees (AMT) commitment pro-
tocol [50], which maintains auxiliary information of size
O(n logn) and can generate a proof in O(logn) time.

Consider an example with n = 8 = 23. For an input vector
~a with eight elements, AMT computes its Lagrange interpola-
tion f (x) which satisfies f (i) = ai for 1≤ i≤ 8. The function
f (x) is then partitioned into two functions f0(x) and f1(x). In
the subset x ∈ [8], f1(x) mirrors f (x) for even x and is zero
otherwise, while f2(x) mirrors f (x) for odd x and is zero oth-
erwise. For values of x outside this subset, f1(x) and f2(x)
are determined by Lagrange interpolation. Consequently, f (x)
can be re-expressed as f (x) = f0(x)+ f1(x). AMT continues
to subdivide f0(x) recursively into two functions: f0,0(x) and
f0,1(x). Here, f0,0 mirrors f (x) for x ∈ {4,8}, and f0,1(x) mir-
rors f (x) for x ∈ {2,6}. This recursive process of partitioning
generates a full binary tree, where each node corresponds to
a function. Each inner node’s function is the sum of the func-
tion at its child nodes, and each leaf node is a multiplication
of an identity Lagrange function because it mirrors f (x) at a
single point x. For example, f0,0,1(x) = a4 · I4,8(x).

Each inner node of the AMT is associated with two ele-
ments: 1) the KZG commitment of its corresponding func-
tion and 2) a batch proof for the indices at which the func-
tion is zero according to the partitioning process. Detailed
definitions of these elements are provided in the appendix.
When proving the value of a given entry, e.g., a4, the prover
finds the path from the root to the corresponding leaf node:
f (x) → f0(x) → f0,0(x) → f0,0,1(x). It then iteratively de-
composes functions along this path to express f (x) into as a
sum of four components: f1(x)+ f0,1(x)+ f0,0,0(x)+ f0,0,1(x).
The prover then outputs the associate commitments for f1(x),
f0,1(x), and f0,0,0(x), alongside their batch proofs demonstrat-
ing these functions equal to zero at x = 4. The verifier checks
the correctness of these batch proofs and the consistency
among commitments: whether the sum of commitments for
f1(x), f0,1(x), f0,0,0(x), and f0,0,1(x) = a4 · I4.8(x) equals to
the commitment for f (x).

Updating an entry in the AMT involves traversing from
the root to the leaf corresponding and updating the associate
elements along this path. The remaining are not affected,
enabling AMT to maintain the proofs in O(logn) time.

The nodes of the AMT serve as auxiliary information for
generating proofs only. In a blockchain system, a miner with-
out serving client queries may discard this auxiliary informa-
tion and only maintain the commitment, which can be updated
in constant time.

3 Overview

Recent works [32, 42] have shown that the majority of trans-
actions execution time is spent on operations that access the
blockchain state. For instance, a profiling experiment [32]
shows that read and write operations to the blockchain state
account for more than 67% of the execution time for the
transaction executing the transfer function of ERC-20 smart
contract [4, 41]. In this section, we present an overview of
how LVMT tackles this problem. In particular, we propose a
new authenticated storage system to reduce the amplification
of read and write operations that access the blockchain state.

Our proposed system is based on AMT since it has an
ideal time complexity, i.e., constant cost in updating the com-
mitment. In particular, our proposed system solves several
challenges to implement an efficient blockchain storage sys-
tem using AMT:

First, although AMT costs constant time in updating the
commitment, the constant ratio is large for a blockchain sys-
tem. Table 1 shows the result of a micro-benchmark carried
on an Intel i9-10900K CPU machine. It shows the time cost
for basic cryptographic operations. Note that an elliptic curve
multiplication takes about 0.1 ms, which is even much slower

138 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AMTs

Input vector with four
elements

Multiple slots for version
numbers in one element

Commitment of AMT

Occupied slot for
key-version pairs

Vacant slot for
key-version pairs

A Slot for sub-AMT
with label

Allocated slot for
key 100111…

A Commitment
with label

Rt

The root AMT

A

A

Sub-AMT-2

B

B

Sub-AMT-(2,1)

1st level 2nd level 3rd level ······

00

01

10

11

00

01

10

11

00

01

10

11

(a) Multi-level AMTs

Set (key,val)

Append-only
Merkle treesMulti-level AMTs

Store tuple
(key,ver,val,loc)

Prove existence of tuple
(key,ver,val,loc)

Increase ver of
key by 1

Prove key

Prove the current
ver of key

(b) Versioned key-value database

Set (key,val)

(key , , val, (3,2))

((2,1), ,)B B

(2 , ,)A A

1. Incease version numbers
in , and by 1
and update commitments.
2. Add the tuples to the
 Merkle trees.

A B

Prove key
1. Prove the version numbers with
respect to the AMT commitment:

2. Prove the existence of the left
three tuples in Merkle trees to
show the commitments at given
version numbers.

B A RtB A

B A RtB A

The Sub-AMT level
allocating this key The slot index

(c) Maintenance and proving on Multi-level AMTs

Figure 1: LVMT architecture.

Pairing engines BLS12-381 BN254
Addition 0.68 0.34
Multiplication 169 92

Table 1: Time cost of operations over the primary curve G1
of pairing functions (µs).

than an updating operation in MPT.

Second, to support data with n maximum entries, AMT
requires precomputed parameters in size of O(n logn) and
maintains auxiliary information in size of O(n log2 n). Thus,
AMT cannot support key-value pairs for an arbitrary-length
bit string. As the size of the blockchain ledger state continues
to grow, AMT is not a scalable solution.

Last, a blockchain system must consider the slowest node.
Even if most miners do not need to maintain the auxiliary in-
formation for proof, the authenticated storage must guarantee
the nodes for responding queries can keep up.

We propose the following techniques to resolve the chal-
lenges above. First, we design a versioned database that only
stores the version number of keys in AMT, thereby avoiding

the elliptic curve multiplications. This design also supports
arbitrary lengths of values, as they are not stored in AMT.
Second, we extend AMT to multiple levels to accommodate
version numbers for unlimited keys, making the AMT size
relatively small to optimize cache for parameters. To support
arbitrary key lengths and minimize deep updates in the multi-
level hierarchy, we utilize key hashes to allocate slots for
version numbers. Last, we introduce proof sharding to reduce
the single node’s cost in maintaining auxiliary information
for proofs.

3.1 Versioned Key-value Database

We designed a versioned authenticated storage to avoid multi-
plication on the elliptic curve during commitment updates. As
shown in Figure 1b, the multi-level AMTs store key-version
pairs, which only serve to identify the recent version number
of a key. LVMT accumulates the key-version-value tuples in
an append-only authenticated data structure consisting of a se-
ries of Merkle trees, with each block constructing one Merkle
tree from the key-version-value tuples for value changes in

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 139

that block.
Imagine a scenario where the blockchain processes a block,

setting a key-value pair (key,val). LVMT first locates the
corresponding entry of key in the multi-level AMTs to in-
crement the stored version number by one. Assume the new
version number for key is ver. LVMT then appends a new
tuple (key,ver,val, loc) to the Merkle tree being constructed
for the block. Here, loc is a tuple (level,slot) that records
the level and slot in the multi-level AMTs where the key’s
version is located. The construction cost of a Merkle tree is
linear with the number of version tuples. Once constructed,
the Merkle tree for a block remains immutable, except for
garbage collection of obsolete nodes. As the blockchain is
append-only, the list of these Merkle trees is also append-only.

When generating a proof for a key-value pair (key,val),
LVMT first use the multi-level AMTs to prove the most re-
cent version ver of the key key. It then uses Merkle trees to
prove the existence of a tuple (key,ver,val, loc). Since the
roots of the Merkle trees are endorsed by the blockchain con-
sensus protocol, light clients can trust that the Merkle trees are
generated correctly without duplicate tuples having the same
key and ver. As the location of the version slot is included
in the version tuple of the key, the prover can not cheat by
providing a version number proof of another slot.

Note that updating one element ai to a′i in an AMT re-
quires computing (a′i− ai) · Ii,n(τ) ·G1 (equation 1), multi-
plying a′i− ai to the elliptic curve point Ii,n(τ) ·G1. In the
versioned key-value database, ai is essentially a version num-
ber and a′i−ai always equal 1. Thus, we eliminate an elliptic
curve multiplication in each storage write, saving approxi-
mately 100 µs.

Since the frequency of bumping version number is limited
by the block generation rate, we can conserve the bits used for
storing version number and store multiple version numbers in
a one vector entry. For example, when employing BN254 as
the underlying bilinear mapping parameter, each entry is an
element in Zp, where p is a prime integer in

(
2254,2255

)
. This

suggests that implies each entry can store at most 254 bits.
In a blockchain system generating 10 blocks per second, the
version number will not exceed 240 in 3000 years. So each
entry can be divided into six slots with 40 bits as shown in
Figure 1a.

3.2 Multi-level AMT

To make AMT scalable and allow it to store the version num-
ber for an unlimited number of keys, we introduce multi-level
AMTs as shown in Figure 1a. The authenticated storage is
initiated by one AMT as the root AMT. Each entry in the
AMT contains several slots for storing version numbers. One
slot in each entry is reserved for storing the version number

of the commitment hash of the sub-AMT, with the remaining
slots utilized for key-value pairs.

Let k denote the height of the AMT. When allocating a
slot for a new key, LVMT accesses the entry in the root AMT
whose index aligns with the first k bits of the key hash. If this
entry lacks a vacant slot, LVMT accesses the corresponding
sub-AMT and locates the entry in the sub-AMT whose index
matches the next k bits of the key hash. LVMT recursively
visits the sub-AMTs to find a vacant slot for the new key.
Figure 1a presents an example with k = 2 for allocating a
version slot for a key with hash 100111 · · · . As the first two
bits of key hash are 10, LVMT accesses the entry with index
2 and attempts to find a vacant slot. Since all slots in the entry
are occupied, LVMT proceeds to the corresponding sub-AMT-
2. Picking the next two bits 01, it accesses the entry with index
1, and recursively visits the sub-AMT-(2,1) because there is
no vacant slot again. Finally, LVMT finds the third slot at the
third level being vacant and allocates this slot.

The commitment of a sub-AMT is treated similarly to a
key-value pair, where the key represents the index of the sub-
AMT and the value is the commitment. The Merkle trees not
only store key-version-value tuples for standard key-value
pairs, but they also store the tuples of the sub-AMT index, the
version of the sub-AMT commitment, and the commitment
hash.

Figure 1c illustrates how LVMT maintains the AMTs
and Merkle trees when a block changes the key with hash
100111 · · · . LVMT first increments the version number for
this key by one. This in turn alters the commitment of sub-
AMT-(2,1), prompting LVMT to also increase the version
number for the commitment (the slot labeled “B”) by one. Re-
cursively, the commitment of sub-AMT-2 is changed and the
version number labeled “A” is updated. Finally, LVMT gets
the updated commitment of the root AMT. LVMT appends
the tuples of changed keys and commitments into the Merkle
trees along with the normal tuple of the key-value pair.

When generating a proof for this key, LVMT finds the
most recent version of tuples for sub-AMT-2, sub-AMT-(2,1)
and this key. LVMT proves the existence of these tuples in
Merkle trees and confirms the correctness of appeared version
numbers with respect to their AMT commitments. When
proving the non-existence of a key, LVMT affirms that all the
possible slots for this key are vacant or have been allocated to
other keys.

3.3 Proof Sharding

We recall that the AMT maintains a binary tree, where each
node holds a commitment and a batch proof. Each input entry
corresponds to a leaf in this tree. When generating a proof,
AMT picks commitments and batch proofs from the siblings

140 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of nodes along the path from this leaf to the root. Each node
can be updated independently of the other nodes, facilitating
the parallelization of tree maintenance. Each blockchain node
can maintain a shard of the proof. It picks a subtree of the root
AMT and takes responsibility for generating proofs for the
leaves in this subtree, and the sub-AMTs extended from these
leaves. Multiple blockchain nodes can collaboratively gener-
ate proof for any key. Similarly, the storage for the Merkle
tree can be distributed to multiple nodes by the block number.

4 LVMT Design

Now we formally define LVMT, which utilizes a key-value
database as a backend and maintains a tuple of key-value
maps (KM,AM,MM,VM,LM) where KM stores the key-
value pairs, AM stores the AMTs data structures, MM stores
the Merkle trees, VM stores the version slots metadata for
keys, and LM records the position of the most recent tuple for
a key or a sub-AMT in the Merkle trees. LVMT decouples the
data storage and data authentication: KM stores unauthentica-
tion data; AM and MM store the authenticated information;
VM and LM store the metadata and indicies for authenticated
information. Each AMT in LVMT encompasses the following
components:

• comm: the commitment of AMT;
• proof_tree: the proof tree of AMT;
• leaves: a list of leaves; leaves[i] denotes the leaf corre-

sponding to the i-th element of the input vector. Each
leaf comprises the two lists vers and keys. vers[0] stores
the version number for the sub-AMT. vers[1] to vers[5]
store the version numbers for the keys keys[1] to keys[5],
respectively. Note that only vers contribute to the AMT
commitment.

4.1 Interfaces to the Transaction Execution

LVMT provides the following two interfaces (instructions)
for the blockchain execution layer:

• Get(k)→ val: Reads the value val stored in k;
• Commit(W,e)→ (aroot,hroot): Flushes the changed

key-value pairs in W with block number e and produces
the commitment of LVMT.

These interfaces match the requirements from the
blockchain execution engine introduced in Section 2.1. The
execution engine uses Get to fetch data from the storage and
LVMT simply loads the value correspondingly from KM.

The instruction Commit is invoked after the execution of a
block. LVMT commits the key-value pairs W using the proce-
dure COM defined in Algorithm 1. The returned commitments
will be filled in the block header. The commit returned values

Algorithm 1 A procedure to compute a commitment. It takes
a list of key-value pairs W and a block number e, and returns
the commitments aroot and hroot.

1: procedure COM(W, e)
2: M← []; T←{ };
3: foreach (k,val) in W
4: (lv,tidx,sidx,ver)← ComKV(k,val);
5: M← (k,ver,val, lv,sidx) :: M;
6: T←{(lv,tidx)}∪T;
7: i←maximum lv in T;
8: while i≥ 0
9: foreach (lv,tidx) in T with lv = i

10: (C,ver)← UpdComVer(lv,tidx);
11: M← (lv,tidx,ver,comm) :: M;
12: if lv > 0
13: T←{(lv−1,btidx/nc)}∪T;
14: foreach (k,ver,val, lv,sidx) in M with index i
15: LM[k]← (e, i);
16: foreach (lv,tidx,ver,C) in M with index i
17: LM[(lv,tidx)]← (e, i);
18: Build merkle tree of M and store inner nodes in MM;
19: mroot←Merkle root of M;
20: hroot←Merkle root of the mroot of all the commits;
21: aroot← AM[(0,0)].comm;
22: return (aroot,hroot);

Algorithm 2 A procedure to compute the commit of a key-
value pair. It returns the level lv, the tree index tidx, the slot
index sidx of the changed AMT, and the version ver.

1: procedure COMKV(k,val)
2: if KM contains k
3: (lv,sidx)←V M[k];
4: else
5: (lv,sidx)← ALLOCATESLOT(k);
6: V M[k]← (lv,sidx);
7: (tidx, lf)← LEAFATLEVEL(lv,k);
8: ver← lf.vers[sidx];
9: lf.vers[sidx]← lf.vers[sidx]+1;

10: Update the corresponding commitments and proofs.;
11: ver← ver+1;
12: return (lv,tidx,sidx,ver);

Algorithm 3 A procedure to allocate a version slot to a new
key. It takes the key k to allocate a slot for, and returns the
level and the allocated slot index.

1: procedure ALLOCATESLOT(k)
2: lv← 0;
3: while true
4: (tidx, leaf)← LEAFATLEVEL(lv,k);
5: for j ∈ [5]
6: if leaf.vers[j] == 0
7: leaf.keys[j]← k;
8: return (lv, j);
9: lv← lv+1;

consist of the roots of both the top-level AMT and MPT.
The procedure COM first commits the key-value pairs in

W (Lines 3 to 6) with the sub-procedure COMKV. Then it
updates the version numbers of all the affected sub-AMTs
from the deepest sub-AMT to the root AMT (Lines 7 to 13)
using the procedure UPDCOMVER. This procedure maintains

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 141

Algorithm 4 A procedure to compute the AMT index and the
leaf index of a key key at a AMT level lv. It returns the tree
index tidx and the leaf leaf corresponding to the key key at
level lv.

1: procedure LEAFATLEVEL(lv,key)
2: tidx← first bit to (k · lv)-th bit of H(key);
3: lidx← (k · lv+1)-th bit to (k · (lv+1))-th bit of H(key);
4: leaf← AM[(lv,tidx)].leaves[lidx];
5: return (tidx, leaf);

Algorithm 5 A procedure to update the commitment and
version of an AMT at level lv and tree index tidx. It returns
the commitment C and the updated version number ver.

1: procedure UPDCOMVER(lv, tidx)
2: C← AM[(lv,tidx)].comm;
3: ptidx← btidx/nc;
4: plidx← tidx mod n;
5: ver← AM[(lv,ptidx)].leaves[plidx].ver[0];
6: Increase AM[(lv,ptidx)].leaves[plidx].ver[0] by 1;
7: Update the corresponding commitments and proofs;
8: ver← ver+1;
9: return (C,ver);

the version number for commitments of sub-AMTs similar
to COMKV. While maintaining the version numbers, LVMT
collects the tuples of keys, versions, values, and other meta-
data in a list M (Line 5). The system treats a pair of the
sub-AMT index and its commitment similarly to a key-value
pair (Line 11). LVMT builds a Merkle tree for M, thereby
authenticating the value of a given key and version (Line 19).
It also stores the positions of these elements in the Merkle
trees (Lines 15 and 17). So when generating a proof, the
prover can locate the corresponding Merkle leaves of a key
or an AMT commitment.

The sub-procedure COMKV (Algorithm 2) is implemented
to maintain and update the version numbers. COMKV(k,val)

first finds the allocated version slot for the given key k (Line 3).
If the key has not been allocated a version slot, it allocates a
slot to it (Line 5). It uses the sub-procedure ALLOCATESLOT

(Algorithm 3) to find a vacant slot in the AMT to allocate.
In particular, starting from the root AMT, ALLOCATESLOT

computes the tree and leaf indices for the given key at each
level, checks if the leaf has a vacant slot, and then returns the
level and slot indices of the slot; if the leaf doesn’t have a free
slot, it proceeds to the next level.

Then, COMKV computes the corresponding tree index tidx

and the leaf lf for k at level lv (Line 7) using the sub-procedure
LEAFATLEVEL (Algorithm 4), which finds the correspond-
ing AMT index and leaf for the key k at the level lv using
the hash H(k) of k. Since each AMT has m levels and 2m

leaves, the first m · lv bits of H(k) decides the AMT index
and the subsequent m bits locate the leaf in the tree. Finally,
COMKV locates the slot for this key and updates its version
and other information according to AMT’s rule (Line 8 to 10).

Algorithm 6 A procedure to generate a proof for an existing
key k. It returns the proof of the key.

1: procedure GENPROOF(k)
2: keypf← PROVEKEY(k);
3: (lv,sidx)← VM[k];
4: while lv > 0
5: tidx← first bit to (k · lv)-th bit of H(k);
6: commpfs[lv]← PROVECOM(lv,tidx);
7: lv← lv−1;
8: return (keypf,commpfs);

Algorithm 7 A procedure to verify the proofs keypf and
commpfs with respect to an AMT root aroot and Merkle root
mroot.

1: procedure VERIFYPROOF(keypf, commpfs, aroot, mroot)
2: Verify the AMT proofs and the merkle proofs in keypf and

commpfs;
3: Verify the commitment in commpfs[1] equals to aroot
4: if all the verification pass
5: return true;
6: else
7: return false;

The sub-procedure UPDCOMVER (Algorithm 5) updates the
commitment and its version number given an AMT located
by its level and index.

4.2 Proving Key-value Pairs

As an authenticated storage, LVMT provides the following
two interfaces to allow a user to query a value from an un-
trusted server and to verify the value with the commitment.

• GenProof(k)→ π: Generates proof π for key k;
• Verify(k,v,π,comm) → true/false: Verifies the key

value pair (k,v) with respect to a ledger state commit-
ment.

When responding to a query k from a light node, a full
node will generate proof π using the procedure PROVE and
responde with the loaded value and the current commitment.

The procedure PROVE (Algorithm 6) consists of two parts:
1) the proof of the value val of the key k with respect to
the sub-AMT it belongs to (line 2) using the sub-procedure
PROVEKEY; 2) the proof of the commitment for all the sub-
AMT along the path from k’s sub-AMT to the root AMT
(excluding the root AMT) (line 4 to line 7) using the sub-
procedure PROVEKEY.

The generated proof consists of a merkle proof for the ex-
istence of the tuple of the key (or the AMT index), the value
(or the AMT commitment) and the version, an AMT proof
for the version number, and other metadatas. We provide the
definition for the sub-procedures PROVEKEY (Algorithm 8)
and PROVECOM (Algorithm 9) in the supplementary mate-
rial. In the supplementary material, we also discuss how to
generate a non-existing proof.

142 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The light node verifies the proof using the procedure
VERIFY (Algorithm 7), which recovers the tuple of Merkle
leaves to to be verified from the proof and verifies the AMT
proofs and the merkle proofs.

5 Implementation

We implemented the AMT using Arkworks [21], a Rust li-
brary for elliptic curve operations. AMT is built using the
pairing parameters BN254 and supports vector commitment
in the length of 216. Each entry contains 254 available bits and
is divided into six slots with 40 bits. For the public parameters
required by the KZG commitment, we utilize the output from
the Perpetual-Powers-of-Tau ceremony [27], which conducts
an MPC protocol among over 70 participants worldwide in
generating secure parameters. Based on the above AMT im-
plementation, we implemented LVMT in Rust [1]. LVMT is
compatible with any backend database that provides a key-
value interface as defined in rust crate “kvdb” [39].

We ported the implementation of MPT from the
OpenEthereum client [48], the most popular high-
performance Rust implementation of Ethereum. We
also implemented a variant of RainBlock [40], which devel-
oped an efficient MPT for distributed in-memory systems, by
referencing its implementation [6]. This variant incorporates
significant RainBlock features, including caching of top
layers in memory, in-memory construction of the Merkle tree
using pointers, and the application of lazy hash resolution.
Unlike RainBlock, our variant stores the bottom layers on
local storage instead of a distributed in-memory system.
These implementation are also compatible with the same
interface.

For the implementation of LVMT, we applied several opti-
mizations:
Combining entries in different maps: For a given key, we
use three maps KM, VM, and LM to store its value, version
slot index, and the position of the Merkle tree for the re-
cent change, respectively. In our implementation, we combine
these entries into a single key-value pair to save read and
write operation for each key.
Cache the root AMT: The root AMT is frequently accessed.
So its leaves and inner nodes of are always stored in memory.
The commitments of the AMTs in the second levels are also
cached. Each leaf and inner node of an AMT has two points
on the elliptic curve. Given that we set the AMT height as 16,
the root AMT and the commitments of AMTs in the second
level store about 200,000 elliptic curve points in memory.
Each point takes 96 bytes in our parameter, so roughly 20 MB
of memory is needed to store them.
Cache cryptographic parameters: We expedited the com-

mitment update procedure by precomputing certain elliptic
curve points. For instance, when the input entry at position i
increases by δ, the commitment can be updated as C′ =C+Pi,
where Pi = Ii,n(τ) ·δ ·G1. Given that each entry is divided into
six 40-bit slots, when the version number increases, the dif-
ference between the new and the previous version will be
one of the following: 1,240,280,2120,2160,2200. Thus, LVMT
precomputes P(j)

i = 240 j ·Pi for all 0 ≤ j ≤ 5 and 1 ≤ i ≤ n.
So LVMT can simplify the commitment update procedure by
merely incrementing a precomputed point. In our design, each
elliptic curve point requires 96 bytes of storage. So a node
excluding proof maintenance necessitates around 37 MB of
memory. However, a node maintaining a shard of proof must
cache additional parameters, resulting in a higher memory
requirement, approximately 650 MB.

Reduce the coordinates conversion time: An elliptic curve
point is uniquely represented by its affine coordinate (x,y) ∈
Z2

q, where q is a large prime number. These points can also
be represented through projective coordinates (x,y,z) ∈ Z3

q,
which accelerate arithmetic operations by eliminating division
operations within a large prime field. The conversion of these
projective coordinates back to the corresponding affine coor-
dinates is given as (x/z2,y/z3) ∈ Z2

q. However, a challenge
arises from the fact that a single elliptic curve point corre-
sponds to multiple projective coordinates, leading to hashing
inconsistencies. To address this issue, LVMT always converts
the projective coordinates back to the affine coordinates when
computing the hash of a sub-AMT commitment. This conver-
sion process, however, is computationally intensive, taking
approximately 60 µs per conversion and can substantially
impact the write speed. To alleviate this, we applied batch
conversion of all projective coordinates to affine coordinates
at the culmination of each block execution, decreasing the
average conversion time to a mere 0.4 µs.

Garbage collection of append-only Merkle trees: As a
key’s version number increases, the old version tuples within
the append-only Merkle trees become unnecessary for future
proofs. When a subtree in a Merkle tree only has obsolete
children, the entire subtree can be truncated, and only the sub-
tree root is stored. A background thread performs this garbage
collection to prevent impacting LVMT’s performance under
heavy workloads. In a scenario where the append-only Merkle
trees have accumulated m version tuples in the past, and only
n tuples are currently active, the overhead of storing truncated
Merkle trees is about (log2(m/n)+1) ·2n. (See appendix for
the details.) While this introduces some additional overhead,
it remains a practical approach.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 143

1m 3m 5m
Number of Initialized Keys

0

5

10

15

20

25

30

35

40

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

(x
10

00
)

36

31
28

25
22 20

13

36

29
27

24

18 17

11

35

29
27

23

17 16

11

Throughput for Simple Transactions

RAW
LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

(a) Transaction execution for balance transfers.

1m 3m 5m
Number of Initialized Keys

0

5

10

15

20

25

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

(x
10

00
)

18

15 15 14
13 12

9

18

15 14 14

11 10

8

18

15
14

13

10
9

7

Throughput for ERC20 Transfers

RAW
LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

(b) Transaction execution for ERC-20 transfers.

Figure 2: Throughput of transaction execution

6 Evaluation

We evaluate LVMT’s performance and compare it to other
authenticated storage systems using a machine with an Intel
i9-10900K CPU, 32 GB DDR4 RAM, and SSD storages. All
authenticated storage systems utilize RocksDB [47] as their
backend key-value database.

We assess LVMT under different settings: 1) LVMT with-
out associated information (no proof shard), 2) LVMT with
1/64 and 1/16 of the associated information (proof sharding),
3) LVMT with all associated information. In this context,
LVMT-r represents LVMT without any associated informa-
tion, while LVMT64, LVMT16, and LVMT1 signify LVMT
with 1/64, 1/16, and complete proof sharding, respectively.

In addition to LVMT, we evaluate various authenticated
storage systems for comparison. As previously mentioned,
we have ported the MPT in OpenEthereum and have imple-
mented a variant of RainBlock, which we refer to as MPT
and RAIN, respectively. We also examine the Layered Merkle
Patricia Tries (LMPTs) [20] utilized in Conflux [2, 33], a
high-performance blockchain, represented by LMPTs. For
reference, we also examine the performance of directly stor-
ing data into the backend, bypassing authenticated storage,
denoted as RAW.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0

10

20

30

40

50

Ti
m

e
(u

s)

16

1
8

16

9 8

16
11 9

18
13 13

19 21
17 18

42

32

Time Usage Breakdown for Simple Transactions
Execution Engine
Authenticated Structure
Backend

(a) Time cost breakdown for balance transfers.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0
10
20
30
40
50
60
70
80

Ti
m

e
(u

s) 43

1
11

44

9 12

44

13 13

43

15 17

44

26 25

44

56

39

Time Usage Breakdown for ERC20 Transfers
Execution Engine
Authenticated Structure
Backend

(b) Time cost breakdown for ERC20 transfers.

Figure 3: Break down of the time usage in transaction execu-
tion on 5 million receivers.

End-to-end performance: We assess the end-to-end perfor-
mance of authenticated storage on Conflux [2, 33], a high-
performance blockchain. To gauge peak performance, we set
a large block size of 20,000 transactions per block. Thus, all
authenticated storage systems can finish executing one block
within 0.5 to 5 seconds, aligning with the block generation
intervals of major high-performance blockchains. To emu-
late the prevalent configuration of contemporary blockchains,
we employ cgroup to restrict the memory consumption of
a blockchain node to 16GB and allocate a 4GB RocksDB
cache size. In the experiment, 10,000 senders randomly se-
lect addresses from the receiver space and transfer non-zero
balances to them, representing simple payment transactions.
We evaluate receiver spaces with one million, three million,
and five million addresses. Conflux is run for an extended
period, ensuring the number of executed transactions is three
times larger than the receiver space.

Figure 2a shows that LVMT-r achieves a maximum
throughput of 29669 TPS on average and is up to 2.7 times
faster than MPT and 1.7 times faster than RAIN. We also
evaluate the performance of transactions executing the trans-
fer function of the popular ERC-20 smart contract [41], the
most common transactions on the Ethereum blockchain [4].
As shown in Figure 2b, LVMT-r is up to 2.1 times faster than
MPT and 1.5 times faster than LMPT in this workload.

To further study the time usage in execution of one transac-
tion, we breakdown the time usage into three parts: 1) Execu-
tion Engine, i.e., transactions execution without access to the

144 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

authenticated storage, 2) Authenticated Structure, i.e., access
to the authenticated storage without accesses the backend
database, 3) Backend Database, i.e., accesses to the backend
database. Figure 3a shows the breakdown of time usage in
executing random balance transfer transactions with 5 million
receivers. The execution engine takes the same time 16 us
across the different storages. LVMT-r takes a similar time 11
us with RAW in accessing the backend. It implies LVMT-r
almost eliminates the overhead of the authenticated storage
from backend access. LVMT64 and LVMT16 take a similar
time to LVMT. MPT requires 42 us and 33 us to access the
authenticated structure and the backend database, respectively,
which is more than 4x the time used in LVMT-r. As shown
in Table 1, a single elliptic curve multiplication requires 92
us, which is even slower than MPT. Therefore, eliminating
the expensive elliptic curve operation is necessary to make
LVMT practical. Figure 3b shows the breakdown in executing
random ERC20 transfers. The execution engine still takes the
same time across the different storages but takes more time
than the execution of the balance transfer. This is because
the execution of ERC20 transfers requires more I/O accesses
(e.g., loading contract bytecode). All the storages take about
20% more time than executing balance transfers.

This experiment shows that LVMT is able to maintain better
throughput than MPT for both simple payment transactions
and the typical ERC-20 smart contract transfer transactions.

Stand-alone performance: We also evaluate the stand-
alone performance of authenticated storage systems in micro-
benchmarks. We developed an authenticated storage bench-
mark tools [1] for evaluation. Since most transactions in the
real world simply read the accounts of the sender and the re-
ceiver and update their balances, we launch a workload of 20
million random “read then write” operations and commit the
changes every 100,000 operations, resembling a block being
generated every several seconds. The authenticated storage is
initiated with random key-value pairs whose size ranges from
106 to 108. Both the key and the value are 256-bit strings.
We use “1m”, “10m”, and “100m” to indicate the initialized
size 106, 107 and 108. Since LVMT needs to allocate version
number slots for new keys, we also evaluate with a “fresh”
setting: the storage has no initialization, and the workload
accesses distinct keys.

In addition, to evaluate the performance under the real
world access pattern, we extract the I/O trace on Ethereum,
the largest smart contract platform. We choose transactions in
2021 winter, when Ethereum is going through its latest boom.
We replay the Ethereum transactions from block 13,500,000
to block 13,600,000 to recover the I/O operations. These
blocks access 22 million distinct keys, and make 97 million
reads and 54 million writes in total. Each block contains an av-

erage of 1,500 operations. Considering that high-performance
authenticated storage can process over 100,000 operations per
second, having only 1,500 operations per block results in an
unreasonably short block generation cycle. This considerably
impacts RAIN’s optimization efforts for lazy hash resolutions.
To address this issue, we aggregated operations from every 50
blocks into a single block, making the block size in the real
trace workload more closely resemble the size in a random
access workload. We use “real” to denote the workload from
real world transactions.

The primary blockchain node like Geth recommands a min-
imum of 16GB RAM for optimal performance. We assume
that half of this memory is allocated for executing smart con-
tracts that access authenticated storage systems, while the
remaining half accommodates other functionalities. Conse-
quently, we limited the runtime memory to 8GB using cgroups
in our micro-benchmarks. We observed that authenticated
storage systems without inherent caching strategies, such as
RAW and MPT, perform better when provided with a higher
RocksDB memory budget. Conversely, authenticated stor-
age systems incorporating caching strategies, like LVMT and
RAIN, show improved performance at a lower memory bud-
get due to the need for an adequate filesystem cache. To
optimize performance, we allocated a 4GB RocksDB cache
size for RAW and MPT and a 2GB cache size for LVMT and
RAIN. As the implementation of LMPTs is highly coupled
with the backend database, and the vague boundary separat-
ing the authentication structure from the backend database
posed a challenge to accurately gauge LMPTs in the micro-
benchmarks. We removed LMPTs in micro-benchmarks.

Figure 4a shows the throughput across various workloads.
LVMT-r outperforms MPT and RAIN by at least 353% and
80%, respectively. When handling a shard of auxiliary in-
formation, LVMT64 and LVMT16 achieve roughly 80% and
60% of LVMT-r’s throughput across most workloads. LVMT1
consistently exhibits the weakest performance in all work-
loads, demonstrating the necessity of proof sharding.Within
the Ethereum real trace workload, the ledger size initially
comprises 4 million keys and eventually grows to 22 million
keys. However, all the authenticated storage systems either
outperform or match their performance in the ’1m’ workload,
as the real trace workload provides better access locality than
random access.

Figure 4b illustrates the throughput for various ledger sizes.
All authenticated storage systems experience a noticeable per-
formance drop when reaching a specific ledger size threshold.
This occurs because the ledger size surpasses memory limita-
tions, preventing both RocksDB’s cache and the file system
cache from effectively storing ledger data. RAIN and MPT
performance begins to drop at a ledger size of 16 million,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 145

real fresh 1m 10m 100m
Workloads

0

50

100

150

200

250

300

Op
er

at
io

ns
 p

er
 se

co
nd

 (1
00

0x
)

261

211

154

114

44

173
146

109
96

38

5

238

193

144
126

47

17

180

140

96
68

32

1

53
24

127 5

Throughput of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT
LVMT1

(a) Throughput under different workloads.

1 1.6 2.5 4 6.3 10 16 25 40 63 100
Keys in Ledger (in millions)

1

2

5

10

20

50

100

200

500

Op
er

at
io

ns
 p

er
 S

ec
on

d
(x

10
00

)

Throughput of Authenticated Storage Systems on Various Ledger Sizes
LVMT-r
LVMT64
LVMT16
RAIN
MPT
LVMT1
RAW

(b) Throughput for various ledger sizes.

Figure 4: Throughput of authenticated storage systems.

whereas LVMT declines at a larger size. LVMT16, LVMT64,
and LVMT-r demonstrate performance degradation starting
from ledger sizes of 25 million, 63 million, and 100 million,
respectively. This suggests that LVMT can provide efficient
ledger access with a smaller memory usage.
Read and write amplification: We further study the read and
write amplification at the backend database interface. Here,
read amplification represents the ratio of backend read oper-
ations to those on authenticated storage systems’ interfaces,
and write operations are defined similarly. Figure 5a shows
the read amplification under the different settings. As the
ledger size grows, LVMT-r exhibits consistent read amplifi-
cations. The root AMT contains 216 entries, and the second
level of AMTs 232 input entries in total. Since each entry has
five slots for key-value pairs, the root AMT can only store 0.3
million keys, and the second level of AMTs accommodate
21 billion keys. So LVMT-r always requires two levels of
AMT in all these workloads. The read amplification of a key
grows linearly with its level in the AMTs, so it is reasonable
for LVMT-r to exhibit similar read amplifications. In contrast,
the read amplification of MPT grows from 2.4 to 4.1. RAIN
demonstrates a smaller read amplification in the Ethereum
real trace, indicating that its cache strategy benefits from bet-
ter access locality in the real trace. For LVMT with proof
shards, the read amplification grows linear with the size of
auxiliary information. LVMT16 maintains four times the aux-
iliary information than LVMT64. So the surplus of LVMT16

real fresh 1m 10m 100m
Workloads

0

1

2

3

4

5

Re
ad

s p
er

 O
pe

ra
tio

n

1.21.3
1.6

0.7

2.0 2.02.2

3.0

0.4

2.1

1.01.1
1.7

0.7

2.4

1.01.2

2.0
1.5

3.2

1.0
1.3

2.0
2.3

4.1

Read Amplication of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(a) Read amplification of authenticated storage systems.

real fresh 1m 10m 100m
Workloads

0

2

4

6

8

10

W
rit

es
 p

er
 O

pe
ra

tio
n

1.31.51.9
3.0

4.4

2.02.2
3.0

3.8

5.6

1.01.1
1.7

3.0

4.8

1.01.2
2.0

4.7

6.5

1.01.3
2.0

6.4

8.2

Write Amplication of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(b) Write amplification of authenticated storage systems.

Figure 5: Read and write amplifications of authenticated stor-
age systems.

compared to LVMT-r is four times larger than the surplus of
LVMT64. When accessing the fresh ledger state, allocating
slots for the version number increases the read amplification
of LVMT-r by 1.

Figure 5b displays the write amplification. The write am-
plification of LVMT is similar to the read amplification. MPT
and RAIN have a larger write amplification than read am-
plification since MPT nodes are keyed by their hash digests.
So each time the storage changes, a write operation and a
deletion operation are applied to the backend.

Figure 6a and 6b present the average sizes of read and
write operations on backend, while figure 6c and 6d pro-
vides a more in-depth analysis of data size percentiles for the
"100m" workload. Considering that each MPT node can ac-
commodate up to 16 children, each containing a 32-byte hash,
an MPT node may store around 500 bytes. So MPT’s perfor-
mance is negatively impacted by the combination of extensive
read amplification and large data size per read operation. By
caching the top six layers of MPT in memory, RAIN effec-
tively reduces data sizes for both read and write operations.
In RAIN, the first layer on disk represents the seventh layer
of MPT, which can house roughly 17 million nodes. Thus, at
the largest ledger size in our experiment, which consists of
100 million keys, each node only needs to accommodate six
children, leading to a 200-byte node. LVMT-r only accesses
elliptic curve points, which are 65 bytes in size. LVMT with
proof shards may load 65-byte elliptic curve points and 192-
bytes auxiliary information for an AMT node from backend.

146 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

real fresh 1m 10m 100m
Workloads

0

50

100

150

200

250

300

350

Da
ta

 S
ize

 (b
yt

es
)

31 40
62 53

244

0
18

57
18

204

65
83

114

67

170

65
89

124

73

242

65
90

125125

300

Data Size per Read Operation on Backend
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(a) Data size per read operation

real fresh 1m 10m 100m
Workloads

0
50

100
150
200
250
300
350
400

Da
ta

 S
ize

 (b
yt

es
)

59 73
101

24

320

53 68
98

30

306

65 83
113

14

205

65
89

124

22

278

65
90

125

45

336

Data Size per Write Operation on Backend
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(b) Data size per write operation

10 20 30 40 50 60 70 80 90
Percentiles

0

50
70

100

200

300

500
700

Da
ta

 S
ize

 (B
yt

es
)

Backend Read Operations: Data Size Distribution
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(c) Data size distribution of backend read operations

10 20 30 40 50 60 70 80 90
Percentiles

0

50
70

100

200

300

500
700

Da
ta

 S
ize

 (B
yt

es
)

Backend Write Operations: Data Size Distribution
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(d) Data size distribution of backend write operations

Figure 6: Data size of backend operations

Figure 6 indicates that around 40% of read operations for
LVMT16 involve auxiliary information, while about 10% of
LVMT64’s read operations relate to auxiliary information.

7 Related Works

Improved MPT structures: mLSM proposes to maintain
multiple levels of MPTs [43]. The most recent updates are in
the lowest level (level 0). The key-value pairs in a lower level
will be merged to higher levels periodically. LMPTs proposes
maintaining three MPTs, one large MPT containing old state

and two small MPTs containing recent state changes [20].
LMPTs periodically merges small MPTs into large ones. For
both mLSM and LMPTs, the concatenation of the Merkle
roots of all the MPTs becomes the commitment for the ledger
state.

Both LVMT and mLSM employ multi-level structures
to minimize write amplification, but their approaches differ.
mLSM maintains shallow top-level trees by regularly merging
entries from the top-level Merkle trees into lower levels. Since
write operations in mLSM only affect the top-level trees, the
reduced depth decreases overall costs. LMPTs adopt a sim-
ilar strategy, keeping a shallow delta MPT and periodically
merging it into the snapshot. Conversely, LVMT’s multi-level
structure is akin to a tree, where each AMT serves as a node.
When a write operation modifies an element in a lower-level
AMT, all AMTs on the path from the root to the target AMT
must be updated. With each AMT capable of accommodating
up to 65,536 children, the high degree effectively reduces
LVMT’s overall depth, thus lowering write amplification.

Their techniques reduce the number of disk I/O operations
on the critical path because the recently accessed state will be
stored into MPTs with smaller depth, and the merge of MPTs
can happen in a background thread. In contrast, LVMT almost
eliminate unnecessary read amplification in practice. Our
results show that when integrated end-to-end into Conflux,
LVMT outperforms LMPTs by up to 2.5x. The mLSM paper
only contains its conceptual design without implementation
and evaluation [43]. It is unclear how mLSM would perform
end-to-end with a blockchain in practice.

Parallelize storage I/O: RainBlock [40] introduces three
different nodes in a blockchain system to accelerate the trans-
action execution: the storage prefetchers, the miners executing
transactions, and the storage nodes. When executing transac-
tions, the miners obtain needed data from multiple prefetchers
and send the updates to multiple storage nodes. Each stor-
age node maintains a shard of MPTs in memory. RainBlock
changes the local storage I/O to network distributed storage
I/O and benefits from the parallel I/O and in-memory storage.
To reduce the read latency of network storage, RainBlock in-
troduces I/O prefetchers and requires the miners to attach all
the accessed key-value pairs and the witnesses (MPT nodes)
when broadcasting blocks. RainBlock reports the average size
of witnesses per transaction is 4 KB and their optimizations
reduce the size of witnesses by 95% , so the additional net-
work message per transaction is about 200 bytes, two times
of a transaction. However, the inefficient usage of networks
brings a bottleneck to a high-performance blockchain sys-
tem [26]. RainBlock also suffers attacks in data availability.
Since in-memory storage is costly, the number of replicas in
RainBlock is much less than in Ethereum. As a comparison,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 147

LVMT does not introduce additional network bandwidth con-
sumption and data availability risk. Even if proof of shard
in LVMT is lost, the other nodes can recover the auxiliary
information of an AMT in minutes.

Both RainBlock and LVMT employ the sharding concept,
but with different targets. RainBlock divides the ledger into
multiple shards, preventing single nodes from accessing the
entire ledger. To address this, RainBlock devised complex
protocols between the prefetchers handling ledger reads and
the miners executing transactions. Conversely, LVMT utilizes
sharding solely to maintain auxiliary information for generat-
ing proof, allowing nodes to access the full ledger data during
transaction execution. The proof sharding is mainly handled
by blockchain node API providers. When users query a key,
providers must direct the query to the corresponding node
along with the relevant proof.

Another similarity between our RainBlock implementation
and LVMT is caching top-level nodes. By default, RainBlock
caches six layers of MPT nodes, while LVMT caches a single
layer of AMT. As LVMT’s nodes having a significantly higher
degree than MPT (65,536 vs. 16), LVMT can use less memory
to accommodate more entries in the first layer beneath the
cached nodes.

Vector commitment for data sharding: Several vector com-
mitment protocols [19, 24, 28, 30, 46, 49] have been proposed
to reduce the proof size, support revealing elements in batch,
or make the commitment efficiently updatable under some re-
quirements. Some research also considers utilizing the vector
commitment for data sharding on blockchain. Alin et al. [49]
use KZG commitment protocol [28] to replace the underlying
Merkle tree for data sharding. Unlike LVMT, the goal of this
technique is not to improve the throughput but to reduce the
data size of the blockchain storage. It requires the clients
to maintain the proofs for their own data, keep updating the
proof, and attach the values and proofs for the accessed stor-
age in a transaction. Each client needs to be online and update
the proofs of all of its data each time a write operation hap-
pens on the blockchain. Note that this protocol takes O(n)
time to generate proof or maintain proofs for all data, which
costs O(n) time to add a new key-value pair. It is therefore
not designed for a high throughput blockchain system. When
thousands of transactions are executed on the blockchain per
second, a client cannot maintain its proofs efficiently.

Pointproofs [24] proposes an aggregatable and maintain-
able vector commitment protocol that can maintain the aux-
iliary information for proofs in O(logn) time (like AMT)
and reveal any k-element subset of elements in O(k) time
with a batched proof. Pointproofs allows a consensus node to
generate a batched proof for all the accessed key value pairs
during block execution, so a node without the whole ledger

can verify the correctness of execution. However, for every
1024 transactions, Pointproofs takes 5 seconds to maintain
the auxiliary information for proofs, which cannot match the
requirements in a high throughput blockchain system.

Accumulators: Accumulators are cryptographic primitives
that commit a set of elements to a short digest (commitment)
while supporting operations like addition, deletion, member-
ship proof, and non-membership proof. Merkle trees are one
example of accumulators. A recent study [13] designed an
RSA accumulator that supports batch operations and stores
UTXO sets for a blockchain, with commitments updated in
constant time.

In a zk-rollup blockchain [7], it is crucial to convince a light
client with a SNARK proof [12] that the ledger root is updated
correctly in a given sequence of operations. Ozdemir et al.
replaced Merkle trees with RSA accumulators to accelerate
SNARK proof generation [38]. Although RSA accumulators
require O(n) time to generate a proof or update proofs for
all elements, the time savings in SNARK proof generation
outweigh the time spent in accumulator proof generation.
However, in a high-performance authenticated storage, opera-
tions are processed in microseconds, rendering proof updates
that require milliseconds per operation as relatively costly.

8 Conclusion

LVMT significantly reduces the disk I/O amplifications asso-
ciated with each blockchain state access. When integrated into
a high performance blockchain, LVMT has up to 2.7x higher
throughput than the standard MPT structure. The promising
results of LVMT demonstrate the potential of eliminating
the performance bottleneck at the storage layer with vector
commitment schemes.

Acknowledgements

We express our gratitude to Peilun Li for his detailed guid-
ance on the Conflux test framework, facilitating our end-to-
end evaluations. We also appreciate the insightful sugges-
tions from our shepherd, Micheal Wei, and the anonymous
reviewers from EuroSys, S&P, and OSDI. Their critique and
suggestions considerably improved our evaluation design
and enriched our protocol discussion. This research has re-
ceived support from the Shanghai Committee of Science and
Technology, China (Grant No. 21511104600, 20DZ2221800),
National Natural Science Foundation of China (Grant No.
U2268202), and a gift fund from Nanjing Turing AI Institute.

148 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Authenticated storage benchmarks.
https://github.com/ChenxingLi/
authenticated-storage-benchmarks.

[2] Conflux rust for authenticated storage bench-
marks. https://github.com/Conflux-Chain/
conflux-rust/tree/asb-e2e.

[3] DefiLlama - DeFi Dashboard. https://defillama.
com.

[4] ERC-20 Top tokens. https://etherscan.io/
tokens.

[5] Patricia Tree. https://eth.wiki/en/
fundamentals/patricia-tree.

[6] Rainblock protocol. https://github.com/
RainBlock/rainblock-protocol.

[7] Zero-knowledge rollups. https://ethereum.org/
en/developers/docs/scaling/zk-rollups/.

[8] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia
Fanti, and Pramod Viswanath. Prism: Deconstructing
the blockchain to approach physical limits. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 585–602, 2019.

[9] Paulo SLM Barreto, Ben Lynn, and Michael Scott. Con-
structing elliptic curves with prescribed embedding de-
grees. In Proceedings of the 2002 International con-
ference on security in communication networks, pages
257–267. Springer, 2002.

[10] Paulo SLM Barreto and Michael Naehrig. Pairing-
friendly elliptic curves of prime order. In Proceedings
of the 2005 International Workshop on Selected Areas
in Cryptography, pages 319–331. Springer, 2005.

[11] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowl-
edge for a von neumann architecture. In Proceedings of
the 23rd USENIX Security Symposium, pages 781–796,
2014.

[12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again.
In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 326–349, 2012.

[13] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching
techniques for accumulators with applications to iops
and stateless blockchains. In Proceedings of the 2019
Annual International Cryptology Conference, pages 561–
586. Springer, 2019.

[14] Sean Bowe. BLS12-381: New zk-snark ellip-
tic curve construction. https://z.cash/blog/
new-snark-curve.

[15] Sean Bowe, Ariel Gabizon, and Matthew D Green. A
multi-party protocol for constructing the public param-
eters of the pinocchio zk-snark. In Proceedings of the
2018 International Conference on Financial Cryptogra-
phy and Data Security, pages 64–77. Springer, 2018.

[16] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable
multi-party computation for zk-snark parameters in the
random beacon model. Cryptology ePrint Archive, 2017.

[17] Vitalik Buterin. Ethereum whitepaper. https://
ethereum.org/en/whitepaper/.

[18] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. arXiv preprint arXiv:1710.09437, 2017.

[19] Dario Catalano and Dario Fiore. Vector commitments
and their applications. In Proceedings of the 2013 Inter-
national Workshop on Public Key Cryptography, pages
55–72. Springer, 2013.

[20] Jemin Andrew Choi, Sidi Mohamed Beillahi, Peilun
Li, Andreas Veneris, and Fan Long. LMPTs: Elimi-
nating storage bottlenecks for processing blockchain
transactions. In Proceedings of the 2022 International
Conference on Blockchain and Cryptocurrency. IEEE,
2022.

[21] Arkworks contributors. arkworks zksnark ecosystem.
https://arkworks.rs, 2022.

[22] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Rob-
bert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In Proceedings of the 13th USENIX Sympo-
sium on Networked Systems Design and Implementation,
pages 45–59, 2016.

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 51–68. ACM, 2017.

[24] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and
Zhenfei Zhang. Pointproofs: Aggregating proofs for

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 149

https://github.com/ChenxingLi/authenticated-storage-benchmarks
https://github.com/ChenxingLi/authenticated-storage-benchmarks
https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e
https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e
https://defillama.com
https://defillama.com
https://etherscan.io/tokens
https://etherscan.io/tokens
https://eth.wiki/en/fundamentals/patricia-tree
https://eth.wiki/en/fundamentals/patricia-tree
https://github.com/RainBlock/rainblock-protocol
https://github.com/RainBlock/rainblock-protocol
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://z.cash/blog/new-snark-curve
https://z.cash/blog/new-snark-curve
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://arkworks.rs

multiple vector commitments. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2007–2023, 2020.

[25] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah
Meiklejohn, and Ian Miers. Updatable and universal
common reference strings with applications to zk-snarks.
In Proceedings of the 2018 Annual International Cryp-
tology Conference, pages 698–728. Springer, 2018.

[26] Yilin Han, Chenxing Li, Peilun Li, Ming Wu, Dong
Zhou, and Fan Long. Shrec: Bandwidth-efficient trans-
action relay in high-throughput blockchain systems. In
Proceedings of the 11th ACM Symposium on Cloud Com-
puting, SoCC ’20, page 238–252, New York, NY, USA,
2020. Association for Computing Machinery.

[27] Koh Wei Jie. Perpetual Powers of Tau. https://
github.com/weijiekoh/perpetualpowersoftau.

[28] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their ap-
plications. In Proceedings of the International Confer-
ence on the Theory and Application of Cryptology and
Information Security, pages 177–194. Springer, 2010.

[29] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In Proceedings of the 2018 IEEE Symposium
on Security and Privacy, pages 583–598. IEEE, 2018.

[30] Russell WF Lai and Giulio Malavolta. Subvector com-
mitments with application to succinct arguments. In
Annual International Cryptology Conference, pages 530–
560. Springer, 2019.

[31] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zo-
har. Inclusive block chain protocols. In Proceedings of
the 2015 International Conference on Financial Cryp-
tography and Data Security, pages 528–547. Springer,
2015.

[32] Ao Li, Jemin Andrew Choi, and Fan Long. Securing
smart contract with runtime validation. In Alastair F.
Donaldson and Emina Torlak, editors, Proceedings of
the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 438–
453. ACM, 2020.

[33] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Wei Xu, Fan Long, and Andrew Yao. A decen-
tralized blockchain with high throughput and fast con-

firmation. In Proceedings of the 2020 USENIX Annul
Technical Conference. USENIX, 2020.

[34] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal
Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 17–30, New
York, NY, USA, 2016. ACM.

[35] David Mazieres. The stellar consensus protocol: A fed-
erated model for internet-level consensus. Stellar Devel-
opment Foundation, 32:1–45, 2015.

[36] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. http://bitcoin.org/bitcoin.pdf.

[37] Gleb Naumenko, Gregory Maxwell, Pieter Wuille,
Alexandra Fedorova, and Ivan Beschastnikh. Erlay:
Efficient transaction relay for bitcoin. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, page 817–831, 2019.

[38] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan
Boneh. Scaling verifiable computation using efficient
set accumulators. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2075–2092, 2020.

[39] Parity Technologies. Crate kvdb. https://docs.rs/
kvdb/0.4.0/kvdb/.

[40] Soujanya Ponnapalli, Aashaka Shah, Souvik Baner-
jee, Dahlia Malkhi, Amy Tai, Vijay Chidambaram, and
Michael Wei. RainBlock: Faster transaction processing
in public blockchains. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21), pages 333–347,
2021.

[41] Ethereum Improvement Proposals. Eip-20: Token stan-
dard. https://eips.ethereum.org/EIPS/eip-20,
2015.

[42] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gi-
lad Oved, Zachary Keener, Vijay Chidambaram, and Ittai
Abraham. mlsm: Making authenticated storage faster in
ethereum. In Ashvin Goel and Nisha Talagala, editors,
10th USENIX Workshop on Hot Topics in Storage and
File Systems, HotStorage 2018, Boston, MA, USA, July
9-10, 2018. USENIX Association, 2018.

[43] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky,
Gilad Oved, Zachary Keener, Vijay Chidambaram, and
Ittai Abraham. mLSM: Making authenticated storage
faster in ethereum. In Proceedings of the 10th USENIX

150 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/weijiekoh/perpetualpowersoftau
https://github.com/weijiekoh/perpetualpowersoftau
http://bitcoin.org/bitcoin.pdf
https://docs.rs/kvdb/0.4.0/kvdb/
https://docs.rs/kvdb/0.4.0/kvdb/
https://eips.ethereum.org/EIPS/eip-20

Workshop on Hot Topics in Storage and File Systems,
page 10, 2018.

[44] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zo-
har. Phantom and ghostdag: A scalable generaliza-
tion of nakamoto consensus. Cryptology ePrint Archive
2018/104, 2018.

[45] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate
transaction processing in bitcoin. In Proceedings of
the 2015 International Conference on Financial Cryp-
tography and Data Security, pages 507–527. Springer,
2015.

[46] Shravan Srinivasan, Alexander Chepurnoy, Charalam-
pos Papamanthou, Alin Tomescu, and Yupeng Zhang.
Hyperproofs: Aggregating and maintaining proofs in
vector commitments. In 31st USENIX Security Sympo-
sium (USENIX Security 22), pages 3001–3018, 2022.

[47] Facebook Database Engineering Team. Rocksdb: A
persistent key-value store for flash and ram storage.
https://rocksdb.org, 2022.

[48] Parity Technologies. Openethereum. https://www.
parity.io/ethereum/, 2019.

[49] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin
Drake, Dankrad Feist, and Dmitry Khovratovich. Ag-
gregatable subvector commitments for stateless cryp-
tocurrencies. In Proceedings of the 2020 International
Conference on Security and Cryptography for Networks,
pages 45–64. Springer, 2020.

[50] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abra-
ham, Benny Pinkas, Guy Golan Gueta, and Srinivas De-
vadas. Towards scalable threshold cryptosystems. In
Proceedings of the 2020 IEEE Symposium on Security
and Privacy, pages 877–893. IEEE, 2020.

[51] Jiaping Wang and Hao Wang. Monoxide: Scale out
blockchains with asynchronous consensus zones. In
Proceedings of the 16th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 95–
112, 2019.

[52] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek
Saxena. OHIE: Blockchain scaling made simple. In
Proceedings of the 2020 IEEE Symposium on Security
and Privacy, pages 90–105. IEEE, 2020.

[53] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: Scaling blockchain via full shard-
ing. In Proceedings of the 2018 ACM SIGSAC confer-
ence on computer and communications security, pages
931–948, 2018.

Appendix

Formal definition for inner nodes of AMT

We now provide formal definitions for the two elements asso-
ciated with AMT inner nodes: a polynomial commitment and
a batch proof about this polynomial function.

Since the auxiliary information is a binary tree, each node
can be located by its depth and index. For a node indexed by
i at depth d, its left and right children are assigned indices i
and i+2d , respectively. The root is indexed by 0.

Let w be an n-th root of unity, such that wn = 1, where
n = 2k for some integer k. Given an input~a, AMT constructs
the vector commitment to~a to the polynomial commitment to
f (x) : Fp→ Fp that satisfies f (wi) = ai, where Fp is a prime
field with order p. It is required that 2k|p−1.

The interpolation for points is applied on roots in the {i ∈
[n] |wi}, instead of [n]. This yields a Lagrange function which
supports faster algorithms. The Lagrange function is defined
as:

Ii,n(x) =
∏ j∈[n] ∧ j 6=i

(
x−w j

)
∏ j∈[n] ∧ j 6=i (wi−w j)

,

where the numerator can be simplified to

∏
j∈[n] ∧ j 6=i

(
x−w j)= xn−1

x−wi =
n−1

∑
j=0

(
x/wi) j

,

and the denominator can be simplified to

∏
j∈[n] ∧ j 6=i

(
wi−w j)= n−1

∑
j=0

(
wi/wi) j

= n.

Thus, f (x) is built via Lagrange interpolation as:

Ii,n(x) =
1
n
· x

n−1
x−wi (2)

=
∑

n−1
j=0(x/wi) j

n
. (3)

So f (x) can be constructed by Lagrange interpolation as

f (x) =
n

∑
i=1

ai · Ii,n(x).

Now we consider a node at depth d and index t, its associate
function fd,t(x) only mirrors f (x) at x = wi where index i
satisfies i ≡ t mod 2d , and then covers only the Lagrange
interpolation terms of these elements:

fd,t(x) := ∑
i∈Td,t

ai · Ii,n(x), (4)

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 151

https://rocksdb.org
https://www.parity.io/ethereum/
https://www.parity.io/ethereum/

where Td,t := {i ∈ [n] | i≡ t mod 2d}. This node is associated
with the commitment of function fd,t(x) and the batch proof
demonstrating fd,t(wi) = 0 holds for all i ∈ [n]\Td,t . Accord-
ing to the KZG commitment, the commitment for fd,t(x) is
fd,t(τ) ·G1, and the batch proof is hd,t(τ) ·G1, where hd,t(x)
is defined by

hd,t(x) :=
fd,t(x)

∏i∈[n]\Td,t
(x−wi)

, (5)

with the denominator further simplifying to

∏
i∈[n]\Td,t

(
x−wi)= ∏i∈[n]

(
x−wi

)
∏i∈Td,t

(x−wi)
=

xn−1
∏i∈Td,t

(x−wi)
, (6)

and where the denominator simplifies to

∏
i∈Td,t

(
x−wi)= 2k−d−1

∏
i=0

(
x−wt ·

(
w2d

)i
)
= x2k−d −wt·2k−d

.

(7)
For a leaf in subtree of this node with index s. If as increases
by 1, fd,t(x) and hd,t(x) will be updated accordingly. By equa-
tion 4, fd,t(x) will increases by Is,n(x), denoted as f̄s(x). By
equation 5, hd,t(x) will increase by h̄s,d(x), defined as:

h̄s,d(x) :=
f̄s(x)

∏i∈[n]\Td,t
(x−wi)

,

which can be simplified by equation 2, 6 and 7:

h̄s,d(x) =Is,n(x) ·
x2k−d −ws·2k−d

xn−1

=
1
n
· x

2k−d −ws·2k−d

x−ws

=
1
n
·

2k−d−1

∑
j=0

(ws) j · x2k−d− j.

In AMT, when increasing as by δ, the commitments and
proofs of the node along the path from the root to the corre-
sponding leaf will increases by δ · f̄s(τ) ·G1 and δ · h̄d,s(τ) ·G1

respectively. The sequence of { f̄s(τ) ·G1}n
s=1 and {h̄d,s(τ) ·

G1}n
s=1 for any d can be constructed by FFT. So the AMT

can precompute O(n logn) cached parameters in O(n log2 n)
time and update the associated elements of each node with
two multiplications and two additions on the elliptic curve.

The overhead of storing the append-only Merkle
trees

We provide a rough estimation of the overhead for storing
truncated Merkle trees after garbage collection. Considering

Algorithm 8 A procedure to prove a given key version. It
returns the proof of the key version.

1: procedure PROVEKEY(k)
2: (tidx, leaf)← LEAFATLEVEL(lv,k);
3: vers← leaf.vers;
4: C← AM[(lv,tidx)].comm;
5: (e, i)← LM[k];
6: val← KM[k];
7: (lv,sidx)←V M[k];
8: merklepf ←Prove the existence of (k,vers[sidx],val, lv,sidx)

w.r.t. the current hroot
9: amtpf←Prove vers are the version numbers w.r.t. the commitment

C
10: return (merklepf,amtpf,vers,sidx,val,C);

Algorithm 9 A procedure to prove the level lv and the tree in-
dex tidx of a sub-AMT. It returns the proof of the commitment
of the sub-AMT.

1: procedure PROVECOM(lv,tidx)
2: ptidx← btidx/nc;
3: plidx← tidx mod n;
4: vers← AM[(lv−1,ptidx)].leaves[plidx].vers;
5: Cp← AM[(lv−1,ptidx)].comm;
6: C← AM[(lv,tidx)].comm;
7: (e, i)← LM[(lv−1,ptidx)];
8: merklepf ←Prove the existence of (lv,tidx,vers[0],C) w.r.t. the

current hroot
9: amtpf←Prove vers are the version numbers w.r.t. the commitment

Cp
10: return (merklepf,amtpf,vers,Cp);

the roots of Merkle trees are organized in a tree, we can
treat them as one large Merkle tree. We assume a full binary
Merkle tree has k levels of inner nodes, accumulated m = 2k

version tuples, with n tuples currently active, where 2l ≤ n <

2l+1 for some integer l. A node is not truncated if either
itself or its sibling has active descendants, so each active
tuple corresponds to at most two nodes per level. The bottom
k− l−1 layers have at most 2n · (k− l−1) nodes, less than
2n · log2(m/n). The first l+1 levels have 2l+1−1 nodes, less
than 2n. Therefore, the maximum node count is (log2(m/n)+
1) ·2n.

Non-existence proof of LVMT

The process for generating a non-existence proof in LVMT
is depicted in Algorithm 10. This procedure proves the non-
existence of a key k by demonstrating that all potential version
number slots for the key are already allocated to other keys.

It first allocate a version slot for k and followed by an
immediate rollback of the allocation (lines 2-3). This process
finds the next vacant slot for k.

Then, it proves the version number of this slot is zero, a
process similar to Algorithm 6 except that it omits the merkle
proof of the key (lines 5-12). This demonstrates that the slot
is indeed unoccupied.

152 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Last, it shows that all other potential slots for k are already
allocated to different keys. It generates proof for them; the
second fields of these proofs can be omitted since they have
the same information as commpfs computed in line 11.

Thus, a non-existence proof in LVMT proves the absence
of a key by showing that all its potential slots are occupied by
other keys.

Algorithm 10 A procedure to compute the non-existence
proof for a given key.

1: procedure NONEXISTANCEPROOF(k)
2: (lv,sidx)← ALLOCATESLOT(k);
3: Roll back the changes in allocating slot for k
4: (tidx, leaf)← LEAFATLEVEL(lv,k);
5: vers← leaf.vers;
6: C← AM[(lv,tidx)].comm;
7: amtpf←Prove vers are the version numbers w.r.t. the commitment

C
8: zeropf← (amtpf,vers,sidx,C);
9: while lv > 0

10: tidx← first bit to (k · lv)-th bit of H(k);
11: commpfs[lv]← PROVECOM(lv,tidx)
12: lv← lv−1;
13: L← [];
14: for i ∈ [sidx−1]
15: keypf← the first component of prove(leaf.keys[i]);
16: L← (leaf.keys[i],keypf)∪L;
17: while lv > 0
18: lv← lv−1;
19: (tidx, leaf)← LEAFATLEVEL(lv,k);
20: for i ∈ [5]
21: keypf← the first component of prove(leaf.keys[i]);
22: L← (leaf.keys[i],keypf)∪L;
23: keypfs← L;
24: return (zeropf,commpfs,keypfs);

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 153

	Introduction
	Background
	Authenticated Storage in Blockchain
	Elliptic Curve Group
	KZG Commitment
	Authenticated Multipoint Evaluation Tree

	Overview
	Versioned Key-value Database
	Multi-level AMT
	Proof Sharding

	LVMT Design
	Interfaces to the Transaction Execution
	Proving Key-value Pairs

	Implementation
	Evaluation
	Related Works
	Conclusion

