Optimizing Dynamic Neural Networks with Brainstorm

Weihao Cui, Shanghai Jiao Tong University; Zhenhua Han, Microsoft Research Asia; Lingji Ouyang, University of Science and Technology of China; Yichuan Wang, Shanghai Jiao Tong University; Ningxin Zheng, Lingxiao Ma, Yuqing Yang, Fan Yang, Jilong Xue, Lili Qiu, and Lidong Zhou, Microsoft Research Asia; Quan Chen, Shanghai Jiao Tong University; Haisheng Tan, University of Science and Technology of China; Minyi Guo, Shanghai Jiao Tong University

https://www.usenix.org/conference/osdi23/presentation/cui
Optimizing Dynamic Neural Networks with Brainstorm

Weihao Cui1, Zhenhua Han2, Lingji Ouyang3,*, Yichuan Wang1, Ningxin Zheng2, Lingxiao Ma2
Yuqing Yang2, Fan Yang2, Jilong Xue2, Lili Qiu2, Lidong Zhou2, Quan Chen1, Haisheng Tan3, Minyi Guo1
1Shanghai Jiao Tong University, 2Microsoft Research Asia, 3University of Science and Technology of China

Abstract
Dynamic neural networks (NNs), which can adapt sparsely activated sub-networks to inputs during inference, have shown significant advantages over static ones in terms of accuracy, computational efficiency, and adaptiveness. However, existing deep learning frameworks and compilers mainly focus on optimizing static NNs with deterministic execution, missing optimization opportunities brought by non-uniform distribution of activation in dynamic NNs. The key to optimizing dynamic NNs is the traceability of how data are dynamically dispatched to different paths at inference. Such dynamism often happens at sub-tensor level (e.g., conditional dispatching tokens of a tensor), thus hard for existing tensor-centric frameworks to trace due to misaligned expression granularity.

In this paper, we present Brainstorm, a deep learning framework for optimizing dynamic NNs, which bridges the gap by unifying how dynamism should be expressed. Brainstorm proposes (1) \textit{Cell}, the key data abstraction that lets model developers express the data granularity where dynamism exists, and (2) \textit{Router}, a unified interface to let model developers express how Cells should be dynamically dispatched. Brainstorm handles efficient execution of routing actions. This design allows Brainstorm to collect profiles of fine-grained dataflow at the correct granularity. The traceability further opens up a new space of dynamic optimization for dynamic NNs to specialize their execution to the runtime dynamism distribution. Extensive evaluations show Brainstorm brings up to 11.7× speedup (3.29× on average) or leads to 42% less memory consumption for popular dynamic neural networks with the proposed dynamic optimizations.

1 Introduction
As deep neural network models become large and complex, it is more and more challenging to sustain the growth of model size due to the increased computing requirement. The key limitation is the static activation of a whole network regardless of inputs, which is much less efficient than a human brain that can dynamically and sparsely activate neurons related to perceived information. Therefore, there have been numerous efforts by machine learning researchers to design dynamic neural networks that can feed inputs into different sub-neural structures or parameters of a large model during inference. Dynamic neural networks have shown favorable properties including efficiency [1–8], adaptiveness [1, 9, 10], generality [1, 9, 11, 12], and interpretability [9, 13]. For example, by designing a large number of expert sub-networks but only conditionally activating a small subset of them, Mixture-of-Expert (MoE) has helped to scale Transformer to trillions of parameters and achieve superior performance [14, 15].

Unfortunately, existing deep learning (DL) frameworks are not yet effective for running dynamic neural networks. Their optimization mainly focuses on static neural networks, whose operator execution order is deterministic for all inputs. It has been widely studied in compilers for general programs (e.g., Java, C#) to leverage runtime characteristics of programs to dynamically optimize their execution [16, 17]. By analyzing runtime profiles of dynamism, we find many dynamic NNs have similar opportunities due to their non-uniform distribution of branch activation or token dispatching, which can be further utilized for dynamic optimization.

However, existing tensor-centric programming models cannot support dynamic optimization well. The major challenge is the misaligned expression granularity, i.e., tensor-centric compilers can only trace how data flows at the tensor level in a static dataflow graph (DFG), but dynamism often happens at the sub-tensor level in dynamic NNs. For example, Mixture-of-Experts (MoE) networks use hidden dimensions within input tensors to represent the concept of “tokens”, which are dynamically reordered to activate parallel expert sub-networks with different tokens. It is critical for dynamic optimizations to collect profiles of dynamism, which is hard for existing compilers because they have no knowledge about what “tokens” are and how they are dynamically dispatched.

In this paper, we present Brainstorm, the first framework to

*This work is done while Weihao Cui and Lingji Ouyang are interns in Microsoft Research
We optimize the execution of dynamic NNs. Brainstorm unifies the expression of dynamic NNs to make their dynamism easy to trace. At the core of Brainstorm is a new data abstraction called Cell that lets model developers describe the granularity of dynamism, e.g., a token inside a tensor. To make Cell-level dataflow traceable, Brainstorm unifies the Router interface to let model developers express how Cells should be dynamically dispatched among multiple branches. Brainstorm can collect the runtime profiles of Routers with negligible overhead. Inspired by profile-guided optimization of programming languages [16–20], Brainstorm proposes four dynamic optimizations with statistical analysis of Cell-level dataflow: (1) by analyzing the number of Cells routed to branches, horizontally fuses multiple branches with GPU kernels optimized for frequent Cell loads; (2) with cross-layer Cell-level analysis, optimizes distributed placement of parallel branches to minimize inter-GPU communication; (3) with branch activation profiles, speculatively launches branch operators to hide routing overhead; and (4) speculatively preloads branch weights to save GPU memory.

We implement Brainstorm based on PyTorch by extending it with Cell and Router. We have implemented 6 state-of-the-art dynamic NNs using Brainstorm’s APIs, which are extensively evaluated on Nvidia GPUs. With the proposed dynamic optimizations, our evaluation shows Brainstorm achieves up to 11.7× speedup (3.29× on average) or reduces memory consumption by 42%, compared with state-of-the-art solutions. We open-source Brainstorm to encourage more optimizations for dynamic NNs1. The key contributions are as follows.

- We identify a new space of optimization for dynamic NNs by leveraging the statistical profiles of dynamism to specialize model execution to runtime dynamism distribution.
- We identify the major challenge of optimizing dynamic NNs in existing DL frameworks is the misaligned granularity between the tensor-level programming and the fine-grained dataflow required to trace.

1Code available at https://github.com/Raphael-Hao/brainstorm

2 Background and Motivation

Dynamic Neural Networks. To mimic how the human brain works, the machine learning community actively works on how dynamic NNs should be designed. Various types of dynamism have been proposed to adapt the model structures and parameters to different inputs. Figure 1 illustrates representative patterns of dynamic NNs. The most common way of building a dynamic NN is to adaptively dispatch (parts of) inputs to different sub-networks with a routing mechanism. A common functionality, referred to as a router in this work, predicts which sub-network the input values should go through. Many routing policies have been proposed for different tasks, e.g., top-k router [3]. Sub-networks in different branches could have different weights, architectures, or the number of parameters to better fit the routed inputs. For example, MoE networks train parallel experts and dispatch input tokens into different expert sub-networks, each of which is expected to specialize in certain input categories [14, 15, 21, 22]. ClassSR [10] routes image patches to heterogeneous branches based on super-resolution difficulty. Skip-Conv [23] routes new pixels to computation and skips duplicated pixels of previous frames. Model developers often use a tensor to store multiple tokens/patches/pixels, and program sub-tensor dynamism using data movement operators like einsum [24].

Dynamic optimization opportunities. It has been widely studied in programming languages [25, 26] to leverage statistical profiles of program dynamism for just-in-time (JIT) optimization, e.g., HotSpot JVM speculatively trims paths never executed in collected runs [16]. However, optimizations in existing DL frameworks mainly focus on static NNs. They miss a lot of dynamic optimization opportunities brought by neural network dynamism.

Figure 2 illustrates routing distribution of four dynamic NNs. Figure 2a and Figure 2b are two dynamic NNs dispatching tokens and patches to different branches, respectively. We observe their distribution of tokens/patches is imbalanced: some branches receive non-negligibly more data than others. They have opportunities to tune efficient GPU kernels to
fit their shapes to load distribution, which could potentially bring over $10 \times$ speedup. Also, these parallel branches can be horizontally fused for concurrent execution (§4.1).

We also identify optimization opportunities by analyzing statistics of multi-layer correlation. Figure 2c illustrates the multi-layer correlation of TaskMoE [27], which is the portion of tokens from an expert at Layer-0 routed to another expert at Layer-1. We find the branch activation of two consecutive layers is correlated, e.g., it has a high probability that Expert-14/15 of Layer-1 will be activated after Expert-0 of Layer-0. Up to 87% of inter-GPU communication can be saved by co-locating correlated experts on the same GPU (§4.2).

Figure 2d shows branch activation of selected routers from DynamicRouting [28], which has 186 routers trained to forward images to one or two branches among three branches. Our measurement shows it spent over 44% time on routing. However, many routers have a biased distribution that tends to activate the same branch at different runs. E.g., Router-3 has a high probability of choosing Branch-1 and Branch-2. They create an opportunity for speculative execution, e.g., skipping routing computation to reduce routing overhead (§4.3), or opportunistically preload weight to GPU memory (§4.4).

Moreover, we find many dynamic NNs can be optimized by multiple dynamic optimizations simultaneously. The key requirement of these optimizations is the ability to collect statistical profiles at the granularity where dynamism happens, which is not explored by existing DL frameworks.

Misaligned programming model. The misaligned programming model is the major obstacle to tracing dynamism profiles in existing frameworks. As shown in Figure 1, language tasks typically route at the granularity of tokens from input sentences; vision tasks route patches from input images; video models partially reuse previous pixels depending on inter-frame similarity. All the dynamism happens inside the tensor of sentences, images, or frames. Existing frameworks optimize models with a static dataflow graph, which expresses only the relation of tensors and operators. They have no ability to collect necessary profiles at runtime. Without explicit specification by model developers, they cannot understand what tokens are and how they are dynamically dispatched, let alone trace the complex token-level dataflow as Figure 2c requires. Moreover, tensor-level programming can only be applied with operator-level optimization (e.g., operator fusion) without the ability to optimize more fine-grained data movement or computation. These challenges motivate Brainstorm to propose a principled design to let model developers expose the information that needs to be traced and leverage the collected profiles for dynamic optimizations.

3 Cell and Router as the Core Abstraction

For model developers to express dynamic NNs in a traceable manner, Brainstorm unifies the model expression with **Cell** and **Router** to build dynamism at the correct granularity.

Cell. To let model developers define the data granularity where dynamism happens, Brainstorm augments a traditional tensor with a data abstraction called **Cell**. The **Cell** is the basic unit to be dynamically dispatched among multiple branches. Model developers can annotate any tensor using the `brt.annotate_cell` API to specify the granularity of **Cells** in a tensor (brt is the package name of Brainstorm).

```
    brt.annotate_cell(tensor, dims, shape)
```

Model developers need to specify the values in which dimensions (dims) and which shape (granularity) to route. Figure 3 shows three examples that route values in **Cells** at the granularity of token, patch, and pixel, respectively. The first example routes a tensor with three tokens located at the 0-th dimension (dims=(0)), each represented by a vector of 768 float values (shape=(1,768)). The second and third examples route 32x32 patches (shape=(32,32)) and 1x1 pixels (shape=(1,1)) in a 2D image tensor (dims=(0,1)).

Router. To dynamically dispatch **Cells**, Brainstorm introduces a unified **Router API** that supports customized rules via `router_fn` to decide the dynamic placement of **Cells** among multiple branches. The API definition of **Router** and `router_fn` are elaborated as follows2:

```python
    class Router:
        def __init__(router_fn : Func) :
        def forward(x : Tensor, kwargs) : Tuple[Tensor], Routes
        def router_fn(x : Tensor, kwargs) : Routes
```

When initializing a **Router**, the `router_fn` should be specified to define the routing rule, i.e., how **Cells** should be routed among multiple branches. The `router_fn` takes the tensor

2We only show routing **Cells** of a single tensor. Multi-tensor routing has similar APIs, which are omitted due to the limited space.
Figure 3: Examples of routing Cells at token-level, patch-level, and pixel-level. router_fn generates routing decisions indicating branch IDs should Cells be routed to (-1 for dropping), collected by the JIT profiler for dynamic optimization.

annotated with Cells as inputs and generates a special tensor Routes, whose value indicates which branch should Cell go. The shape of Routes has the same layout as Cells of the source tensor to route. E.g., the second example in Figure 3 has 6 × 4 patches, thus router_fn should also generate 6 × 4 Routes. Auxiliary inputs can be set in kwargs when making routing decisions. In the forward process of a model, Router feeds the input tensor to router_fn to get routing decisions for Cells, then dispatch Cells to corresponding branches. It is easy to port existing code of dynamic NNs to Brainstorm, e.g., we modify only 12 lines of code to port the official PyTorch implementation of SwitchTransformer [14] to Brainstorm.

Brainstorm’s Router abstraction decouples control-flow of deciding how Cell should be dynamically dispatched from its execution. Depending on runtime profiles, the optimal execution strategy varies greatly. Brainstorm eases model developers from challenging execution optimizations. They only need to focus on designing routing logic and leave execution optimizations to Brainstorm. The Routes given by router_fn are collected by JIT Profiler to get statistical profiles. Brainstorm’s dynamic optimizations analyze these statistics to find the most efficient execution strategy (§4).

Behind Router are a series of efficient GPU operations to realize the routing actions specified by router_fn. When branches receiving Cells are located on the same GPU, Brainstorm uses an efficient data rearrangement GPU kernel to generate multiple tensors containing Cells routed to each branch. Unlike existing solutions that heavily use computation operators (e.g., einsum) for fine-grained dynamic data rearrangement, Brainstorm uses a GPU kernel to directly move data to avoid unnecessary computation. When Cells are distributed to multiple GPUs, Brainstorm has a sparse communication primitive to efficiently scatter and gather Cells. Compared with the commonly used all-to-all primitive in existing DL frameworks [22, 29], Brainstorm’s sparse communication is more efficient when Cells are routed unevenly to multiple GPUs because it avoids unnecessary communication due to padding (refer to §6 for implementation details).

Comparison to IR with control-flow. Different from intermediate representations (IR) of existing DL frameworks that mix control-flow and dataflow together, Brainstorm chooses a decoupled design with Router. Brainstorm’s dataflow graph hides complex control-flow of Router behind router_fn. A Router can be regarded as a data distribution operator dynamically dispatching Cells of tensors to multiple branches. This greatly eases the tracing and analysis of Cell-level dataflow because compilers no longer need to separate dynamism-related operators from dataflow graphs, which is hard for DL frameworks [30–32]. Actually, instead of knowing how routing logic is constructed, it is more useful for compilers to know statistical information about routing decisions, which is sufficient to be captured by Brainstorm’s Router.

Moreover, Brainstorm further enhances control-flow operators in existing IR with Cell-level routing ability. Brainstorm’s Router itself can be regarded as a switch-case operator to route Cells to different branches for conditionally applying different functions. Together with a while-loop operator, a dynamic NN can route some Cells back to loop entry for the next iterations, and drop others to the output, which is commonly used by auto-regressive decoding of language tasks.

4 Dynamic Optimizations

Brainstorm analyzes the collected program execution profiles to improve runtime performance. Different from traditional dynamic optimization that analyzes the invocation of program functions or code blocks, the key for optimizing dynamic NNs is to profile and analyze Cell-level dataflow to specialize model execution to runtime dynamism distribution. In this section, we introduce four dynamic optimizations we identified for dynamic NNs. More optimizations are possible with Brainstorm’s Cell and Router abstraction. Table 1 lists the required information to conduct each dynamic optimization.

4.1 Dynamic Horizontal Fusion

Horizontal fusion is a compiler optimization to fuse concurrent branches of a model into a fused operator to improve
GPU Compute Unit (CU) utilization and reduce launching overhead. Existing approaches [33, 34] cannot be applied to dynamic NNs, because they assume a static dataflow graph whose branches are all activated with the same input. Brainstorm introduces a dynamic horizontal fusion optimization that supports dynamically and sparsely activated branches so that they can be executed on GPU simultaneously.

Especially, as we have shown in Figure 2, the Cell distribution can be very imbalanced for dynamic NNs. Even for large batch size, it can still accelerate the model execution by dynamical horizontal fusion of branches receiving a few numbers of Cells. Brainstorm leverages the profiles collected from Router to extract the statistical loads of each branch, i.e., how many Cells are routed to each branch. Brainstorm finds multiple percentiles (e.g., 50%, 90%, 100%) of the Cell load distribution, and tunes GPU kernels for these shapes. All tuned kernels are fused into one operator. At inference, Brainstorm pads the input of each branch to the nearest tuned kernel. This requires the traceability of the dynamic Cell-level dataflow at runtime that we explain how Brainstorm achieves it in §5.2. Note that the dynamically fused GPU kernel only uses the weights of activated branches without needing to load the weights of all branches into the GPU memory.

Figure 4 shows an example of routing 112 Cells among four parallel branches. Only three of the branches (only known at runtime) are activated. Before horizontal fusion, the three activated branches have to be executed sequentially, which may not saturate the GPU CU utilization. After fusing all branches into one GPU kernel, GPU can execute the activated branches simultaneously at a higher CU utilization. Each branch is executed with the tuned kernel of the least padding for the most efficient execution. For example, the fused kernel contains two tuned kernels of Conv 3x3 for 32 Cells and 64 Cells, which is used by the first two Conv 3x3 branches in the network by padding 4 and 2 Cells, respectively.

4.2 Profile-Guided Model Placement

The cerebral cortex of human brain is organized into distinct areas, whose neurons of a function are located closely [35]. By analyzing statistical routing decisions, we observe similar effects in artificially designed dynamic NNs. As shown in Figure 2c, experts from two layers are activated together with a high probability. The Cell-level communication between these highly-correlated experts is higher than the others. Figure 5 illustrates an example that, by analyzing the multi-layer correlation, Brainstorm can co-locate correlated sub-networks on the same GPU to reduce inter-GPU communication. Note that, in addition to dynamic Cell-level dataflow collected at runtime, the multi-layer correlation also needs to analyze static Cell-level dataflow to infer correct placement constraints. Our analysis in §5.1 shows each Cell of a sentence tensor depends on all Cells from the previous MoE layer. This implies a placement constraint that all Cells of a sentence should be gathered at the same GPU so that its self-attention operator can generate correct outputs. This presents a challenge requiring both dynamic and static Cell-level dataflow analysis to understand the inter-GPU communication of Cells. We explain Brainstorm’s static Cell-level dataflow analysis in §5.1.

In addition to cross-layer analysis, we find single-layer Cell distribution like Figure 2a can also help model placement. Some branches could take more Cells than others. Heavy branches can be co-located with light branches to balance the overall communication to avoid stalling on some GPUs.

4.3 Speculative Routing

Model developers often build routing logic involving control flows, which may require CPU processing and incur CPU-GPU synchronization overhead. Compared to their theoretical performance (based on FLOPs), routing overhead may dominate the inference latency. Our measurement shows MSDNet [1] and DynamicRouting [28] spend 65% and 44% time in routing. We find these model often has a biased probability when selecting branches at inference. Our analy-
sis of Brainstorm’s Router profiles shows many Routers are highly predictable. Brainstorm can predict the decisions of DynamicRouting [28] with an accuracy over 90% by just choosing the most frequently appeared branches (§7.4.6). As Figure 6 shows, Brainstorm can predict the routing decisions of Routers in advance (based on statistical profiles) and skip router_fn to hide the routing overhead. To guarantee the correctness, Brainstorm uses a parallel thread to check the result of router_fn. When misprediction happens, the model execution will be unrolled to re-execute the correct branch with negligible misprediction overhead (§7.3).

4.4 Speculative Weight Preloading

To run inference of a large model on a limited size of GPU memory, it often requires swapping weights of layers between GPU memory and host memory to reduce the GPU memory requirement [36]. To hide the memory migration latency, existing solutions need to know the execution order of layers to preload necessary weights while executing previous layers in a pipelined manner [37, 38]. However, dynamic NNs do not have a static order of layer execution. The execution of dynamically activated branches is only known when the routing decisions are made. This makes it hard for existing solutions to preload weights of dynamic layers. As shown in Figure 7, similar to speculative routing, Brainstorm leverages the statistical profiles of branch activation distribution to speculatively preload weights of branches that can be activated with a high probability. It falls back to on-demand loading with negligible overhead (§7.3) when the predictive preloading misses.

5 Tracing Cell-level Dataflow

To realize optimizations in §4, it is important to understand how Cells are transmitted along a network so that the compiler can leverage the Cell-level dataflow to optimize model execution. In dynamic NNs, there are two types of Cell-level dataflow: (1) static dataflow existing in most static operators (e.g., Conv2D), which is fixed for all inputs; and (2) dynamic dataflow, which is determined by Routers at runtime. The former is to understand Cell’s relationship across static layers; the latter is to identify the Cell routing among branches.

5.1 Static Cell-level Dataflow

Tensor-centric dataflow graphs only preserve relations between tensors without the information of Cells. To trace all possible Cell-level dataflow of static operators, Brainstorm uses symbolic execution at Cell-level to extract finer-grained relations in ahead-of-time compiling. With the annotated Cells of a tensor, Brainstorm initializes a symbolic version of the tensor, whose Cells are symbols. Tensor values belonging to one Cell share the same symbol. Brainstorm leverages the tensor expression of operators (widely used in DL compilers [39]) to build computation logic of operators. By checking the results of symbolic computation, Brainstorm understands how Cells are transmitted in static operators.

Figure 8a illustrates three examples of matrix multiplication between a tensor of multiple Cells and a constant matrix. The tensor has two Cells annotated as A and B. The first preserves Cell positions; the second reorders Cells; the third mixes all Cells in the output. This example shows the static Cell-level dataflow could vary when the tensor values are different. It is hard for tensor-level dataflow analysis to obtain this finer-grained relation. Figure 8b demonstrates the static Cell-level dataflow of the self-attention operator between two MoE layers. Because there is a matrix multiplication between two tensors in the self-attention operator and both tensors contain Cells of X, this self-attention operator mixes all Cells from input X to generate the output Y. With symbolic execution of Cells, we can derive the relations between the Cells in X and Y, i.e., every Cell in Y is derived from all Cells in X.

The static Cell-level dataflow analysis is necessary to derive cross-layer relations of Cells, which is important in data movement-related optimization. It allows Brainstorm to explore data movement at the Cell-level, breaking the limitation of tensor-level data movement when optimizing multi-GPU execution. For example, if Cells are only reordered without mixing (e.g., the first two types in Figure 8a), the framework has more freedom to dispatch Cells among multiple GPUs based on their data locality for better performance. For MoE-based models, because the tokens are mixed up in the self-attention layer, it introduces a constraint that requires aggregating all tokens of a sentence to the same GPU before self-attention to derive the output. As we have shown in §4.2, this requirement creates constraints of how Cells should be
dynamically placed in optimization, which is only known after the static Cell-level dataflow is analyzed.

5.2 Dynamic Cell-level Dataflow

In Brainstorm, model developers express dynamism using Router. The routing logic is defined in router_fn, which generates routing decisions of Cells at runtime. Brainstorm’s Router abstraction makes it easy to trace the necessary information. Similar to dynamic optimization of traditional programming languages, Brainstorm focuses on collecting statistical profiles of routing decisions without caring about how they are generated.

If Cell-level profiling is enabled, when each time a Router is called, Brainstorm records its routing decision into a buffer. Brainstorm has a separate thread to stream the buffer to a profile file. Brainstorm supports multi-level profiling. Some optimizations only require local statistical profile of Router (e.g., branch load of Cells). Some optimizations require Cell-level dataflow across multiple layers, thus needing to dump raw decisions directly. As control signals, routing decisions are much smaller than other data tensors in dynamic NNs. Our evaluation in §7.3 shows the profiling overhead is negligible.

6 Implementation

We implement Brainstorm on Pytorch with 13,000 LOC: 3,000 lines for Brainstorm core abstraction, 3,000 lines for dynamic optimizations, 3,000 lines of C++ code for kernel scheduling and sparse Cell communication, and 1,500 lines for auto-derivation to support dynamic optimizations.

Figure 9 summarizes Brainstorm’s architecture. In addition to widely-used Tensor and Operator in existing frameworks, Brainstorm introduces Cell and Router to express dynamic NNs in a unified abstraction (§3). The programmed dynamic NNs will be optimized by the compiler with both static and dynamic optimizations (§4). Brainstorm’s dynamic optimization needs both static and dynamic Cell-level dataflow analysis (§5). Brainstorm first infers the static Cell-level dataflow in static operators (§5.1) in an ahead-of-time manner. When executing the compiled model, a JIT profiler collects Router profiles for further dynamic dataflow analysis (§5.2).

Efficient Cell routing. Brainstorm is responsible for dynamic Cell dispatching that is aware of dynamic optimization applied, leaving model developers to focus on designing the routing algorithm. For Cell routing on a single GPU, we use a custom GPU kernel to rearrange Cells inside a tensor according to the routing decisions. We borrow the idea from Tutel [22] for MoE models by rearranging Cells for all branches in parallel with a custom GPU kernel. But our implementation is general to all dynamic NNs in addition to MoE models. Moreover, our implementation is aware of the dynamic optimization applied. For instance, a dynamic horizontal fused operator may contain GPU kernels of varied sizes, thus requiring variable padding. For Cell routing across multiple GPUs, we provide a more flexible sparse communication primitive. As shown in the left of Figure 10, model developers often combine dense all-to-all primitive and permutation operations for distributed Cell routing. Its efficiency is restricted to balanced routing. With Brainstorm’s sparse communication, it only transmits Cells without extra padding. The underlying implementation of sparse communication is a collection of point-to-point communication. However, it can adapt to the dynamic optimization’s requirements and provide the most efficient communication mechanism.

Excessive Candidates for Kernel Fusion. Brainstorm fuses multiple branches into one kernel function, each comprising several potential candidates. At runtime, Brainstorm triggers suitable candidates based on the dispatched Cells. However, excessive kernel candidates derived from profiling analysis can lead to considerable time overhead when searching for them using auto-tuning tools [39]. To avoid issues in this case, Brainstorm only fuses a limited set of candidates of each branch. Meanwhile, kernel candidates are shared between branches if the fused branches are homogeneous (the same operator only with different weights). For instance, since SwitchTransformer uses the same feed-forward layer for its experts, Brainstorm only needs six candidate kernels to optimize the execution of 256 experts per layer (§7.4.1).

Optimization Passes. Most automatic transformations in Brainstorm are implemented with torch.fx. With the dataflow graph traced by torch.fx, Brainstorm uses the statistical profiles collected from Routers to manipulate the dataflow graph for optimization. E.g., in dynamic horizon-
We evaluate the performance of Brainstorm (BRT) on six representative dynamic NNs. We compare Brainstorm with various approaches to execute and optimize dynamic NNs, including PyTorch-native static optimizations and model-specific optimizations (e.g., Tutel for MoE). Overall, Brainstorm achieves up to 11.7 × speedup (3.29 × on average) or reduces GPU memory usage by 42%.

7.2 Effectiveness of Brainstorm Abstraction

Expressiveness of Brainstorm. Brainstorm’s abstraction can express various dynamic neural networks in a simple and concise manner. Table 3 shows the lines of code for porting the six dynamic neural network models to Brainstorm. Brainstorm unifies the API of expressing routing logic through *Router* and *Cell*. This only adds a marginal extra coding effort to porting existing models and building new dynamic models. Brainstorm eases the programming by providing common

<table>
<thead>
<tr>
<th>Model</th>
<th>Switch</th>
<th>TaskMoE</th>
<th>SwinV2-MoE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC</td>
<td>12</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>Model</td>
<td>LiveSR</td>
<td>DRouting</td>
<td>MSDNet</td>
</tr>
<tr>
<td>LOC</td>
<td>6</td>
<td>18</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 3: Lines of code for porting the model to Brainstorm.
Figure 11: Latency of Brainstorm with or without profiling.

Figure 12: Performance comparison of sparse all-to-all between PyTorch and Brainstorm.

router_fns (e.g., Top-K) and allows model developers to construct more complex ones atop them.

Overhead of Tracing Dynamic Cell-level Dataflow. This micro-benchmark presents the overhead of tracing dynamic Cell-level dataflow. Figure 11 shows the latency variation when tracing is on and off. The latencies of all models are almost equal before and after tracing is enabled. The average overhead is less than 1.0% for all models.

When routing actions are calculated at GPU, major overhead comes from GPU kernels for statistics. The synchronization overhead is negligible because Brainstorm dumps profiles to the CPU periodically and asynchronously.

Effectiveness of Cell Routing. Brainstorm’s Router decouples routing logic from execution. Brainstorm has efficient implementations to conduct dynamic data movement for sparse communication. Figure 12 demonstrates two micro-benchmarks for sparse communication, which is a multi-gpu experiment. We randomly generate 1024 Cells routed from one GPU to multiple GPUs. Figure 12a measures the latency of PyTorch’s all-to-all collective (nccl [45] as backend) and Brainstorm’s sparse communication with varied numbers of branches and GPUs. Each Cell has 512 Float32 values (same as TransformerBase [46]). Brainstorm achieves 1.88× to 2.78× speedup from 2 to 8 GPUs. Figure 12b shows Brainstorm’s speedup with a varied Cell size from 32 to 2048 Float32 values, with 4 branches on each GPU. Brainstorm achieves 2.13× to 2.66× speedup on 2 to 8 GPUs. Overall, Brainstorm performs better than PyTorch in all experiments. The root cause is the extra communication for padding using PyTorch’s all-to-all communication, which is avoided by Brainstorm’s sparse communication.

7.3 Micro Benchmarks

Dynamic Horizontal Fusion. In the micro-benchmark of Brainstorm’s dynamic horizontal fusion, we build a simple multi-branch network, each of which contains a Conv2D operator. A Router dispatches 32x32 image patches to different branches based on image content. Brainstorm tunes kernels from 4 patches to 9 patches based on the collected Router profiles. It is conducted on the single-GPU server.

Figure 13 presents the latencies of PyTorch’s serial execution (Torch), Brainstorm’s serial execution but with tuned kernels (BRT+VF), and Brainstorm’s dynamic horizontal fusion (BRT+HF).

Vertical fusion (VF) is the commonly used fusion of consecutive operators to reduce kernel launching overhead [39, 47]. Compared to Torch, BRT+HF achieves up to 41.8× speedup. The improvement comes from two sources: the improved CU utilization with concurrent execution of multiple branches, and efficient kernels tuned for frequently appeared Cell loads. By comparing BRT+VF and Torch, we identify the statistically tuned GPU kernels that bring 13.1× speedup. The concurrent execution of multiple branches further brings 3.18× speedup (BRT+HF/BRT+VF). Since dynamic horizontal fusion has an overhead of extra GPU kernels to calculate input pointer addresses, we find BRT+HF performs slightly worse than BRT+VF (12.3μs on average) when the number of branches is small.

Profile-Guided Placement. In §4.2, we show that profile-guided model placement can save inter-GPU communication for dynamic NNs. In this micro-benchmark, we compare the communication latency of default placement in PyTorch with Brainstorm’s optimized placement. We conduct this experiment on the multi-GPU server. We replace PyTorch’s communication with Brainstorm’s sparse communication to isolate the improvement from efficient sparse communication. In the default placement, each GPU-i routes 1024 tokens to each branch on GPU-(i+1) and 10 tokens per each other branch. In the optimized placement, Brainstorm can route 1024 tokens to the same GPU without inter-GPU communication. In Figure 14a, the Cell size is fixed to 512 Float32 values for evaluation with variable branches. Brainstorm achieves 2.45× to 6.23× speedup on 2 to 8 GPUs. In Figure 14b, the number
when prediction hits, Brainstorm achieves a consistent latency when prediction hits, and similar latency with the default execution when prediction misses.

7.4 End-to-end Model Execution

7.4.1 SwitchTransformer

In SwitchTransformer, each expert has a capacity of 64 tokens for each sentence. By analyzing Router profiles, we find an imbalanced distribution of the number of tokens routed to each expert (shown in Figure 2a). This motivates us to apply dynamic horizontal fusion to execute experts in parallel with GPU kernels tuned for different loads. We use the official weights trained by Google with 8 to 256 experts per MoE layer. The batch size is 8, and each sentence has 128 tokens. The experiment is conducted on the single-GPU server.

Figure 16 shows latencies of SwitchTransformer with official implementation in PyTorch (Torch), replacing MoE layers with an optimized implementation from Tutel (Tutel), and Brainstorm with dynamic horizontal fusion. The official implementation executes experts in serial. Tutel runs experts concurrently with BatchMatmul, which requires padding to the same number of tokens for all experts. Brainstorm outperforms by 3.63×, and 3.33× compared to Torch, and Tutel, respectively. The speedup increases with more experts in each MoE layer. In addition to improved utilization of concurrently executed experts, Brainstorm also benefits from imbalanced token distribution. Because many experts only receive a few tokens, Tutel pads many dummy tokens in all paths, leading to vast wasted computation on padding. The excessive padding also uses more GPU memory leading to out-of-memory in Tutel when there are 256 experts. By analyzing loads of different branches, Brainstorm compiles multiple GPU kernels to minimize the padding.

7.4.2 LiveSR

LiveSR is our internal model for super-resolution, which slices a single image into 32x32 patches and routes them to different branches. It uses a ResNet-18 model to extract patterns, which are then routed by K-nearest neighbor (kNN) to multiple branches. By collecting the routing distribution of patches,
we find a distribution in the number of patches routed to each branch (as shown in Figure 2b). This creates the opportunity for Brainstorm to tune GPU kernels for frequently Cell loads. Also, since different patches of an image are routed to different branches, Brainstorm can horizontally fuse these branches to concurrently execute them to improve CU utilization.

Figure 17 shows latencies of LiveSR with different optimizations, while being executed on the single-GPU server. BRT+HF applies dynamic horizontal fusion of both multiple branches and multiple tuned kernels of different loads. To dissect the improvement of both types of fusion, we evaluate BRT-VF that only fuses Conv2D, BatchNorm, and ReLU operators in each branch but with statistically tuned GPU kernels. In Figure 17, we vary both the number of branches with a fixed number (8) of channels and the number of convolution channels with a fixed number (10) of branches.

Overall, BRT+HF achieves up to 8.62× speedup compared to BRT. BRT+VF brings a speedup up to 3.5× compared with BRT. BRT+HF further brings 1.79× to 2.48× gains over BRT+VF with an increasing number of branches because of the improved CU utilization with more branches. When increasing the number of channels, we find the latency of Brainstorm BRT+HF remains the same until it reaches 20 channels as it goes beyond the upper bound of GPU CUs.

7.4.3 TaskMoE

TaskMoE routes input tensors at the granularity of the sentence. Each MoE layer has 16 experts. Each sentence is routed to 2 experts. The key difference of TaskMoE is its routing algorithm: it decides expert of a sentence based on task type. Sentences of the same task will be routed to the same expert branches. Therefore, as we have shown in Figure 2c, TaskMoE has a strong inter-layer expert correlation that experts of the same task are activated together with a high probability, which brings the opportunity for profile-guided placement.

Brainstorm optimizes placement by reordering experts of MoE layers for the most efficient communication. Brainstorm’s Routers are aware of reordering and dispatch sentences to correct GPUs in the optimized placement. We conduct this experiment with three input settings: 256 sentences on each GPU with 32/64 tokens in each sequence; 512 sequences on each GPU with 32 tokens in each sequence. The task ID of each sequence is randomly generated. Since routing of TaskMoE only works on task ID, the synthetic dataset does not affect the optimal placement and evaluation conclusion.

Figure 18 shows the per-GPU throughput on 2-8 GPUs. The experiment is conducted on the multi-GPU server. Compared with Torch, BRT first brings up to 1.17× speedup with efficient sparse communication. The speedup of BRT grows with more GPUs because of the increased data volume for inter-GPU transmission. Brainstorm’s sparse communication saves unnecessary communication due to padding. On top of this, BRT+P further achieves up to 1.34× speedup with the optimized placement. The optimized placement derived from runtime profiles helps BRT+P to reduce 42 ~ 87% inter-GPU communication, speeding up routing of MoE layers.

7.4.4 SwinV2-MoE

SwinV2-MoE is the MoE-version of SwinTransformer [41] for image tasks, introduced in Tutel [22]. It defines tokens as Cells, each of which contains 384 float32 values tokenized from a 48x48 image patch. SwinV2-MoE uses a capacity factor to control the number of patches each expert receives. When the capacity is exceeded, extra patches are dropped during routing. The capacity factor varies in [1.25, 2.0, 3.0, 4.0] in the experiments. We evaluate SwinV2-MoE with 16 experts on the multi-GPU server by evenly placing the experts on 2 GPUs, 4 GPUs, and 8 GPUs, respectively. The batch size per GPU is 128 images for each inference.

Figure 19 shows throughput of four approaches: a PyTorch
implementation using DeepSpeed-MoE [48] (DeepSpeed), optimized version with Tutel’s MoE kernels [22] (Tutel), optimized version with Brainstorm’s Router (BRT), and Brainstorm’s profile-guided placement optimization (BRT+P). Brainstorm’s efficient Router first brings up to 5.04× and 1.52× speedup over DeepSpeed and Tutel, respectively. Both BRT and Tutel use custom GPU kernels for efficient routing inside a GPU, thus greatly outperforming DeepSpeed, which uses einsum. With an increased capacity factor, BRT brings higher speedup over Tutel because of saved inter-GPU communication due to increased padding.

By optimizing expert placement via runtime profiles, we find BRT+P only brings marginal improvement. After using Brainstorm’s efficient Router, SwinV2-MoE model only spends up to 35% of time on inter-GPU communication, which reduces the potential by further reducing communication overhead. Similar to TaskMoE, we do observe different expert placements have greatly varied efficiency. Figure 20 shows our evaluation of a single SwinV2-MoE layer to compare the performance of the best placement and the worst placement with 8 GPUs and 2 experts per GPU. The gap is up to 1.26× speedup for ten SwinV2-MoE layers. The smaller the layer id is, the more imbalance appears in token distribution, creating more space for improvement by placement. It shows great potential for larger MoE models with more experts, whose communication latency dominates [22].

7.4.5 MSDNet

MSDNet [1] is a dynamic network that can adapt this execution path to the computational resource limits at test time. The network contains 5 exits that allow the inference of an image to end in the middle, if the output quality is higher than the predefined thresholds. Users can configure the thresholds of each exit to control the inference cost. For instance, [0.0, 0.0, 0.4, 0.6] represents that 40% of the inferences in the dataset end at the 4th exit and 60% end at the last exit. There are no inferences ending at the other exits.

Figure 21 shows the experiment results with 6 kinds of exit configurations applying different optimizations, running on the single-GPU server. We set the batch size to a single image at inference. We first tune the GPU kernels with vertical fusion (BRT+VF) as the baseline. On top of that, we first apply speculative routing (BRT+SP) and then dynamic horizontal fusion (BRT+HF) to evaluate the benefits of dynamic optimizations. Compared with BRT+VF, Brainstorm achieves up to 8.44×, 11.7× speedup by BRT+SP and BRT+HF, respectively. We observe BRT+SP reduces higher latency when the inferences end at either very early exits or very last exits, due to the speculative routing making more correct predictions. If the inference has a similar opportunity to end at each exit, BRT+SP has a similar performance with BRT+VF (e.g., for [0.1, 0.1, 0.2, 0.3, 0.3]). For dynamic horizontal fusion (BRT+HF), Brainstorm performs better when the inferences prefer ending at the last exits, further bringing up to 1.57× gain over BRT+SP. The root cause is the uncertain routers break many horizontal fusion opportunities. MSDNet has some operators that can be executed in parallel if the inference does not end at an exit. If a Router may terminate in the middle, Brainstorm cannot determine whether it is safe to horizontally fuse them, thus falling back to BRT+VF.

7.4.6 DynamicRouting

DynamicRouting [28] is a semantic segmentation model for images that introduces a lot of Routers. It contains 186 Routers and 186 computation operators, leading to a very high routing overhead. At each Router, input images are routed to 1 or 2 branches among 3 designed branches with convolution operators for down-sampling, up-sampling, or keeping-resolution, respectively. DynamicRouting proposes four architecture configurations (A, B, C, and Raw for short, in order of growing computation). By analyzing Routers’ runtime profiles collected by Brainstorm, we find many Routers exhibit a high probability of making consistent routing decisions, which brings opportunities for speculative optimizations. The following experiments are conducted on the single-GPU server.
Figure 23: Speculative weight preloading of DynamicRouting with variable model architectures.

Figure 22 presents the latency of four configurations optimized by Brainstorm’s speculative routing (BRT+SP), where batch size is set to a single image. Brainstorm achieves up to $1.7 \times$ speedup compared to the official implementation in PyTorch (Torch). BRT+SP achieves $1.7 \times$, $1.58 \times$, $1.57 \times$, and $1.29 \times$ speedup compared with Torch in the four architecture, respectively. With statistical distribution derived from the runtime profiles, BRT+SP can predict the routing decisions of the 186 routers with an accuracy of 90% \sim 95%. This greatly reduces the routing overhead in the four model architectures. As we have shown in the micro-benchmark of Figure 15a, the overhead of speculative routing is negligible even when the prediction is wrong.

Figure 23 shows the inference latency and the GPU memory usage of DynamicRouting optimized by Brainstorm’s speculative weight preloading. In the baseline (on-demand loading), Brainstorm only loads the weight of a branch after the routing decision is made. Brainstorm will preload the weights of the branch to be activated with the highest probability, and falls back to on-demand loading if the prediction is wrong. Because the weight loading latency is hidden, Brainstorm’s speculative optimization can accelerate the model inference by up to $1.97 \times$ than on-demand loading. Moreover, the official implementation needs to load all model weights to the GPU memory for single-image inference (i.e., 604.5MB of Original in Figure 23). With on-demand loading and speculative preloading, memory usage is greatly reduced by 50.7% and 43.5%, respectively. This creates the opportunity to infer large models on GPUs with limited GPU memory. Brainstorm’s speculative weight preloading requires slightly lower GPU memory than on-demand loading. This is because speculative weight preloading also releases some GPU memory in advance speculatively.

8 Discussion

Handling distribution drift. The profiling data is analyzed offline by dynamic optimization policies. Profiling data should be statistically representative of reality; otherwise, it could mislead Brainstorm’s optimization and result in reduced or even negative gain. As shown in Figure 24, the impact depends on the models and the degree of drifts.

Figure 24 evaluate the impact of distribution drift on dynamic horizontal fusion. Based on the collected profiles, Brainstorm only tunes Conv2D kernels with 4 and 27 patches. Therefore, when a branch receives more than 4 patches, it needs to be padded to 27 patches running with the non-optimal 27-patch kernel. An initial dispatch of 4 patches per branch is made so that no padding is needed. To simulate increasing distribution drift, we add loads of some branches to 8 patches, which are less frequently appearing in the profile and thus not tuned by Brainstorm. We define the distribution drift ratio as the fraction of branches whose received patches differ from the tuned shapes (4 and 27 in this experiment). In Figure 24, we find the speedup of Brainstorm’s dynamic horizontal fusion BRT+HF diminishes with an increasing drift ratio, from $4.65 \times$ to $2.11 \times$, compared with applying only vertical fusion. This is due to the wasted computation from the padding on branches receiving 8 patches.

The optimization policy needs to monitor profiles continuously collected by Brainstorm and triggers re-optimization when distribution drifts. It takes time for re-optimization (usually a few minutes), e.g., searching for a new placement, and tuning new GPU kernels. Therefore, during cold-start or re-optimization, the model execution does not use dynamic optimization. Currently, Brainstorm focuses on the mechanisms of enabling dynamic neural optimizations. We hope to inspire more advanced solutions to be robust to distribution drifts.

More dynamic optimization opportunities. Brainstorm can also be applied to training. When fine-tuning MoE-based Large Language Models, the statistics of expert activation can be leveraged similarly with inference, e.g., re-arranging the expert placements across GPUs to reduce communication volume. Moreover, many algorithms in Neural Architecture Search also design dynamic architectures (e.g., DARTS [49], SPOS [50]), whose activation is known only at runtime. Their latter stage of training may show more stable branch activation, which can be potentially exploited by Brainstorm.

To support training, there are still some engineering efforts that need to be resolved. Firstly, backward propagation
is needed for automatic differentiation in training, which is missed in the current implementation. Secondly, some operators may invalidate Brainstorm’s tracing for dynamic optimization. For instance, BatchNorm performs cross-Cell computing different from the Cell-level computation at inference, which requires manual specification.

Brainstorm can also be applied to dynamic sparsity, which uses different value/block-level sparsity patterns for different inputs (e.g., Longformer). To optimize their execution, Brainstorm needs to collect pattern statistics at a fine granularity. Then we can compile multiple specialized GPU kernels for different sparsity patterns (e.g., using SparTA [51]), and activate the most efficient one at runtime.

9 Related Works

Deep Learning Frameworks for Dynamic NNs. Popular DL frameworks can express dynamic neural networks via control-flow operators in static DFGs (e.g., TensorFlow 1.x [52]) or Python native control-flows (e.g., PyTorch [32], JAX [53], TensorFlow Eager [54]). They are capable of expressing dynamic neural networks in very flexible ways. However, their tensor-centric DFGs are hard to be analyzed at the sub-tensor level. As shown in §5.1, many dynamic NNs require Cell-level dataflow analysis, which the tensor-centric programming model misses. Brainstorm unifies how dynamic NN should be expressed so that the required information for dynamic optimization can be easily traced.

Optimization of dynamic NNs has also been studied in recent years, which mainly focuses on specific types of dynamism. Cavs [55], DyNet [56], BatchMaker [57], TensorFlow Fold [58], DVA Batch [59], ICE [60], and PAME [61] focus on dynamic batching [62] for the cases when the batch size is dynamic. Cortex [63] is a framework for recursive neural networks with compiler optimization. DietCode [64] is an auto-scheduler framework for optimizing dynamic shapes. Nimble [65] and DISC [66] are compilers to express and execute dynamic neural networks. Brainstorm is orthogonal to them by exploring a new optimization space that leverages runtime statistics of Cell-level dynamism.

Optimization of deep neural networks. Most optimizations of existing DL compilers and frameworks are proposed for optimizing static neural networks. TVM [39] expresses operators as loop optimization schedule primitives and search for efficient kernels. Ansor [67] enlarges the search space via a hierarchical representation of the search space. Roller [68] uses a cost model to reduce the overhead of searching efficient kernels. XLA [47], Rammer [33], TASSO [69], Tacker [70], TVM [39] also performs graph-level optimization on static DFGs, e.g., operator fusion. Pathways [71] proposes asynchronous distributed dataflow for large-scale distributed training. Brainstorm differs from these works in that it introduces new optimization spaces for dynamic NNs through sub-tensor-level profiling. Brainstorm’s dynamic optimizations focus on exploring the runtime dynamism distribution of dynamic NNs, which are orthogonal to these works.

Moreover, Brainstorm’s Router separates the dynamic control flow from the dataflow graphs, which makes it easier to extract the static sub-networks for applying existing static optimizations. Brainstorm focuses on optimizing dynamic fragments in dynamic NNs and leaving optimizations of static sub-networks to existing compilers. With statistics of sub-tensor-level profiles, Brainstorm employs TVM [39] for kernel autotuning. Brainstorm can also leverage Pathways [71] to build an efficient execution plan to better fit the runtime dynamism, e.g., partition models with better affinity.

Profile-guided optimization in modern programming languages. Compilers for programming languages, e.g., HotSpot JVM [16], Dot-Net Core 2.0 [17], Clang [25], have supported dynamic optimization by collecting runtime statistics of programs and then compiling new optimized versions for future execution. Brainstorm is inspired by them and identifies new dynamic optimizations specific for dynamic NNs.

10 Conclusion

In this paper, we identify a new space of dynamic optimizations for dynamic NNs by collecting and analyzing runtime profiles to specialize the model execution to dynamism distribution. We propose Brainstorm, the first deep learning framework that optimizes the execution of dynamic NNs. The core of Brainstorm is Cell and Router, that lets model developers express dynamic NNs at the granularity of dynamism so that the necessary information for dynamic optimizations can be traced. Model developers can focus on designing the dynamic model architecture while leaving the optimization to the Brainstorm framework. In Brainstorm, we propose four dynamic optimizations leveraging the runtime profiles at different granularity. Our evaluation shows Brainstorm can accelerate popular dynamic neural networks by up to 11.7× (3.29× on average) or reduces GPU memory usage by 42%.

Acknowledgments

This work is partially sponsored by the National Natural Science Foundation of China (62232011, 62022057, 61832006), and Shanghai international science and technology collaboration project (21510713600). We thank the anonymous reviewers and our shepherd, Junfeng Yang, for their constructive feedback and suggestions. Zhenhua Han, Quan Chen, and Minyi Guo are the corresponding authors.
References

A Artifact Appendix

Abstract

Brainstorm unifies the programming of dynamic NNs with Cell and Router abstraction which enables a new space of dynamic optimizations for dynamic NNs. This artifact reproduces the main results of the evaluation in both single-GPU and multiple-GPU environments.

Scope

This artifact will validate the following claims:

1. Effectiveness of Brainstorm Abstraction: By reproducing the experiments of Figure 12, we can validate the effectiveness of Brainstorm’s abstraction.
2. Micro Benchmarks: By reproducing the experiments of Figures 13–15, we can validate the proposed dynamic optimizations with micro benchmarks.
3. End-to-end Model Execution: By reproducing the experiments of Figures 16–23, we can validate the end-to-end latency of Brainstorm claimed in §7.

Contents

In this artifact, we will reproduce the Figures 12–23. Each figure has a shell script to reproduce and visualize the evaluation results automatically. In addition, we also provide a pre-built Docker image hosted on Github Container Registry. Users can quickly initiate a container with this image, which has preconfigured experimental environments.

Hosting

The artifact is hosted at https://github.com/Raphael-Hao/brainstorm/tree/osdi2023ae. To get the code, please git clone the Brainstorm repository and checkout to the osdi2023ae branch.

Requirements

1. Hardware Requirements: Figures 13, 15–17 and 21–23 requires a server with a NVIDIA A100 (80GB) GPU, Figures 12, 14 and 18–20 requires a server with eight NVIDIA V100 GPUs.
2. Software Requirements: Please use docker to build the docker/Dockerfile.update to setup the environment for single and multiple-GPU experiments. A one-click script python scripts/docker_gh_build.py --type latest is also provided to build the image.
3. CUDA Driver: Larger than 11.3

Tutorial

Please follow the instructions in README.md to reproduce the main results.