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Abstract

Customers of both private and public clouds must wrestle with

the problem of regionalization: how should service capac-

ity be apportioned across a large number of geo-distributed

datacenter regions? This problem is further complicated by

the complex service dependency graphs that arise from mi-

croservice architectures, as well as capacity availability and

hardware mix that can vary greatly by region.

Historically, regionalization has been solved through a

slow-moving and manual process, whereby owners of large

services directly negotiate capacity allocation and distribu-

tion with the cloud provider. However, as both service and

cloud footprints continue to grow, these manual processes are

becoming untenable, and often result in excessive labor for

all parties involved, as well as suboptimal outcomes.

At Meta, we have built a system called Flux to automate

capacity regionalization, transitioning it from a bottoms-up,

manual process, to a top-down, automated one. Flux employs

RPC tracing to identify service capacity models, and uses

these to compute an optimal joint capacity and traffic distri-

bution plan that spans thousands of services across tens of

products, and involves millions of servers. These plans are

orchestrated by a system that safely and efficiently rebalances

service capacity and product traffic across tens of regions on

a continuous basis.

1 Introduction

Meta’s private cloud consists of millions of machines and

hosts products serving billions of users. It must provide the

products with a growing, geographically distributed capacity

footprint, so that they can scale and remain fault tolerant while

their usage grows and new features are introduced.

Our products employ large microservice architectures [29]

comprising thousands of services, globally deployed in tens

of datacenter regions. Most of these services are shared by

multiple products, and hence the sizing of one service needs to

consider the demands of all products. Moreover, the services

are interdependent. It is not uncommon that a service calls

tens of other services and the depth of the call graph can

go beyond 10 levels. As a result, capacity distributions for

services must be managed in concert: the growth of one

service may cause the growth of tens more, which in turn

places further capacity demands on their downstream services,

and so on. Thus, it is a daunting task to manage capacity at

scale, as service operators must answer questions such as:

How to size my service? How and where do I provision

capacity for organic growth, or to enable a new feature? Are

downstream services correctly provisioned for the demand

generated by my service?

To avoid the above complexities getting out of control

when planning capacity jointly across tens of regions, service

owners often prefer the simplicity of reasoning about their

capacity on a per-region basis: a service responds to demand

increases by requesting that new capacity be delivered to the

regions where the service is already running.

However, this local optimization leads to many issues:

• Services in mature regions cannot grow as those regions

have no available space or power to add capacity.

• Hardware utilization becomes imbalanced as some regions

may provide more capacity than others.

• Hardware ordering is overly constrained by specific ser-

vices requiring specific hardware to be placed in specific

regions.

• Capacity imbalances lead to excess disaster-readiness

buffers as we must have enough buffers for the potential

loss of the single largest region.

Before Flux, these issues were solved by lengthy negotiations

between service owners and cloud providers. For example, in

order for service A to grow in region X, the service owners

might negotiate to trade the service’s excess capacity in region

Y for service B’s capacity in region X. This laborious process

does not scale well with the number of regions and services,

and leads to suboptimal capacity allocation. Moreover, even

after capacity negotiations, rebalancing services and traffic

across regions in order to match capacity supply is still a

daunting task, requiring coordination across many services

and traffic distribution systems.
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Finally, this region-centric capacity management process

leads to tight coupling between specific products and specific

regions. The capacity mix (i.e., the ratio of different hardware

types) of any given region often reflects the products that

have historically been deployed to that region. As a result,

the capacity mixes of our regions have already diverged sig-

nificantly, further exacerbating the problem as this regional

heterogeneity limits the flexibility of moving services across

regions to rebalance demands and supplies.

Global capacity management. Our key insight to solving

these issues is to elevate capacity management to a global

problem, decoupling global service placement from global

hardware placement. This paper describes our global capac-

ity placement system, called Flux, which runs continuously

on weekslong timescales, redistributing service capacity and

product traffic to best utilize our global capacity footprint.

Flux utilizes RPC tracing to identify a model that pre-

dicts service capacity demands given a traffic mix for our

products. This model is then used to formulate a mixed-

integer-programming (MIP) problem that jointly distributes

service capacity and product traffic across all of Meta’s re-

gions. Flux’s service placement distributes service growth ca-

pacity, rebalances existing service capacity to meet infrastruc-

ture goals, and manages projected regional capacity deficits

such as those caused by regional hardware refresh.

A capacity orchestrator works with our existing autoscal-

ing and traffic management systems to safely and efficiently

execute global capacity redistribution plans. The orchestra-

tor also allows human-in-the-loop operations as needed by

escalating low-quality estimates to be vetted by human opera-

tors, or delegate orchestration for services that have not yet

onboarded to our autoscaling systems.

Flux has been running in production at Meta for 2.5 years,

continually allocating service capacity quotas and performing

cross-region shifts of service placements and traffic for our

largest products. Currently, Flux covers about 50% of the

servers in our private cloud that consists of millions of servers

supporting online, batch, and AI training & inference work-

loads. We expect Flux to cover more than 90% of our capacity

as we increase adoption. Flux has also enabled dramatic sim-

plification of our hardware planning process, as it allows us

to plan for capacity globally, while gradually homogenizing

our current heterogenous regional hardware mixes.

Besides Flux’s usage in our private cloud, the ideas pre-

sented in this paper can potentially be adapted to public cloud

settings as well. Public cloud providers also similarly ne-

gotiate with their large customers directly to match capacity

demands with supplies. This sometimes entails providing

capacity outside of the customer’s preferred regions, which

in turn may require customers to relocate their workloads.

Contributions. We make the following contributions:

• To the best of our knowledge, this paper is the first to con-

duct a comprehensive study of global capacity manage-

ment and global service placement, which are important

issues for public and private cloud providers. We hope

that by sharing our firsthand experiences, we can help

the research community better understand this important

problem and the constraints involved in solving it.

• We propose global capacity contracts, whereby service

owners only need to reason about their global capacity

demands, leaving it for Flux to optimally regionalize ser-

vice capacity and product traffic distributions. By contrast,

cloud providers still mostly operate in a mode where large

services require specific hardware to be placed in spe-

cific regions, and traffic distribution is not integrated with

capacity management.

• We use RPC tracing to build a service-capacity regionaliza-

tion model, which calculates a service’s regional capacity

distribution as a function of the traffic mix for different

products. We are not aware of any prior work that attempts

to use models to regionalize service capacity. Moreover,

although RPC tracing has been used for debugging and

performance modeling, we are not aware of any prior work

that uses it for capacity modeling, not to mention doing it

at our scale and in production.

• We formulate a MIP problem to optimally distribute ser-

vice capacity under constraints of capacity supply as

well as service and infrastructure objectives. Despite the

widespread use of MIP, our approach is novel in its ap-

plication to joint capacity and traffic regionalization, a

problem that has not been considered before. We also

use load-test-induced nonlinear models to complement

MIP-based linear models, improving modeling accuracy.

• We describe our capacity orchestrator which integrates

across autoscaling and traffic management systems to

safely implement capacity and traffic redistribution plans.

Automating joint service placement and traffic redistribu-

tion at our scale is highly risky and may negatively impact

site reliability. To our knowledge, this has not been at-

tempted before.

• Finally, the effectiveness and robustness of Flux is demon-

strated by the fact that we use it every quarter to assign

hundreds of thousands of new machines to services.

2 Background

In this section, we provide background on our datacenters,

workloads, capacity management practices, and the capacity

management challenges that are addressed by Flux.

2.1 Datacenter Regions

Meta operates 10s of datacenter regions, each comprising

multiple datacenter buildings in the same local geography,

typically located on a single campus.

Our existing infrastructure abstractions generally operate

at the level of regions. For example, our cluster management
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systems [37, 45] manage all machines in a region as a single

pool. Services are expected to be oblivious to the placement

of their tasks within a region, and they may be spread across

multiple datacenter, network segments, or power domains.

Our regional infrastructure abstractions are supported by a

network fabric that provides sufficient regional cross-sectional

bandwidth for all but a few workloads

2.2 Traffic Management

We maintain a global network of small edge datacenters that

are connected to our backbone network. User traffic (e.g.,

those from apps or web browsers) are terminated in these

edge datacenters. Requests from clients connected to our

edge datacenters are forwarded to front-end servers in one of

our geo-distributed regions. A traffic distribution system [18]

manages the distribution of requests from edge datacenters

to our large datacenter regions, typically by considering a

combination of factors including front-end utilization and

geographic proximity to the end-user.

2.3 Service Workloads

Traffic enters a region through a front-end web service, typ-

ically an HTTP reverse proxy that routes the request to an

appropriate application server based on the request URI. The

application server implements some business logic, and typi-

cally makes RPC calls to tens to hundreds of services, which

in turn fan out to yet more services. While some of these ser-

vices implement functionality used by just a single product,

most are shared across many products. Thus, our services are

highly interdependent, and we cannot partition our services

into product-specific silos.

Figure 1 illustrates the complexity in our request serving

paths, with a large fanout and deep call depth. The complexity

of service interdependencies [29] motivated us to use precise

RPC tracing to attribute resource consumption when design-

ing Flux, rather than using indirect methods such as statistical

analysis [2] or heuristics [3, 38, 43].

Figure 1: Service RPC fanout. An example of how to read

the curves: when a request for the web product reaches the

call depth of 10, it fans out to call 158 services on average.

2.4 Service Capacity Management

Meta’s capacity management systems provide quotas in the

form of regional reservations [37], which provide strong guar-

antees of regional capacity availability and sub-regional fail-

ure tolerance. Thus, the various hardware buffers required

to reliably operate services within a region are encapsulated

by the regional capacity management systems, and hidden

from higher-level capacity management systems like Flux.

The number of service replicas in a region is usually deter-

mined by our autoscaling systems which combine service

capacity models with demand forecasts and disaster scenario

simulations to ensure the job is sized correctly.

Most RPCs occur within the same region due to strict la-

tency requirements imposed by applications. Additionally,

our complex service dependency graphs often contain critical

paths with tens of hops, which can quickly amplify cross-

region RPC latencies. Finally, by hosting both the caller and

callee in the same region, we can limit cross-region depen-

dencies and improve disaster readiness [31, 52].

Figure 2 illustrates regional caller-callee affinity by show-

ing the latency distribution of RPC calls across thousands of

compute services, denominated by total capacity. The inflec-

tion point at around 25ms represents calls going cross-region;

observe that ≈ 80% of capacity is reached by in-region re-

quests.

Figure 2: Cumulative distribution of capacity by RPC

latency. Note the y-axis begins at 80%.

All of our products are located in multiple regions to im-

prove disaster readiness, access a large capacity pool, and

achieve wide geographic distribution. However, the distribu-

tion of service capacity across regions is uneven. This is due

to the organic growth of both service capacity demand and re-

gional capacity supply. Service capacity demand responds to

new features and world events, while regional capacity supply

depends on factors such as power availability and datacen-

ter construction timelines. Additionally, geographic skew in

product usage exacerbates the issue as we try to place service

capacity close to end users.

Over time, this has led to a negative feedback loop, wherein

services prefer to grow proportionally to their existing re-

gional footprints, causing regional hardware mixes to reflect

these historical workloads. This in turn makes it difficult

to move these workloads to other regions, causing services

to continue preferring the regions in which they are already

deployed to receive capacity growth. We can see this spe-

cialization reflected in the regional hardware mix, as shown
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Figure 3: Regional hardware type distribution. A histogram

of the compute, flash, HDD, and other hardware deployed

across a subset of our regions. Note that the y axis starts at

50%. The right-most region is dominated by flash, because

it is a small region that recently underwent a large retrofit,

leaving a lot of database workloads in place.

in Figure 3. For instance, the percentage of servers of the

compute type ranges from 55% to 80%.

Regions also vary in their power headroom, i.e., the differ-

ence between used and available power. Observe in Figure 4

that six regions have little available power, implying that if

service deployments in those regions need to grow, they must

expand their capacity footprint in other regions as there is

little additional power to support additional racks. This is

similar to the situation in public clouds where users cannot

acquire new capacity in a given region [10–12, 21, 22, 47].

Figure 4: Power headroom per region for capacity growth.

The y-axis is power, normalized to our largest region.

2.5 Capacity Management Challenges

Service capacity management presents significant challenges

for both service owners and infrastructure operators. While

service owners wish to grow freely where they already are de-

ployed, infrastructure operators must reconcile these wishes

with constraints associated with operating physical infrastruc-

ture, as well as goals around efficient fleet operations.

These problems are amplified as regions reach maturity–

when there is no longer additional power available to allocate

to new racks–and infrastructure owners cannot accommodate

service capacity growth without shrinking the footprint of

other services. The complex dependency graphs between ser-

vices in a typical online product make this a more challenging

problem still.

We refer to this challenge as the service regionalization

problem: How can we optimally allocate capacity to a set of

services across multiple regions? Additionally, how should

product traffic be appropriately distributed based on this allo-

cation? Finally, considering that cluster and capacity manage-

ment systems usually operate at the regional level, how can we

effectively rebalance services according to the regionalization

plan?

3 Design and Implementation

Our global capacity management system, Flux, continually

rebalances a large number of interdependent services across

regions in response to demand changes (e.g., product growth)

and supply changes (e.g., hardware refreshes). By decoupling

the management of capacity demand and supply, Flux enables

service owners to focus on their global capacity demand with-

out considering regional needs, and allows cloud providers to

evolve each region’s capacity supply independently.

3.1 Overview of Flux’s Workflow

As illustrated in Figure 5, Flux solves the regionalization

problem through the following workflow.

Product-to-service capacity attribution via RPC tracing.

Flux uses RPC request tracing [30, 40] to construct a regional

baseline 1 that attributes each service’s peak capacity foot-

print to the products that are served directly or indirectly by

the service. This baseline is used to construct a service place-

ment model 2 that determines how service capacity should

be distributed given a product traffic distribution.

Joint regionalization of service capacity and product

traffic. Using inputs from our budgeting systems, Flux then

creates a capacity target for each service, which specifies

the amount of global capacity that is needed for each service.

These service targets are jointly regionalized with product

traffic by formulating an assignment problem that is solved

using mixed-integer programming (MIP) 3 . The result of

this stage is a placement plan that redistributes service ca-

pacity and product traffic across regions. The optimization

problem also encodes a number of infrastructure objectives,

such as minimizing the total amount of disaster-readiness

buffer required to operate services safely.

Global capacity orchestration. Flux introduces a global

capacity orchestrator, responsible for executing placement

plans safely and efficiently 4 . The orchestrator drives au-

tomation through several capacity and traffic management

systems, and also supports human-in-the-loop operations to

handle exceptions or uncertainties in execution.

The overall Flux workflow runs continuously in weekslong

cycles to rebalance service capacity across regions accord-

ing to changing hardware supplies and service demands. It

measures the current state of service and hardware placement,

computes a desired state, and then executes a plan to move
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Figure 5: Flux’s end-to-end workflow.

towards the desired state. It tolerates imperfect execution of

the plan by repeating this self-correcting reconciliation loop.

Next, we describe the details of the steps above.

3.2 Service Modeling

The goal of service capacity modeling is to determine the

optimal distribution of a service’s capacity across regions in

concert with product traffic. This is challenging because many

of our services are shared by multiple products, and each

product may invoke different call paths within the service.

This can result in significant differences in the cost per request

depending on the product being served (see §2.4).

3.2.1 Baseline

Flux defines a baseline for each region, attributing portions

of each service’s peak capacity footprint to different products.

This baseline is created by combining two other baselines:

Capacity usage baseline. We run profilers on every server

in our fleet to produce a dataset that attributes resource usage

to specific services. Profiles are sampled every minute, and we

process this dataset to identify the daily peak time window1

and peak resource usage per service and per region, covering

different resource types such as CPU and SSD.

Demand baseline. Flux uses sampled RPC traces to recon-

struct the call graphs for requests that are handled by each

service. We identify a set of product gateways that act as

traffic entry points for each product. Importantly, the traf-

fic destined for these gateways is globally and independently

routable, and is usually managed by Meta’s shared traffic man-

agement systems [18]. Each sampled RPC call is attributed

1Demand spikes due to new product launches or special events such as

New Year’s Eve are handled separately. During daily off-peak periods, many

of our services are automatically scaled down to donate unused capacity to

our elastic capacity pools, which are used to run preemptible services.
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Figure 6: Demand attribution. Attribution of capacity us-

age to three Products: Web Product, Mobile Product, and

Async. For the indexing service in Region A, the annota-

tion “[40% WP, 60% MP]” means that 40% and 60% of the

indexing service’s capacity consumption is attributed to the

Web Product and Mobile Product, respectively. Note that

while demand attribution is relative, the capacity usage base-

line is defined in terms of absolute capacity.

to the product handled by the nearest upstream gateway in

the call path. The demand attribution process is illustrated

in Figure 6. Sampled traces are aggregated to compose the

demand attribution dataset for each service, dividing a ser-

vice’s total demand among the set of products served by it.

Traces collect multiple demand metrics, including call counts

as well as CPU instructions. The next section discusses how

we select the demand metric that minimizes the overall model

error.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation    593



3.2.2 Modeling

Flux’s service models predict the amount of service capacity

required in a region to serve that region’s product traffic mix.

We assume that each product’s traffic is fungible across re-

gions, and thus that capacity requirements for serving a fixed

portion of the product’s traffic is also the same across regions.

This suggests a model where capacity for service s in re-

gion r, cs,r, is given by a linear combination of the capacity

contributions from each product:

cs,r = ∑
p∈P

(αs,p ∗ρp,r)+δs,r, (1)

where αs,p is the amount of capacity for service s attributed

to product p; ρp,r is the presence, or the proportion of global

traffic for product p assigned to region r; and δs,r is the model

residual for service s in region r.

Modeling residuals may be due to an existing capacity

imbalance, or due to nonlinear effects not captured by the

model. We allow service owners to be involved in managing

the treatment of residuals during planning.

The baseline includes multiple demand metrics. In the

modeling step, we select the metric that minimizes modeling

error. For example, many large services have per-request costs

that vary significantly across different products (because they

invoke different internal code paths), and are well-modeled

using CPU instructions as a demand metric. On the other

hand, some services perform very little computation for each

request. Therefore, call counts are a more appropriate demand

metric for these services due to the CPU overhead of tracing.

3.3 Joint Capacity & Traffic Regionalization

Flux computes joint service capacity and traffic regional-

ization plans by formulating an assignment problem that is

solved by a MIP solver. This section provides the intuition

behind the problem formulation.

The formulation, detailed in appendix A, is an optimization

problem that jointly assigns capacity for each service in each

region and product traffic in each region, corresponding to

cs,r and ρp,r from equation 1. The assignments are subject to

a set of constraints imputed from the service placement model

described in §3.2, which determines the service capacity mix

required to serve each product.

Initial capacity and traffic assignment are given by the base-

line. The capacity residual (δs,r in equation 1) is interpreted

as capacity that is unexplained by the model, and is thus ex-

cluded from reassignment, unless directed otherwise by the

service owner. We provide an analysis of capacity residuals

in §6.3.

Baseline adjustments. Flux adjusts the existing baselines

to match planned capacity and product distribution changes.

These planned changes are encoded as events and maintained

in a capacity ledger. Flux commits its plans to the ledger

along with other capacity planning systems. Thus, Flux can

overlap planning and execution, as we can adjust the baseline

to account for planned changes between the plan generation

time and the start of its execution cycle.

Regional capacity pools. Flux divides each region’s ca-

pacity into a shared pool per hardware type. Our capacity

reservation system, RAS [37], provides these pools as a re-

gional abstraction that we build upon, and lets us treat the

capacity in each pool fungibly.

Each hardware type is assigned a capacity measure that

represents the common bottleneck for that hardware type. For

example, the generic compute pool is denominated by a nor-

malized CPU throughput measure, while our SSD hardware

is generally I/O bound. The capacity measure is normalized

across all generations of the same hardware type. Some ser-

vices can run on multiple hardware types: we encode this

knowledge through a set of fungibility rules that establish

a service’s conversation ratios between different hardware

types.

Service capacity demand. The global capacity demand for

each service is computed by querying our budgeting systems

which mandate service capacity budgets in terms of a normal-

ized cost measure. Flux converts this normalized budget to a

hardware-type specific capacity demand using a conversion

ratio specific to the service and hardware type.

Service placement model. Flux imputes placement con-

straints from the service capacity model. Specifically, for

each service, the model determines a lower bound of service

capacity assigned to a region as a function of the product

traffic mix to that region (see §3.2.2). The product traffic

assignments are also optimization variables, and hence the

service and traffic placement is jointly optimized. The base-

line model residual (see Equation 1) is codified as an explicit

term in the formulation to offset capacity imbalances that ex-

ist at baseline. Flux gives service owners the choice to reduce

the model residual, which is often used to correct baseline

capacity imbalances; see §6.5 for an example.

Optimization constraints. The MIP assignment problem

constrains (1) the capacity assignment in each region to be

no more than its available supply; and (2) the global capacity

demand for each service to be met. The latter constraint is a

soft constraint, which allows us to prioritize capacity fulfill-

ment among services if necessary. Flux prioritizes baseline

capacity footprint (i.e., the capacity present when the baseline

was measured) over growth capacity (i.e., additional capacity

granted by the budget systems), to ensure that already granted

service capacity is not taken away.

Optimization objectives. The MIP assignment problem

includes several infrastructure objectives that help us man-

age our global capacity footprint more effectively. First, a

balancing objective spreads service capacity evenly across

regions, which reduces the amount of buffer capacity needed
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for disaster readiness. Second, unused capacity is also dis-

tributed evenly based on region size, making extra capacity

available to account for discrepancies or defects in Flux’s

placement. Third, a stability objective minimizes the amount

of capacity reassignment in each placement cycle, simplifying

the placement plans and reducing infrastructure churn.

Timesteps. Regionalization is simultaneously computed for

multiple future timesteps in increments of future execution

cycles. This serves three purposes. First, multi-timestep plans

can incorporate large changes in supply or demand ahead

of time, allowing for a plan that anticipates these changes

with small, individually feasible adjustments over multiple

timesteps. Second, we can set stability objectives that span

multiple timesteps to prevent undue oscillation in placement

plans. Finally, this multi-timestep approach prevents the

solver from optimizing a short-term solution at the expense

of long-term negative impacts.

While Flux computes plans for multiple timesteps, we only

execute the plan for the next timestep. Flux runs in a self-

correcting reconciliation loop as the baseline can change be-

tween executions for a number of reasons, including: (1) exe-

cution may have deviated from the placement plan; (2) supply

and demand forecasts may change in the interim; (3) manual

capacity operations may affect the baseline; (4) service code

changes or new services may affect the service models.

The formulation is detailed in appendix A.

3.4 Execution Planning

Flux derives an execution plan from the joint service and

traffic placement plan. The plan is a directed acyclic graph

(DAG) of service capacity assignments and product traffic

assignments. The plan ensures that services are always suffi-

ciently provisioned for the traffic during the transition stage.

Flux provides this guarantee through a three-phase plan.

First, all upsizes are executed, i.e., each service is sized to the

maximum of its baseline size and its target placement size.

Second, all product traffic is reassigned. Third, downsizes are

executed by sizing each service to its target size.

The advantage of this approach is its simplicity and the

ability to execute it quickly by parallelizing actions in each

phase. A disadvantage is that it requires temporarily overpro-

visioning services, which takes up capacity that could be used

by other services. To address this limitation, we explored us-

ing more sophisticated multi-step plans. However, we found

that these plans were both complex to execute and difficult to

explain to service owners. As a result, we decided to continue

using the simple approach.

3.5 Orchestration

The execution plan is fulfilled by Flux’s capacity orchestrator

which: (1) executes capacity and traffic assignments in the

Execution plan

Orchestrator

Human in the loop

Capacity ledger

Time

Reservation 
Management Autoscaling Traffic 

Management …

Upsize Downsize
Shift

Figure 7: End-to-end orchestration workflow.

correct dependency order; (2) continuously monitors product-

level and service-level metrics to ensure that they remain

healthy; (3) delegates exceptions and actions to human opera-

tors as needed; and finally (4) performs load tests to validate

the placement.

Figure 7 illustrates the orchestration workflow. A capacity

ledger stores a timeline of capacity events.These events are

timestamped, and each reflect a proposed capacity related

change. Capacity and traffic management systems query the

ledger for future events, but only execute them once they are

marked by the orchestrator as active. After execution, the

same systems store their status (success or failure) back into

the ledger.

The ledger acts as a central repository of all anticipated

capacity changes, and allows multiple systems to simulta-

neously propose and coordinate changes, while decoupling

capacity planning systems from capacity management sys-

tems. While Flux is the primary writer to the ledger, we

sometimes write manual events to make temporary capacity

changes in support of product launches or experimentation.

The ledger provides three important properties. First, we

can compose events from different writers, so that the un-

derlying management systems can consider the combined

effect of a set of events. Second, by providing events ahead of

time, we accommodate services that require a long lead time

to provision capacity and scale. For example, our caching

systems need a significant warm-up period before newly pro-

visioned capacity can handle production traffic. By providing

future events, the control plane gives the management systems

enough time to ensure that services are ready for future traffic

shifts. Third, the ledger serves as an authoritative forecast of

future capacity changes, and is used by Flux to incorporate

future and ongoing events during planning. This allows Flux

to overlap planning with execution, and to compose well with

other capacity planning systems.

The orchestrator ensures that events are executed in de-

pendency order by verifying that all antecedent events have
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completed before marking an event as active. RF delegates

any exceptions to human operators through its UI. The UI is

also used when (1) the service owner has configured the ser-

vice to require validation before execution, or (2) the capacity

estimates for a service are considered low confidence in the

modeling stage and require operator validation. By provid-

ing this progressive path towards full automation, Flux offers

transparency and explainability, and allows service owners to

gain comfort with the system.

Finally, before downsizing service capacity, the orchestra-

tor initiates product load tests [52] to validate that the sizing

is correct and that the site as a whole remains disaster ready.

3.6 Stateful Services

Flux integrates with Shard Manager [32] to handle stateful

services within our platform. Shard Manager is responsible

for managing most of our stateful workloads. Shard Manager

continuously queries the capacity ledger for relevant capacity

events, and builds new replicas after upsize capacity has been

provided by Flux. This is done by migrating or replicating

data from other regions. Shard Manager then acknowledges

the capacity event, allowing Flux to safely proceed with exe-

cution. After the demand shift, Shard Manager safely removes

the old replicas from downsized regions before Flux reclaims

capacity.

The primary challenge with integrating stateful services

today is that the default demand attribution algorithms do not

always accurately capture requests costs. Such systems often

exhibit interaction between requests, where processing of one

request can affect the cost of subsequent requests. Our default

attribution algorithms also do not capture persistent storage

costs, the effects of caching, etc. We work with service teams

to update our algorithms to better capture their capacity cost

models. For example, TAO [16], Meta’s social graph store,

maintains a custom cost model, which captures many of the

above effects across their complex, distributed system. We

integrate this cost model into Flux’s attribution models to

correctly capture TAO’s capacity needs.

4 Design Alternatives

In this section, we discuss the major design alternatives.

4.1 RPC tracing

Flux relies on RPC tracing for gray box measurements of

product-service capacity attribution. Meta has invested in a

unified RPC stack [39], leading to high out-of-the-box trac-

ing coverage without any additional instrumentation needed

from service owners. Moreover, all our main traffic ingestion

systems [30,52] already implement sampled trace origination.

As of 2022, we have 52% of capacity usage covered by

RPC tracing. For services that are not yet covered by RPC

tracing, we have been working closely with the the service

owners to drive the adoption, because distributed tracing [40]

as a fundamental capability in a large infrastructure has broad

usage beyond capacity management, such as problem deter-

mination [17] and performance debugging [2].

Black box methods like statistical analysis [2] or heuris-

tics [3, 38, 43] can be used to infer service call graphs with-

out needing service-specific instrumentation. However, our

highly interdependent microservice architecture makes em-

ploying such techniques less accurate. Since many of our

backend systems are shared among multiple frontends, which

invoke distinctly different callpaths, often with substantially

different cost per request.

Black box methods were previously only evaluated on sim-

ple three-tier applications, while in our complex environment,

the depth of call graphs reaches 14 and the RPC fanout is as

high as 742, and hundreds of different upstream services may

call a given service at varying call-graph depths. The full

complexities of Meta’s service topology and call graphs are

reported in detail in a recent work [29]. These complexities

make statistical or heuristic methods less applicable to our

environment.

Furthermore, because we can mandate high tracing cov-

erage in our services, we can expect higher quality models,

which in turn helps us provide greater levels of automation in

global capacity management.

4.2 Nonlinear Service Models

The core service model used by Flux is linear: it assumes that

capacity usage is linearly related to a chosen demand metric

(see Equation 1) and a product traffic mix. While such models

are simple to identify and to apply broadly, many services

exhibit nonlinear capacity behaviors. When available, Flux

can update its estimates by using more accurate nonlinear

models such as those produced by load testing [55], queuing

analysis [41], or by simulation.

Many of our services use continuous load testing to main-

tain an accurate model of the relationship between a service’s

capacity usage and its RPC throughput. These models are

used by our Capacity Estimator (CE) [14] to ensure that

services are sized correctly for demand and remain disaster

ready as determined by simulating various failure scenarios.

However, simulations introduce nonlinearities that cannot be

represented in a MIP assignment problem. To solve this prob-

lem, Flux invokes CE with the traffic distribution produced

by the MIP solver. CE then runs its simulations against the

proposed traffic distribution, and provides updated capacity

estimates that incorporate planned failure scenarios.

We have found that using a combination of a default linear

model for regionalization, along with a load-test-induced non-

linear model for improving estimates, works well in practice.

Linear models provide upper bounds and are amenable to

MIP optimization, while the nonlinear models provide higher

accuracy, and usually operate within the bounds of the linear
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models. Additionally, the simpler linear models are easier to

explain and diagnose. Currently, 9.2% of services using Flux

have load-test-induced models, and these services account for

46.4% of the total capacity allocated by Flux. This suggests

that larger services are more concerned about capacity and are

more likely to build their load-test-induced nonlinear models.

5 Discussion

In this section, we discuss the challenges of doing capacity

planning in a complex real world and several ways of applying

ideas in Flux to public clouds.

5.1 Practical Challenges

Flawed baselines impact modeling accuracy. Because

Flux started with a baseline that was the result of many years

worth of ad-hoc capacity management, the baseline itself does

not reflect an ideal placement. Thus, when modeling capacity,

we have to take extra care when interpreting model residuals:

they could be due to imperfect modeling, or baseline itself not

well-balanced. Flux provides rebalancing to service owners

wishing to correct these imbalances in a controlled manner.

Complete capacity models are hard to come by. We have

found that many capacity management practices rely on tribal

knowledge, ad-hoc modeling, and implicit agreements be-

tween services. These are not captured in the service capacity

models that Flux operates with, and thus cannot incorporate

various de facto objectives or constraints. We work with ser-

vice owners to codify these, but often find that we need to

work around these with manual planning adjustments. We

have also introduced tools like the capacity ledger (see §3.5)

that help capture and mechanize previously ad-hoc capacity

management practices.

These realities mean that there isn’t a clear ground truth for

capacity distribution, and require a nuanced interpretation of

both modeling residuals and execution errors.

5.2 Applying Flux in Public Clouds

Many large public cloud customers maintain “virtual private

clouds”, whereby they acquire large capacity pools of re-

served instances. For example, Netflix has reported [36] that

it runs thousands of services on hundreds of thousands of geo-

distributed reserved instances [9] in AWS. These customers

can apply Flux to manage these pools of reserved instances,

and intelligently place services so that they are maximally

utilized. These customers can also use Flux to extract recom-

mendations about the type, location, and amount of capacity

to acquire in order to accommodate growth, and to optimize

the customer’s capacity footprint.

Cloud providers could provide a new kind of capacity

contract, whereby customers are guaranteed low-cost capac-

ity, but are not guaranteed specific regional placement. The

cloud provider offers an online capacity-planning tool through

Figure 8: Automated actions in total and by services. Ac-

tions are nodes in the Flux’s capacity placement plan, and

include capacity and traffic management operation, such as

adjusting regional quotas or resizing services.

which their customers continually update their aggregated

placement constraints. The cloud provider then regularly re-

regionalizes the capacity for customers that use this form of

capacity, calling into customer’s control planes to execute

service and traffic rebalancing. This is similar to existing

preemption APIs for spot instances [8].

6 Evaluation

Our evaluation answers the following questions:

1. How long does it take for Flux to execute its plan (6.1)?

2. Do Flux’s service models help accurately assign global

workloads to hardware in individual regions (6.2, 6.3)?

3. To what extent does Flux help meet the growing needs of

out-of-region hardware refresh (6.4)?

4. How does Flux plan capacity and service placement for a

specific service in practice (6.5)?

6.1 Execution Automation

Our goal for Flux is to maximize automation across both

planning and execution, while incorporating humans-in-the-

loop to review proposed actions and catch defects. We have

granted Flux increasing autonomy as we gain confidence in

the completeness and accuracy of Flux’s models, its solvers,

and automated execution systems. Currently, not all services

support automation when adjusting their deployments across

regions; Flux compensates by incorporating human-in-the-

loop manual actions.

Figure 8 plots the degree of automation in Flux’s execu-

tion plans, showing a handful of service groups as well as

the overall automation. The drastic improvement in “total”

around July 2021 was due to the introduction of a fully auto-

mated capacity distribution mechanism that integrates with

our autoscaling system [14]. Over the past 2.5 years, we have

increased automation in Flux from 27% to nearly 100%.

Figure 9 shows Flux’s plan completion times. When Flux

was first introduced, execution was dominated by operations

requiring human feedback or execution. As we have simul-

taneously improved automation coverage and model quality,
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Figure 9: Plan completion times. The “total” curve repre-

sents the end-to-end plan execution time. The boxplots repre-

sent the distribution of individual service resize operation’s

completion time. From bottom to top, the markers on a box

represent, excluding outliers, the minimum, lower quartile,

median, upper quartile, and maximum. Outliers are shown

separately as small circles. The spike in the “total” curve

represents a large shift in the complexity of Flux’s placement

plans, which caused service automation coverage to lag Flux’s

capacity coverage. We spent the ensuing months improving

the coverage of our capacity automation tooling.

fewer operations require human-in-the-loop intervention and

scrutiny, and most operations are now fully automated. Re-

cently, executions take roughly 1 week. Even with model

and automation improvements, some limits still remain. For

example, cross-region data replication or cache warmup may

still require long execution times for stateful services even if

they support full automation.

6.2 Capacity Sizing Error

We define Flux’s capacity sizing error as the service capacity

eventually used in production, minus Flux’s recommended

capacity assignments, which include improvements from us-

ing load-test-induced models when available (§4.2). The

errors exist for several reasons. First, since capacity-planning

mistakes can be costly, service owners often review and some-

times revise Flux’s recommendation based on their domain

knowledge of their services. Second, after Flux executes its

capacity plan, our autoscaling system [14] may resize services

in production, if it finds that additional capacity is needed to

support Flux’s traffic shift, or that a service is left with a

capacity surfeit.

Figure 10 shows the proportion of upsize and downsize

capacity executed in each plan. A value of 100% means that

execution was (in aggregate) exactly to plan. Over the course

of the last year, we have improved planning accuracy signifi-

cantly, primarily by working with service owners to improve

their attribution and capacity models. We use execution his-

tory to incorporate expected error rates into Flux’s planning

assumptions, and thus are able to tolerate this error by en-

suring that we both (1) have sufficient capacity to support

anticipated (aggregate) upsizes; and (2) are able to reclaim

sufficient capacity where this is needed for refresh.

Figure 10: Capacity-sizing error, the percentage of Flux’s

recommended assignments executed in production. Each data

point represents the proportion of the total capacity in a Flux

placement plan that was actually executed. The error is split

by upsizes and downsizes.

Unless service owners explicitly opt out, we require them

to review Flux’s placement plans through a UI tool. An Oct

2022 execution plan had 377 resize nodes. The total number

of nodes available for Flux to execute on is about 3000. Of

these, 81 nodes were for services that opted out of review; of

the remaining 296 nodes, 84, or 22% of the total nodes, were

revised by service owners. These revisions modify the resize

node directly; Flux continues execution with the updated

node. Our tool captures the reason given by service owners

for each override, and we present the most frequent reasons

below, with the number of each kind of override shown in

parentheses.

Insignificant capacity (15). The service owner rejected the

plan as the service does not have fully automated ca-

pacity management and the plan moved an insignificant

amount of capacity. Therefore, the overhead to the ser-

vice owner is too high to justify the benefits of execution.

Service should not be rebalanced (13). The service owner

rejected the plan because the service should not be re-

balanced by Flux. The remedy is to add the service to

Flux’s execution blocklist.

Insufficient headroom (10). The plan would leave a service

without enough headroom capacity, usually to accom-

modate anticipated growth. The remedy for this is to

capture this requirement as a capacity event, so that it

can be incorporated into Flux’s capacity plans.

Deprecated service (8) The service is deprecated, and

should no longer be managed by Flux.

Bad estimates(4) The service owner judges the estimates to

be incorrect, usually due to one of two reasons. First,
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Flux has incorrectly attributed product demand to the

service. In these cases, we repair the demand baselines,

for example, by choosing another demand metric. Sec-

ond, the linear model is inaccurate for the service. In

these cases, we work with the service owner to adopt the

load-test-induced model (see §4.2).

These overrides highlight the complexity of operating in a

large-scale production environment. These results show that,

with supervision, it is feasible for Flux to operate in a com-

plex environment. Over time, as bugs are fixed and new

features (e.g., headroom modeling) are added to Flux to cover

a broader set of scenarios, we expect Flux to perform with

higher accuracy and gain greater autonomy.

6.3 Model Residuals

The model residual δ (expression 1 in §3.2.2) measures the

portion of baseline service capacity distribution not explained

by Flux’s service model. While the previously presented er-

ror metric reflects plan defects that could cause inefficient

placement or operational risks, δ merely reflects the imbal-

ance between traffic and capacity distribution. Large residuals

often reflect pre-existing capacity imbalance or inherent limi-

tations in services which prevent the system from achieving

an ideal balance.

Figure 11 shows the residual for several representative ser-

vices. Web product’s residual varies between 3% and 5%.

Such stateless services are usually well-modeled by Flux.

The residual for feed infra was initially higher at ≈8%,

because its capacity distribution was uneven before Flux was

applied. Over multiple placement cycles, we have used Flux

to reduce this capacity imbalance, which is reflected in recent

residuals that match those of web product. Due to limited

capacity supply during COVID, Flux’s optimization objective

has been dominated by supply constraints, and once Flux is

able to meet decommission and growth objectives, we limit

the infrastructure changes that Flux is allowed to introduce.

As capacity supply improves in the future, we plan to use Flux

Figure 11: Aggregate model residual. We show
∑r∈R|δs,r |

∑r∈R cs,r
, for

several representative services.

to more aggressively rebalance service capacity and reduce

the residual. The short-term variance of the residual curves

in Figure 11 correspond to load tests [6] and drain tests [52],

as well as Flux traffic shifts. These events temporarily distort

the relationship between traffic and capacity distribution, and

are filtered out of Flux’s baseline.

Figure 12 shows the distribution of feed infra’s model

residual across regions. This kind of plot guides us to work

with service owners to improve their service balance by ap-

plying more aggressive balance objectives in Flux. The figure

also demonstrates that, while the aggregate residual is higher

at ≈5%, the per-region residual is generally less than 1%.

In Figure 11, database infra’s model residual is the

highest due to some unique challenges associated with state-

ful services. For example, if a subset of hot data shards are

the bottleneck, naively adding more capacity may not im-

prove the service’s throughput proportionally. Many stateful

services also have substantial capacity requirements for in-

ternal data replication [5], which fall outside of the usual

request-response RPC regime, making it difficult to apply

RPC tracing. We have been continuously improving Flux’s

support for stateful services. In Figure 11, the initial reduction

of residual from 22% to 15% was primarily due to improved

attribution accuracy and coverage for database. The later

regression coincides with deployment of new database sys-

tems into just a subset of regions, and for which we need to

define new product attribution rules to capture correctly.

Overall, we deploy many stateful services, including

databases, storage, and caches. Of the capacity currently

managed by Flux, 14% is for stateful services. Our long-

term strategy is to migrate stateful services to a common

stateful framework called Shard Manager [32], which solves

many common problems (e.g., hot shards) that impact stateful-

service modeling. Moreover, Shard Manager is integrated

with Flux so that the services it manages are automatically

covered by Flux. Finally, Shard Manager intelligently places

data shards onto the capacity allocated by Flux to minimize

data-access latency [1, 4].

6.4 Accelerating Out-of-Region Refresh

Figure 4 shows that as regions mature, they may have min-

imal power headroom to accommodate new hardware. Ac-

cordingly, the “quarterly OORR demand” data points in Fig-

ure 13 shows the rapidly increasing need for performing out-

Figure 12: Model residual for feed infra by region.
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of-region hardware refresh (OORR). Prior to 2020, a negligi-

ble amount of OORR was performed, and even then OORR

was already a significant planning challenge. This was due to

the lack of planning tools to compute global workload shuf-

fling and traffic shifting for interdependent services, as well

as lack of automation to execute such plans even when it was

manually built. The benefits of Flux go far beyond OORR,

but the imminent increase in OORR demand and the unsus-

tainable toil in performing OORR motivated us to develop

Flux. Flux has helped scale OORR planning and execution by

≈950% year-over-year. Currently, we perform global work-

load shifts once every 6 weeks; each shift typically reshuffling

capacity for 100k-300k servers globally. The shifted capac-

ity exceeds OORR demand because (1) the decommissioned

capacity may not reflect the overall workload hardware com-

position, meaning that Flux must perform larger reshuffles to

utilize the underlying hardware; and (2) Flux also allocates

growth capacity and optimizes other infrastructure goals such

as reducing disaster-readiness buffers.

6.5 Case Study: FeatureStore

As a detailed case study, we present the impact of Flux on

FeatureStore, a flash-based key-value store serving features

of machine learning models, deployed across thousands of

servers, with a 99th percentile read latency of under 15ms,

and a read request rate of 10s of millions per second. In

September 2020, Flux was used for the first time to generate

a service-placement plan for FeatureStore. Prior to that, its

service placement was performed by humans.

A key event that took place during the September 2020

planning cycle was large-scale decommissioning of servers in

three regions A, B, and C, resulting in a reduction of supply

in those regions. Accordingly, we expect Flux to perform

out-of-region hardware refresh and shift traffic away from

those regions to others in order to accommodate this regional

supply reduction, which is confirmed by Figure 14.

Figure 13: Volume of out-of-region refresh (OORR). This

figure shows OORR planning and execution volumes handled

by manual processes as well as Flux. The uptick in manual

OORR in 2022 was due to a one-time large-scale decommis-

sion of data-warehouse hardware. Over all, Flux has helped

scale our yearly OORR volume by ≈950%.

To understand Flux’s capacity assignment, we focus on

two sets of services: (1) the frontend Web service that serves

as the traffic gateway for FeatureStore, and (2) all back-

end services that support or consume FeatureStore. Fig-

ure 15 shows the ratio of capacity for these two sets, which

varies due to different workload mixes across regions. Specif-

ically, regions A and B show a lower capacity ratio, be-

cause they are data-warehouse heavy and have a larger

FeatureStore footprint to support additional training work-

loads that are co-located with data warehouse but do not

go through Web to access FeatureStore. Before Flux was

applied to FeatureStore, capacity planners needed to ex-

plicitly take this into consideration, whereas Flux’s MIP for-

mulation is able to automatically account for this and other

factors affecting placement.

Recall from §3.3 that one optimization objective is to min-

imize deviation from the ratios in the globalized service

model. This deviation is partially reflected in Figure 15 as

the Web-to-FeatureStore capacity ratio’s variances across

regions. Before Flux was applied to FeatureStore, the vari-

ances across regions C, D, and E were partially due to sub-

optimal planning done by humans. Flux is able to reduce the

variances by lowering the ratio for region D and increasing

the ratio for region E, thus leading to better balance across

regions C, D, and E. The improvement was small as this was

the first time that Flux was applied to FeatureStore and was

configured to be more conservative in introducing changes.

Deviation from ideal service capacity ratios is also reflected

in the service’s unbalanced CPU utilization across regions.

Note that, if FeatureStore’s capacity increase in a region

is bigger than FeatureStore’s traffic increase in the region,

we expect FeatureStore to have a lower CPU utilization

Figure 14: FeatureStore traffic changes computed by

Flux. An example of how to read the figure: region A’s traffic

change is
new traffic for FeatureStore in region A
old traffic for FeatureStore in region A -1=-37%. Only

5 out of 10s of regions are shown for readability.

Figure 15: Ratio of capacity for Web and FeatureStore.

Only 5 out of 10s of regions are shown for readability.
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in the region after the change. This type of change can be

applied to lower the CPU utilization of more heavily loaded

regions, which is precisely what Flux did. For each region r,

we calculate the average CPU utilization ur of FeatureStore

during its daily peak time window. Then we calculate the

median of ur across 10s of regions, and call it û. Before

and after Flux was applied to FeatureStore, û was 55%

and 50%, respectively. This indicates that Flux is effective

in matching traffic distribution with capacity distribution to

balance load across regions.

Figure 16 shows ur for some sample regions. Overall, Flux

reduces the CPU utilization of more heavily loaded regions

such as regions A and D. In this instance, Flux was unable to

increase CPU utilization in C due to the other constraints and

objectives. This example shows that there are many factors to

be considered during optimization, which is better suited to a

MIP solver than humans.

7 Related Work

Capacity management. Capacity management impacts ser-

vice performance and reliability as well as an organization’s

capital and operating expenses. Two USENIX ;login: arti-

cles [27, 48] provide an overview of this topic. Misbah et al.

provide a survey of resource management in federated

cloud [33]. Several publications report capacity-management

practices for internet services such as LinkedIn [53, 56],

Uber [15], Google [34], and Netflix [36]. They focus on

forecasting demand and capacity headroom, and are comple-

mentary to our work focusing on global service placement.

Service tracing and modeling. Several systems [13,17,30,40,

46] insert unique request IDs into RPC calls to discover end-

to-end service dependency. Our work adopts this approach.

Some systems use statistical analysis [2] or heuristics [3, 38,

43] to infer service dependencies. Although these techniques

are easier to deploy, they have not been proven to be robust

enough to be used for internet-scale complex services. Both

analytical models [51] and profiling techniques [41] have

been applied to build performance models for three-tiered

applications, but our environment is much more complex (see

Figure 1). Endo et al. [20] call out the challenges of operating

Figure 16: CPU utilization of FeatureStore per region

before and after Flux is applied. Only 5 out of 10s of regions

are shown for readability.

a distributed cloud, including resource modeling, but do not

propose solutions.

Service placement. Yang et al. [54] propose joint service

placement and traffic routing in mobile cloud, without con-

sidering service interdependencies. Malet and Pietzuch [35]

propose placing services across datacenters to minimize net-

work latency without considering the constraints of capacity

supply and demand.

Constrained optimization. Constrained optimization has

been used for resource allocation in different scenarios, includ-

ing hardware-to-reservation assignment within a region [37],

data-shard-to-container placement [32], and job scheduling

within a cluster [19,23–26,42,44,49,50]. None of them tackle

the problem of global service placement.

Infrastructure orchestration. Cloud infrastructure orches-

trators like Terraform [28] and CloudFormation [7] coordi-

nate changes across multiple infrastructure systems in public

clouds. These could be used to implement the orchestration

component of Flux in a public cloud setting.

8 Conclusion

We identified the regionalization problem associated with

managing customer services on large, global cloud footprints.

We presented Flux, which solves regionalization by (1) us-

ing RPC tracing to build service regionalization models;

(2) jointly solving service and traffic placement, growth ca-

pacity distribution, and infrastructure objectives; and (3) in-

troducing a capacity orchestration system that safely and

automatically rebalances services and traffic according to the

computed plan. We shared our experience of using Flux at

Meta’s large private cloud and discussed ways in which the

ideas in Flux can be applied to public clouds.
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S Set of all services.

R Set of all regions.

H Set of all hardware types.

P Set of all products.

T Set of all timesteps.

t0 Baseline timestep, i.e., infrastructure’s current state.

t1 Target timestep, i.e., the timestep for which we are executing.

Inputs

mr,h,t Capacity pool: amount of type h hardware available in region

r at time t. It is generated by capacity forecast and includes

the current capacity and net incoming and outgoing supply.

φs,h,p,t Globalized service baseline: output of the service-modeling

process described in §3.2, indicating the fraction of service s’

consumption of type h hardware being attributed to product

p. We also scale the globalized service baseline by service

growth, derived from our capacity budget management system,

leading to varying values at different timesteps t.

γs,h,t The total growth capacity, indicating the global amount of type

h hardware allocated for service s at time t to support service

growth. It is derived from Meta’s budget management system,

and is used to to support product growth and launches.

τp,t The total traffic growth indicating the global increase in traffic

to product p at time t, represented as the percentage above

above 100% global baseline traffic.

en The penalty coefficient for objective n. Penalty coefficients

dictate how tradeoffs are compared.

Assignment variables

Variable
Baseline

Distr
ibution

Description

xp,r,t ξp,r Xt Traffic assignment, indicating the fraction of traffic

from Regionalization Entity e assigned to region r at

time t.

Xt := {xp,r,t : p ∈ P,r ∈ R}
Invariant: ∀p ∈ P ∑r∈R ξp,r = 1

cs,r,h,t κs,r,h Ct Capacity assignment, indicating the amount of type h

hardware allocated to service s in region r at time t.

Ct := {cs,r,h,t : s ∈ S,r ∈ R,h ∈ H}
gs,r,h,t - Gt Growth assignment, indicating the amount of addi-

tional type h hardware allocated to service s in region

r at time t for the purpose of growth.

Gt := {gs,r,h,t : s ∈ S,r ∈ R,h ∈ H}
dr,h,t - Dt Deficit assignment, indicating the amount of addi-

tional type h hardware needed in region r at time t.

Dt := {dr,h,t : r ∈ R,h ∈ H}
sr,h,t - St Spares, indicating the amount of unallocated hardware

of type h in region r at timestep t.

St := {sr,h,t : r ∈ R,h ∈ H}
or,h,t - Ot Double occupancy capacity. See explanation for Ex-

pression 14.

Ot := {or,h,t : r ∈ R,h ∈ H}
rs,r,h,t ρs,r,h - Model residual, the difference between the observed

baseline capacity distribution and the capacity distri-

bution implied by the globalized service baseline, φ,

distributed according to the baseline traffic distribu-

tion ξ.

ρs,r,h := κs,r,h −∑p∈P ξp,r ×φs,h,p,t0

Table 1: Notation used in the MIP formulation. Baseline

means the current state of the infrastructure.

A MIP Formulation in Flux

This appendix presents the MIP formulation used by Flux.

The core of the formulation is an assignment problem, rep-

resented by the assignment variables enumerated in Table 1.

Each variable shares a region (r) and timestep (t) dimension;

while capacity related assignments also include dimensions

for the service being assigned (s) and hardware type of the

assignment (t).
Next, we present the MIP problem formulation and explain

each expression. The MIP problem is to minimize:

e1 × ∑
p∈P,r∈R,t∈T

|xp,r,t − xe,r,t0 | (2)

+ e2 × ∑
t∈T,p∈P

max
r∈R

xp,r,t (3)

+ e3 × ∑
r∈R,h∈H,t∈T

dr,h,t (4)

+ e4 × ∑
r∈R,h∈H,t∈T

or,h,t (5)

+ e5 × ∑
p∈P,r∈R,h∈H,t∈T

|rp,r,h,t | (6)

+ e6 × ∑
r∈R

∣

∣

∣

∣

sr,h,t −
sr,h,t

∑r∈R sr,h,t

∣

∣

∣

∣

∀h ∈ H, t ∈ T (7)

Subject to:

cs,r,h,t0 = κs,r,h rs,r,h,t0 = ρs,r,h,t0

xp,r,t0 = ξe,r or,h,t0 = 0 (8)

cs,r,h,t ≥ ∑
p∈P

(xp,r,t ×φs,h,p,t)+ rs,r,h,t (9)

rs,r,h,t ≥ min{ρs,r,h,0} (10)

mr,h,t +dr,h,t = sr,h,t +∑
s∈S

cs,r,h,t +∑
s∈S

gs,r,h,t (11)

∀p ∈ P, t ∈ T ∑
r∈R

xp,r,t = 1+ τp,t (12)

gs,r,h,t =
γs,h,t ∗ cs,r,h,t

∑
r∈R

cs,r,h,t

(13)

or,h,t = ∑
s∈S

cs,r,h,t−1 − cs,r,h,t [cs,r,h,t < cs,r,h,t−1] (14)

sr,h,t +∑
s∈S

gs,r,h,t ≥ or,h,t (15)

Below, we explain the intuition behind the MIP expressions.

Stability objective. Expression 2 penalizes traffic shifts to

reduce churn in the infrastructure.

Disaster-readiness objective. Services have a disaster-

readiness buffer to cope with any single-region failure. Ex-

pression 3 minimizes this buffer, by minimizing the size of

the largest region.

Objective to minimize deficits. Expression 4 minimizes the

additional hardware needed. Technically, a feasible solution

requires that ∀r ∈ R,h ∈ H, t ∈ T dr,h,t = 0, and we use a

high penalty p4 to ensure that deficits are non-zero only if a

solution requires it.

Objective to minimize deviation from service model. Pre-

existing placement imbalance, attribution inaccuracies, or

traffic routing imbalances can cause baseline capacity as-

signments to deviate from the service model. Expression 6
minimizes deviation from the global service model defined

by the globalized service baseline. rp,r,h,t is the residual of

the service model, which is further discussed in §6.3.
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Objective to balance spare pool distribution Expression 7

encourages balancing unused capacity across regions to re-

duce hardware stranding. Sufficient unused capacity place-

ment can also act as a buffer for capacity estimation discrep-

ancies.

Baseline. Expression 8 establishes timestep t0 as the

baseline, i.e., the current state of the infrastructure.

Product attribution ratio constraint. Expression 9 ensures

that each service is allocated according to the ratio imputed

from the service model (see §3.2). The model residual rs,r,h,t

is used to offset the placement.

Residual-regression constraint. Expression 10 prevents

model residuals from regressing. Specifically, negative resid-

uals (i.e., underprovisioned services per the model) are pre-

vented from becoming more negative, while positive residuals

may not become negative. Together, objective 6 and this con-

straint cause Flux to better balance service utilization across

regions. Flux provides fine-grained controls (per service,

region, hardware type) that let the service owner tune how

aggressively Flux is allowed to rebalance a service. §6.5

provides a case study of this benefit.

Capacity-sufficiency constraint. Expression 11 ensures that

each region has sufficient capacity to support the capacity

assignment, as determined by expression 9. This also assigns

additional hardware as deficits, if required for feasibility. Un-

allocated capacity is assigned to the spare pool St .

Full-placement constraint. Expression 12 ensures that each

RE is fully placed.

Organic growth constraint. When τp,t ≥ 0 Expression 12

places additional traffic demand which Expression 9 then al-

locates the organic growth capacity to each service according

to its globalized service model. Organic growth is used to

model increased traffic where all dependent services much be

sized up proportionally.

Inorganic growth constraint. Expression 13 distributes the

growth capacity proportionally to a service’s placed capac-

ity. Inorganic growth is used to distribute growth capacity

to an individual service such that dependent services don’t

necessarily need to be resized, such as product launches.

Double-occupancy constraint. We execute the capacity up-

sizes before capacity downsizes (see §3.4) and cannot count

on future released capacity to fund an ongoing upsize oper-

ation. Expression 14 defines the amount of capacity needed

during an upsize operation, whereas Expression 15 ensures

a valid intermediate state by enforcing sufficient capacity is

available to prevent an upsize from using still occupied ca-

pacity. Growth is given out as a final step of execution, and

can be used during the upsize stage. Expression 5 minimizes

double occupancy.

MIP Solver Scalability. Flux uses the MIP solver well

within its scalability limit. Our latest service placement run

generated a problem with 24K assignment variables and 36K

constraints. Solving the problem took only 5 seconds.
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