
This paper is included in the Proceedings of the 17th USENIX Symposium
on Operating Systems Design and Implementation.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by

Security and Performance in the Delegated User-level Virtualization
Jiahao Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University;

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education,
China; Dingji Li, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong

University; Engineering Research Center for Domain-specific Operating Systems, Ministry
of Education, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong

University; Zeyu Mi, Yuxuan Liu, and Binyu Zang, Institute of Parallel and Distributed Systems,
SEIEE, Shanghai Jiao Tong University; Engineering Research Center for Domain-specific Operating

Systems, Ministry of Education, China; Haibing Guan, Shanghai Key Laboratory of Scalable
Computing and Systems, Shanghai Jiao Tong University; Haibo Chen, Institute of Parallel and

Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering Research Center for
Domain-specific Operating Systems, Ministry of Education, China

https://www.usenix.org/conference/osdi23/presentation/chen

Security and Performance in the Delegated User-level Virtualization

Jiahao Chen
1,2∗

, Dingji Li
1,2,3∗

, Zeyu Mi
1,2
�, Yuxuan Liu

1,2
,

Binyu Zang
1,2

, Haibing Guan
4
, and Haibo Chen

1,2

1
Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

2
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

3
MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

4
Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

Abstract

Today’s mainstream virtualization systems are plagued by

severe security threats due to the large attack surface exposed

by in-kernel hypervisor components such as KVM. To ad-

dress this issue, this paper proposes a novel design called

delegated virtualization, which decouples the commodity hy-

pervisor into two planes: the hypervisor plane for hypervisor

control (which is typically small and has fixed logic) and the

VM plane for handling virtual machine (VM) requests and

exceptions at runtime. As our investigation reveals that all

known hypervisor vulnerabilities that threaten the host ker-

nel lie in the VM plane, delegated virtualization completely

offloads the in-kernel VM plane to a user-space hypervisor

called DuVisor that directly interacts with its VM without

exiting to the host kernel, based on a small hardware exten-

sion (481 lines of Chisel). We have implemented the hard-

ware extension on an open-source RISC-V CPU on FireSim

and built a Rust-based DuVisor atop it. The evaluation results

demonstrate that DuVisor significantly reduces the attack sur-

face with negligible performance overhead (< 5%). DuVi-

sor’s source code is publicly available at https://github.

com/IPADS-DuVisor.

1 Introduction

The technique of system virtualization, also known as virtual-

ization, is essential for efficiently running concurrent virtual

machines (VMs). Since its conception, virtualization has un-

dergone three rough stages of evolution, gradually moving

hypervisor functions outside of kernel mode. In the first stage

(Figure 1-a), all hypervisor functions were implemented in

kernel mode to multiplex scarce resources of large main-

frame machines, such as the IBM VM/370 [44, 48, 54, 83].

In the second stage (Figure 1-b), mainstream hypervisors be-

gan to offload hypervisor functions to user mode, which is-

sued system calls to take advantage of a host operating sys-

tem (OS) [42,43] or a management VM [40]. However, some

functions still remained in kernel mode, such as instruction

*Co-first authors.
�

Corresponding author: Zeyu Mi (yzmizeyu@sjtu.edu.cn).

emulation and memory virtualization. The third stage (Fig-

ure 1-c) began with the release of hardware extensions (e.g.,

Intel VMX [19] and AMD SVM [2]), which further reduced

the kernel involvement in virtualization by shifting some vir-

tualization functions to hardware.

Nowadays, third-stage hypervisors that are based on hard-

ware extensions typically utilize a split model consisting

of two cooperative components: a kernel-mode module

and a user-mode helper. For instance, the most popular

Linux/KVM-based virtualization system
1

includes a global

KVM kernel module [49, 61] and a per-VM user-mode

helper, such as QEMU [26]. The KVM module interacts with

hardware extensions and the host kernel, while the user-mode

helper is responsible for VM management and I/O virtualiza-

tion.

Unfortunately, vulnerabilities in the kernel-mode compo-

nent of virtualization systems are discovered from time to

time, making them a major threat to host security. For exam-

ple, there have been more than a hundred CVEs reported in

KVM during the course of its evolution [22]. These vulnera-

bilities can be exploited by a malicious VM to compromise

the KVM component that interacts with the VM directly. The

majority of these CVEs can be utilized to launch denial of

service (DoS) attacks, causing host crashes and undermin-

ing the reliability of the host kernel as well as all co-located

VMs [10, 16]. Even more concerning, once the KVM kernel

module is hacked, the attacker may gain control of the entire

system and carry out more severe attacks [3, 13]. In contrast,

a compromised QEMU has a considerably smaller impact,

usually limited to the current user-mode process and not af-

fecting the host kernel or other VMs, thanks to the isolation

between applications and kernel [24, 37].

The key idea of this paper is to move all hypervisor com-

ponents that directly interact with VMs at runtime to

user space, with the aim of minimizing the impact of any

security bugs and reliability issues found in the user-mode

hypervisor. However, there are three significant challenges

1
Xen [40] and VMware products [36, 88] also exhibit a similar architec-

ture.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 227

https://github.com/IPADS-DuVisor
https://github.com/IPADS-DuVisor
yzmizeyu@sjtu.edu.cn

Hardware extensionInteract

VM

K

U

(a) Monolithic Hypervisor

Hypervisor

H
e
lp
e
r

VM

Host Kernel or Hypervisor

(c) Hardware Virtualization

H V

U

K

(b) Reusing Host OS
or Management VM

H
e
lp
e
r

VM

Host Kernel or Hypervisor

Driver

U

K

Offload
Hypervisor-plane function

Virtualization function

VM-plane function

VM

Host Kernel or Hypervisor

(d) Delegated Virtualization

H V

D
u
V
is
o
r

DV-driver

U

K

Driver

General function

Figure 1: The architectural evolvement of mainstream hypervisors (a → b → c) that gradually demote hypervisor functionalities out

of kernel mode and the delegated virtualization proposed by this paper (d). U and K represent user mode and kernel mode; H and V are

hypervisor mode and virtualization mode introduced by hardware virtualization. The Virtualization functions includes ① VM-plane functions

serving VMs directly at runtime, and ② hypervisor-plane functions performing resource control and error handling for the VM plane. The

General functions comprises other VM-required functions such as virtualizing I/O devices. (a) Stage-1: The monolithic hypervisor puts all

functions in kernel mode; (b) Stage-2: Offloading some functions to a user-mode helper process (e.g., I/O backend drivers), which can reuse

host OS or management VM that manage hardware resources; (c) Stage-3: Offloading some virtualization functions into hardware (e.g.,

shadow paging → nested paging); (d) We propose the DuVisor approach that delegates all VM-plane functions (e.g., VM exit handling) to

user space and minimizes direct interactions between the host kernel and VMs at runtime.

that make the design more complex than it initially appears:

1) Privilege Restriction: modern hardware virtualization ex-

tensions are only configurable in kernel mode, such as setting

a VM’s stage-2 page table. This necessitates the presence of

a hypervisor component in the host kernel to use these ex-

tensions. 2) Security Risk: simply moving all the manage-

ment of VMs’ hardware resources to user mode violates the

least privilege principle and enlarges the attack surface. For

instance, if QEMU is allowed to modify a VM’s stage-2 page

table, it can then access any physical memory pages, posing

a significant security risk. 3) Performance Overhead: most

VM exits are now forwarded by the kernel to the user-mode

functions to handle. Then, the control flow must return to the

kernel again to resume VMs’ execution, resulting in exces-

sive runtime ring crossings and unacceptable performance

costs [56, 91].

We identify that the tight coupling between hardware virtu-

alization extensions and kernel mode is the root cause of the

challenges mentioned above. Fortunately, we observe that re-

cent hardware advancements have made it possible to expose

many hardware resources that were previously only acces-

sible by the kernel to user mode. One prominent example

is that Intel has released user-level interrupts, which allow

a user-level process to handle physical interrupts [20]. An-

other example is physical memory checking, such as RISC-V

Physical Memory Protection (PMP) [32,63], which limits the

physical memory range a program can access. With these re-

cent hardware trends, we believe it is time to retrofit existing

hardware virtualization extensions and expose virtualization

interfaces to user mode securely and efficiently, addressing

the challenges mentioned above.

This paper proposes a hypervisor design principle of de-

coupling the VM plane from the hypervisor plane. The

VM plane frequently interacts with VMs at runtime by han-

dling their VM exits, and enables various virtual resources

through instruction emulation, nested paging, device virtu-

alization, etc. In contrast, the hypervisor plane serves the

VM plane with physical resource control (e.g., invoking ker-

nel interfaces to manage resources) and fatal error handling.

Following this principle, we propose a delegated virtualiza-

tion architecture, which eliminates the notion that the ker-

nel mode should provide VM abstractions. Instead, delegated

virtualization offloads the VM plane that interacts directly

with VMs into per-VM hypervisors running in user mode,

called DuVisor
2
), while only leaving a tiny DV-driver in ker-

nel mode responsible for the hypervisor plane.

As shown in Figure 1-d, we introduce a novel hardware ex-

tension called Delegated Virtualization Extension (DV-Ext)

by slightly extending the existing hardware virtualization

mechanism to securely expose hardware virtualization inter-

faces to user mode. Based on DV-Ext, all VM-plane func-

tions in the existing hypervisor are offloaded to the user-

mode DuVisor process. Specifically, DuVisor can directly uti-

lize DV-Ext’s registers and instructions to serve runtime VM

exits without trapping into the host kernel. On the other hand,

the tiny DV-driver remaining in the kernel only wakes up oc-

casionally to allocate physical resources or handle fatal er-

rors for DuVisor processes.

DuVisor efficiently provides different virtualization func-

tions in user mode with strong security guarantees. For CPU

virtualization (§5.1), the DuVisor process creates a dedi-

cated thread (vthread) for each virtual CPU (vCPU), and the

vthread utilizes DV-Ext to handle this vCPU’s VM exits in

user mode. For memory virtualization (§5.2), DuVisor con-

figures a stage-2 page table for its VM and processes stage-2

page faults in user mode with a pre-allocated range of phys-

2
Short for Delegated user-level HyperVisor

228 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ical memory. The range used by a DuVisor and its VM is

restricted by the DV-driver and DV-Ext via hardware phys-

ical memory checking. For I/O virtualization (§5.3), para-

virtualized (PV) backend drivers in DuVisor directly com-

municate with their frontends in VMs. DuVisor further uses

user-level posted interrupt to completely bypass the host ker-

nel when sending notifications to its VM.

We have implemented DV-Ext based on a RISC-V Rocket

CPU using FPGA. DV-Ext can be easily implemented by

reusing existing hardware features, including hypervisor ex-

tension (H-Ext [28]) and user-level interrupts extension (N-

Ext [33]). It only adds 481 lines of Chisel code. Based on DV-

Ext, we use Rust to build DuVisor, and the code size is about

7K LoC. We also extend the Linux kernel v5.10.26 with a

tiny DV-driver to cooperate with DuVisor by adding 337 LoC.

Through software-hardware co-design, the kernel attack sur-

face exposed to guest VMs is minimized, and any vulnera-

bilities that threaten existing hypervisors are now confined

in the DuVisor process. Performance evaluation on cycle-

accurate FireSim [59] shows that DuVisor incurs only negli-

gible performance overhead for architectural operations and

real-world applications.

In summary, the contributions of the paper are:

• We propose a delegated virtualization architecture that

offloads the entire VM plane to the user-level DuVisor

and leaves only a tiny DV-driver in the host kernel, min-

imizing the attack surface exposed to guest VMs and

protecting the entire system from being impacted by the

security and reliability issues in traditional hypervisors.
• We design a lightweight hardware DV-Ext that enables

DuVisor to serve VM entirely in user mode.
• We implement the hardware extension on RISC-V with

minimal modification and build a Rust-based DuVisor

prototype.
• We evaluate the performance of DuVisor on AWS F1

FPGAs using cycle-accurate FireSim with a suite of

real-world applications.

2 Background and Motivation

2.1 Hardware-assisted Virtualization

Mainstream hardware virtualization extensions [2, 4, 19, 28]

offer comparable functionalities. We use RISC-V’s H-Ext as

an exemplar due to its open-sourced implementations. As il-

lustrated in Figure 1-c, H-Ext introduces two distinct modes,

namely H mode and V mode, which are orthogonal to the

existing privilege levels (U and K for user and kernel, re-

spectively
3
). H mode is exclusively reserved for the hyper-

visor, while VMs operate in V mode. Only the hypervisor

kernel mode (HK mode) is authorized to employ the virtu-

alization interface for initiating, configuring, and resuming

a VM, receiving traps from a VM to the hypervisor (also

3
Although RISC-V kernel mode is referred to as “supervisor” (S) mode,

we shall use the term kernel mode in this paper.

Table 1: CVE analyses of KVM [22] and Xen [38]. Host stands

for the vulnerabilities that could lead to an attack on the host kernel,

including PE (privilege escalation), DoS (denial of service), and DL

(data leakage). Other refers to CVEs that only attack guest VMs

or cannot be exploited. LoC shows the code size in LoCs of each

hypervisor. Time Scale indicates the year strides for each of the two

hypervisor CVE analyses.

Name Total
Host

Other LoC Time Scale
PE DL DoS

KVM 111 21 7 52 31 142K 2008-2022

Xen 370 101 19 179 71 345K 2007-2022

known as VM exits), injecting virtual interrupts into a VM,

and installing a stage-2 page table (S2PT). To control VMs,

the helper process in hypervisor user mode (HU mode) must

issue system calls to invoke functions provided by the kernel

driver (e.g., KVM) in HK mode.

In this paper, we define the VM plane as all VM-serving

functions that handle VM exits and virtualize resources at

runtime, while referring to the hypervisor plane as the set of

all hypervisor-serving functions that initialize the VM plane,

manage physical resources, and handle emergency events.

The VM plane in existing hypervisors spans the HK mode

(e.g., CPU and memory virtualization) and the HU mode

(e.g., device virtualization), whereas the hypervisor plane is

located solely in the HK mode. Whenever a VM exit occurs,

the hardware first switches the CPU control flow to the in-

kernel VM plane. Most VM exits can be handled directly in

the HK mode without switching to the user-mode helper. For

instance, in the case of a stage-2 page fault (#S2PF), the hy-

pervisor plane obtains a physical page, and the in-kernel VM

plane inserts a new address mapping to the VM’s stage-2

page table before resuming the VM directly. However, other

VM exits, such as some Memory-Mapped I/O (MMIO) trap-

pings, cannot be entirely resolved by the in-kernel VM plane

and must be forwarded to the user-level helper for emulation.

2.2 Vulnerabilities of Hypervisors

In contrast to the user-mode helper, which features a clear

isolation boundary with the kernel, vulnerabilities arising

from the in-kernel components of hypervisors pose signif-

icantly more severe threats to the host kernel. This is due

to the fact that these components possess the highest level

of privilege and interact directly and most frequently with

VMs during runtime, thereby exposing a greater number of

attack surfaces to VMs. The in-kernel components of hy-

pervisors have accumulated a considerable number of pub-

licly revealed vulnerabilities, underscoring their weak secu-

rity and fault isolation. While there are also many vulnerabili-

ties in the non-hypervisor components of the host kernel, this

paper primarily focuses on hypervisor vulnerabilities, with

non-hypervisor vulnerabilities being discussed in §7 and §9.

Table 1 presents the statistics of disclosed vulnerabilities in

KVM [22] and Xen [38], highlighting three key characteris-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 229

Table 2: CVE classification based on subsystems of KVM. The

data excludes 31 CVEs in the Other column of Table 1 that do not

harm the host kernel. Original represents the original number of

host-attacking CVEs in the KVM. After Offload means the number

of host-attacking CVEs that remain in HK mode after offloading

most components to HU mode by existing works [87,91].

Subsystem
Number of CVEs

Original After Offload

VM

Plane

Memory Virtualization 10 2

Interrupt Virtualization 18 18

ISA Emulation 19 10

Para-Virtualization 4 0

VM Exit Handling 17 17

Device Virtualization 12 0

Hypervisor

Plane

Hypervisor Initialization 0 -

Resource Control 0 -

Emergency Handling 0 -

tics of the vulnerabilities in the in-kernel components.

• Large Vulnerability Quantity. There are 111 and 370

disclosed CVEs in KVM and Xen, respectively. 72.07%

and 80.81% of them cause kernel-level exploits, includ-

ing information leakage, host DoS [10,16,84], and priv-

ilege escalation of a guest VM [3, 12, 13, 27, 82, 86].

• Severe Security Threats. Due to the high privilege

of in-kernel components, their vulnerabilities can eas-

ily crash the entire system, disrupting the execution of

other co-located VMs. As shown in Table 1, 65.77% and

75.68% of CVEs (i.e., PE and DoS) in KVM and Xen,

respectively, can be exploited to launch DoS attacks via

vulnerabilities such as NULL pointer dereferences [17]

or out-of-bounds reads/writes [15]. Even worse, care-

fully crafted exploits may enable attackers to escalate

a VM’s privilege and compromise the entire system, in-

cluding all other VMs.

• Low Exploit Costs. CVE exploits can be researched

and crafted at relatively low costs by well-financed ex-

perts who are motivated by the significant profit poten-

tial of successful attacks. For instance, it took just two

months for a Google expert to develop an exploit that en-

abled VM escape via a vulnerability in KVM code [3].

2.3 Limitations of Deprivileged Execution

A long line of work has attempted to deprivilege the in-kernel

functionalities of hypervisors to mitigate the threats of vul-

nerabilities in existing hypervisors [46, 80, 87, 91]. For ex-

ample, NOVA [87] builds a microhypervisor based on the

microkernel architecture. DeHype [91] endeavors to demote

most parts of KVM into user mode while leaving a HypLet in

kernel mode because the sensitive hardware virtualization in-

structions can only be executed in this mode. However, such

deprivileged execution methods have two limitations:

Non-eliminable In-kernel Vulnerabilities. We investi-

gated the 80 host-attacking CVEs of KVM from Table 1

and identified the subsystems in which they are present. As

Table 3: Breakdown of the latency of handling an MMIO read

in QEMU/KVM on ARM, RISC-V and x86-64. Kernel represents

the cycles spent on the in-kernel transfer operations. User stands for

the cycles consumed by the I/O emulation and VM entry/exit.

Platform Kernel User Total

ARM 4,323 1,596 5,919

RISC-V 3,135 4,067 7,202

x86-64 2,415 1,704 4,119

shown in the Original column of Table 2, these CVEs are dis-

tributed throughout all VM-plane subsystems, whereas none

of them exist in the hypervisor plane. We further examined

whether these CVEs could be addressed by prior works [87,

91] that attempted to offload as many VM-plane components

as possible to user space. The CVE number that remains in

the host kernel after offloading is displayed in the right-most

column of Table 2. Unfortunately, the majority (58.75%) of

CVEs cannot be eliminated because the VM-plane subsys-

tems in which they reside must operate in the HK mode due

to hardware privilege restrictions. For example, the interrupt

virtualization subsystem accesses privileged registers, so it

must remain in the HK mode. Similarly, some memory vir-

tualization functions, particularly those configuring sensitive

stage-2 page tables for VMs, must also remain in the HK

mode. As a result, the in-kernel VM plane poses entrenched

security and reliability risks to the host kernel.

Redundant and Costly Mode Switching. Because the hy-

pervisor must use the kernel component to drive the hardware

virtualization extension, moving most of the kernel compo-

nent to user space will result in more frequent and expen-

sive interactions between the VM and the user-level hyper-

visor due to the kernel’s involvement, leading to higher per-

formance overhead. To understand the cost associated with

kernel involvement, we break down the handling procedure

of an MMIO read operation in QEMU/KVM to illustrate

the VM-VMM communication cost and find that 73.04%,

43.53%, and 58.63% of CPU cycles are consumed by in-

kernel transfer operations on ARM, RISC-V, and x86-64, re-

spectively (Table 3). As a result, minimizing the host kernel

part by delegating more kernel functions to user space [87,

91] will lead to significant performance overhead due to the

expensive VM-VMM communication costs on each VM exit

handling.

3 System Design Overview

In this paper, we introduce delegated virtualization to safe-

guard the overall security and reliability of virtualization

systems by preventing compromised hypervisor components

from directly breaching the host kernel. To circumvent the

privilege restrictions of existing hardware virtualization, del-

egated virtualization simply exposes the existing virtualiza-

tion interfaces to user mode without requiring intrusive hard-

ware modifications. We explicitly decouple the VM plane

from the hypervisor plane and offload all VM-plane func-

230 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

VM Exit

DuVisor

D
V

-E
x
t

H V

U

K

VM

Sched.Mem Mgmt. Dev. Driver

VM Enter

Host Kernel

vCPU
Threads

IRQ & Timer
Virtualization

S2PT &
Mem Mgmt.

Virtio
Backend

APPs

Kernel

Init

Resource Mgmt.

Error Handling

DV-driver

Software Components

Hardware Components

Figure 2: The architecture overview of DuVisor. DV-Ext is Dele-

gated Virtualization Extension.

tions to the user-mode DuVisor. A tiny DV-driver in the host

kernel serves as the hypervisor plane, which is removed from

all runtime interactions (VM plane) between DuVisor and its

VM.

The design of delegated virtualization offers two signifi-

cant advantages. First, it minimizes the attack surface of the

host kernel’s hypervisor components accessible to VMs and

confines hypervisor vulnerabilities to user space, largely im-

proving security and fault isolation between the VMs and the

host kernel. Furthermore, the security and reliability benefits

are obtained without any performance penalty due to the di-

rect runtime interactions between a guest and its hypervisor.

The architecture of delegated virtualization, as depicted

in Figure 2, comprises three primary components: the Del-

egated Virtualization Extension (DV-Ext), per-VM DuVisor

hypervisor processes, and a global DV-driver in the kernel.

The Delegated Virtualization Extension (DV-Ext) must be

installed on the hardware (§4). It empowers the host kernel to

determine whether or not to delegate hardware virtualization

functions to HU mode. If the delegated mode is enabled, the

hardware virtualization interface can be accessed by unpriv-

ileged software without trapping into the host kernel. If it is

not enabled, DV-Ext functions similarly to traditional hard-

ware virtualization for compatibility.

An HU-mode DuVisor process leverages the hardware in-

terface exposed by DV-Ext to control an unmodified VM

(§5). To support the normal execution of a VM, DuVisor dy-

namically virtualizes physical resources to handle runtime

VM exits. In this paper, this workflow is defined as the VM

plane and is handled by the DuVisor process in HU mode.

Moreover, to support memory virtualization in HU mode, the

DuVisor process builds a stage-2 page table for its VM. If

stage-2 page faults occur due to missing or illegal page map-

pings, DuVisor dynamically adds or updates mapping entries

in the stage-2 page table. Like conventional hypervisors, Du-

Visor spawns distinct user-level threads for each vCPU, re-

ferred to as vthreads. It also supports PV I/O devices and vir-

tual interrupts (including timers) for this VM. DuVisor can

depend not only on the host kernel to manage external de-

Table 4: The registers and instructions added (or modified) by

DV-Ext. The lowercase and uppercase names stand for registers and

instructions. The registers starting with “hu” are accessible in HU

mode while those starting with “h” can only be accessed in HK

mode. The two instructions can be invoked in HU mode.

Type Mode Name Description

Registers

HU

hu_er VM exit reason

hu_einfo Additional information about a VM exit

hu_vpc IP address of a faulted vCPU

hu_ehb Base address of the VM exit handler

hu_vcpuid The vCPU ID running on a physical core

hu_vitr Virtual interrupt number to be inserted

HK

h_enable Turn on DV-Ext

h_deleg Delegate VM exits to HU mode

h_vmid The VM ID running on a physical core

Instructions HU
HURET Resume the vCPU execution

HUFLUSHGPA Flush TLB entries associated with a GPA

vices like storage media and network cards but also control

devices in HU mode by DPDK [18] to boost I/O virtualiza-

tion.

A tiny DV-driver is inserted into the host kernel (§6) as the

hypervisor plane, which occasionally participates in the man-

agement of physical resources for each DuVisor without in-

terfering with runtime VM exits processing. Specifically, the

DV-driver uses DV-Ext to enable/disable delegated mode and

allocates resources (such as physical memory) for DuVisor

processes. To mitigate security risks, it also restricts DuVi-

sor’s physical memory view and handles emergencies, such

as exceptions triggered by illegal physical memory accesses

by untrusted VMs. DuVisor still relies on the host kernel to

schedule all its threads and VMs.

Assumptions and Threat Model. We assume that the

hardware (including DV-Ext) is correctly implemented and

trusted. The goal of DuVisor is to defend the host ker-

nel against malicious VMs, so that the host kernel and the

DV-driver are trusted as well. However, in a multi-tenant

cloud environment, a guest VM controlled by a hostile ten-

ant may exploit vulnerabilities in DuVisor to compromise

the hypervisor. Therefore, the user-level DuVisor process

is considered untrusted by the host kernel. Side-channel at-

tacks [73,74] and corresponding defense methods [37,45,76]

are orthogonal to the design of DuVisor and are not consid-

ered in this paper.

4 Delegated Virtualization Extension

In this section, we describe the design of DV-Ext, which lifts

the restriction that hardware virtualization extensions are in-

accessible to user mode. DV-Ext provides hardware inter-

faces to user-level DuVisor for obtaining VM information

and controlling VM behaviors. These hardware interfaces

can take different forms on varied hardware architectures.

This section elaborates on register-based hardware interfaces

as an example to present a detailed design of DV-Ext, which

is suitable for the RISC-V and ARM architectures mentioned

earlier. Additionally, we discuss the design of hardware inter-

faces based on memory and specialized instructions in §9 to

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 231

demonstrate DV-Ext’s universality. Table 4 shows the regis-

ters and instructions of DV-Ext.

HU-mode Registers and Instructions. We observe that cer-

tain privileged registers are only configured during hypervi-

sor initialization and are rarely accessed at runtime. There-

fore, these registers can be considered hypervisor-plane reg-

isters and are not exposed to HU mode. The remaining reg-

isters, however, are frequently used during VM runtime and

are defined as VM-plane registers. Accordingly, DV-Ext al-

lows HU mode to access these registers without restriction.

VM-plane registers, as shown in Table 4, are denoted by

names beginning with “hu”. They are accessible in HU mode

when HK mode activates DV-Ext by setting up the h_enable

register. The VM-plane registers are classified into two cat-

egories. The first category records VM information for VM

exits, such as hu_er and hu_einfo, which the hypervisor reads

for handling VM exits. The second category controls the run-

time behaviors of the hypervisor or VMs. For example, a hy-

pervisor can configure hu_vitr to inject a virtual interrupt to

a vCPU.

Delegatable VM Exits. DV-Ext provides delegatable VM ex-

its (DVE), which enables a VM to immediately trap to its

DuVisor process in HU mode. The kernel mode can config-

ure DVEs by modifying the h_deleg register, whose individ-

ual bits regulate the delegation of specific types of VM exits.

For instance, the DV-driver in HK mode can delegate stage-2

page faults and sensitive instruction faults such as WFI (i.e.,

wait-for-interrupt instruction for entering low-power standby

CPU state, similar to HLT on x86) to HU mode by setting

the corresponding bits in h_deleg. When a DVE occurs, the

hardware searches for a hypervisor handler using the ad-

dress specified in hu_ehb. DV-Ext additionally provides the

HURET instruction for HU mode to resume VM execution

after handling a DVE, and the entry point of the VM is stored

in the hu_vpc register.

HU-mode Memory Virtualization. Since the register stor-

ing the base address of a stage-2 page table is rarely modified

after a VM is booted, DV-Ext does not expose it to HU mode.

However, in HU mode, the user-level hypervisor can still

freely update stage-2 translation by exposing the in-memory

stage-2 page table to HU mode. Therefore, the page table

format is consistent with the original stage-2 page table used

in HK mode. As HU mode needs to flush TLB entries after

updating stage-2 translation, DV-Ext exposes a TLB mainte-

nance instruction to HU mode as the HUFLUSHGPA instruc-

tion, which can flush TLB entries associated with a specific

GPA and VMID.

Exitless Interrupt Virtualization. Posted interrupt allows

the hypervisor to deliver virtual interrupts to a running vCPU

without VM exit. DV-Ext enables user-level posted interrupt

that DuVisor can directly utilize for injecting virtual exter-

nal interrupts in HU mode. DuVisor should specify the re-

ceiving vCPU’s VCPUID and the interrupt vector in hu_vitr.

Similarly, DV-Ext supports V-mode posted interrupt that a

DuVisor
Excp.

U

K

Kernel

H V

All Interrupts
& Excp.

Timer Int.
& Excp.

Core 0

HURET

Timer
Interrupt

S
R
E
T

S
R
E
T

S
R
E
T

I/O thread vthread

VMExit HandlerBack-end Drv.

Interrupt & Exception Handlers

CPU Core 2 Core 1 Core 3 Core 4 ……

Timer Int. only to minimize interference
……

Figure 3: Exception and physical interrupt handling when run-

ning a DuVisor VM. I/O threads and vthreads can be dynamically

scheduled on different CPU cores. To minimize the involvement

of the host kernel as well as the interference of physical interrupts,

the DV-driver can configure those cores that run vthreads (e.g., core

1/3/4) to trigger solely timer interrupts. For other physical interrupts

such as external interrupts generated by I/O devices, it is natural to

route them to cores that run I/O threads of the backend drivers (e.g.,

core 0/2).

vCPU can issue a virtual inter-processor interrupt (IPI) with-

out VM exit by configuring hu_vitr. To prevent misdelivery,

the hardware checks the VMID in h_vmid and the VCPUID

information pre-configured by the DV-driver before trigger-

ing a virtual interrupt. An illegal operand triggers a fault into

HK mode to wake up the DV-driver. DV-Ext also adds virtual

timer interrupts that can be triggered without VM exit.

5 DuVisor Design

5.1 Handling VM Exits

VM exits are caused by either exceptions or physical inter-

rupts. In existing virtualization systems, all VM exits are

trapped to the in-kernel hypervisor component for handling,

but this is not the case in DuVisor. In contrast, all exceptions

that result in VM exits are sent to the user-level DuVisor,

while physical interrupts continue to be trapped and handled

by the host kernel. It is inappropriate to direct physical inter-

rupts to HU mode (DuVisor) due to their vital importance to

the host kernel for tasks such as scheduling and device man-

agement, as HU mode is not trusted.

Figure 3 illustrates how exceptions and physical inter-

rupts are handled when running a DuVisor VM. During the

preparation of the VM execution environment, I/O threads

of the backend driver and vthreads are scheduled to different

CPU cores. After preparation, vthreads in DuVisor execute

an HURET instruction to enter V mode and start running

guest code until a VM exit occurs. For VM exits caused by

synchronous exceptions, the CPU control flow directly traps

from the VM to DuVisor’s VM exit handler. The handler then

determines the exception type by accessing corresponding

HU mode registers provided by DV-Ext. After handling the

VM exit, the vthread resumes the VM by executing HURET

again.

On the other hand, VM exits caused by physical interrupts

232 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are directed to the interrupt handler in HK mode. To ensure

that the register states of DuVisor VMs are not corrupted due

to scheduling, the DV-driver saves all DV-Ext-related regis-

ters before handling the physical interrupt and restores them

before directly returning to V mode with an SRET instruc-

tion. Due to the small number of DV-Ext-related registers, the

performance impact from this additional save/restore logic is

minimal (§8.4).

To minimize interference, we configure the DV-driver

so that only physical timer interrupts periodically occur on

cores where vthreads are running. For physical external in-

terrupts generated by physical devices, a PV I/O device in

DuVisor relies on the in-kernel device driver to handle them.

Hence, it is natural to direct these external interrupts to the

same cores as the I/O threads of the backend driver. More-

over, if IOMMU [29] is available, a physical device can be

passthrough into the VM for better performance, which sends

posted interrupts that directly inject physical external inter-

rupts to the VM without VM exit. Additionally, there are few

physical IPIs between vthreads and I/O threads, thanks to the

exitless interrupt virtualization (§5.3). Therefore, only physi-

cal timer interrupts may periodically trigger on cores running

vthreads and bring the running VM into HK mode.

5.2 Restricted Memory Virtualization

In contrast to traditional hypervisors’ in-kernel stage-2 page

table management, a DuVisor process handles stage-2 page

faults and provides memory virtualization in HU mode

without involving the kernel. To establish mappings of

guest physical addresses (GPAs) for the VM, DuVisor pop-

ulates stage-2 page table entries with host physical addresses

(HPAs) in HU mode. Therefore, it requests the DV-driver to

allocate contiguous memory regions with HPA information.

Each stage-2 page fault traps to DuVisor, which then adds

a free physical page from the pre-allocated memory region

into the VM’s GPA space by updating its stage-2 page table.

One natural challenge is how to prevent the untrusted Du-

Visor from maliciously configuring the stage-2 page table

to access arbitrary HPA. A malicious DuVisor, for instance,

may allow its VM to access (or alter) sensitive data in an-

other VM’s memory by directly mapping the attacker VM’s

GPA to the victim’s HPA. Worse, the rogue VM can use this

method to read and modify the host kernel memory. This is-

sue can be addressed with a straightforward technique that

requires DuVisor to manage a fake stage-2 page table in-

stead of the real one. DuVisor only manages the fake stage-2

page table and must invoke system calls to ask the DV-driver

to check this table and synchronize it to the real one. Al-

though this method sounds reasonable, it frequently involves

the kernel at runtime, leading to significant costs for memory-

intensive workloads. Moreover, it complicates the memory

management of the DV-driver.

We adopt an alternative approach, allowing DuVisor to

manage the real stage-2 page table freely in HU mode

GVA

GPA

HPA

Mem

DV-driver

DuVisor

Guest VM

PMC

S2PT

S1PT

PMC Range Register

Valid InvalidFault

V = 1

Figure 4: The translation and checking procedure of a memory

access request issued from the V mode.

without entering kernel mode. Emerging hardware mecha-

nisms, such as Intel TDX’s Physical Address Metadata Ta-

ble (PAMT) [47], AMD SEV-SNP’s Reverse Mapping Ta-

ble (RMP) [1], and ARM CCA’s Granule Protection Table

(GPT) [5], can dynamically restrict access to physical mem-

ory. Take RISC-V Physical Memory Protection (PMP) for

example, it checks every memory access against up to 64

PMP entries configured on each core. Inspired by this, we

propose to utilize such physical memory checking (PMC)

mechanisms to limit the physical memory range that VMs

can access.

With PMC, we can allow DuVisor to configure its stage-

2 page table optimistically. The MMU automatically checks

whether the target HPAs of the VM’s memory accesses ex-

ceed the range limit of the pre-allocated physical memory

regions. If so, the MMU triggers a fault to wake up the DV-

driver. This design eliminates the stage-2 memory manage-

ment module in the DV-driver. Furthermore, the overhead of

dynamic checking is negligible since it is achieved by merely

comparing offsets.

However, the current PMC technique is not specifically

designed to restrict VM memory accesses. It examines ev-

ery HPA access issued from the current physical core, which

also restricts the host kernel and DuVisor from using physical

addresses out of the configured entries. This is a significant

constraint because the host OS can map the virtual addresses

of the kernel and DuVisor to arbitrary physical memory ad-

dresses, which may exceed the ranges specified by the lim-

ited number of PMC regions. To overcome this constraint,

DV-Ext extends the existing PMC mechanism slightly to

make it work only for HPAs targeted by the V-mode mem-

ory accesses. DV-Ext adds a "Virtualization" (V) bit to each

of the current PMC range registers. If the bit is set, the PMC

only verifies the V-mode memory accesses according to the

range registers.

Figure 4 illustrates how a guest virtual address (GVA) is

translated into an HPA and finally reaches physical memory.

The GVA is first translated into a GPA via MMU hardware

according to the stage-1 page table (S1PT) built by the guest

VM. Similarly, the GPA is translated into an HPA referring

to the stage-2 page table controlled by DuVisor. A transla-

tion failure in the stage-2 page table triggers a stage-2 page

fault into DuVisor for handling. Eventually, the PMC pre-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 233

configured by the DV-driver checks the output HPA before

accessing physical memory.

The DV-driver is responsible for allocating multiple phys-

ical memory regions for each VM, with each region being

protected by a single PMP region. If the HPA exceeds the

memory range specified by all PMP regions, the PMC will

generate an exception and awaken the DV-driver to handle

the situation. For example, the DV-driver may terminate the

VM that triggered the exception and proceed to run other

VMs. As the per-core PMP configurations are tied to a spe-

cific VM, the host kernel must save the PMP register values

of the previous VM and install those of the next VM when

switching between them.

5.3 I/O and Interrupt Virtualization

I/O virtualization in DuVisor works similarly to existing ap-

proaches. It supports PV (e.g., virtio) and emulated (e.g., tty)

I/O devices for its VM. Although DuVisor is compatible with

passthrough devices, its current implementation does not sup-

port them due to the lack of IOMMU on the RISC-V plat-

form. However, we can easily support them when IOMMU

becomes available (§ 9).

For each PV and emulated device, DuVisor spawns dedi-

cated I/O thread(s) during VM initialization. These threads

are responsible for responding to VM I/O requests and in-

teracting with host I/O devices. For instance, a TX thread

is launched for a virtio network device’s TX queue to han-

dle network packets from the guest VM. To reduce the ker-

nel attack surface, DuVisor can be combined with kernel-

bypass virtio backends such as vhost-user. In particular, the

RX thread keeps polling the NIC in HU mode to receive in-

coming network packets and notifies the guest VM through

virtual external interrupts (vEXTs).

To enable efficient PV I/O notifications, DV-Ext supports

directly injecting vEXTs into a running VM through user-

level posted interrupt. Posted interrupt is the most efficient

mechanism for interrupt virtualization, which allows a virtual

interrupt to be injected into a running VM without triggering

VM exits. However, on existing hardware, a hypervisor must

enter kernel mode to send a posted interrupt, which means

that communications between vCPUs and between the HU-

mode helper and its VM must go through the host kernel,

contrary to the design principle of DuVisor. By contrast, the

user-level posted interrupt in DV-Ext does not require ker-

nel participation. Specifically, the I/O thread injects vEXTs

by writing the interrupt vector to the posted interrupt register

in HU mode. If the target vCPU is running on a core, DV-

Ext immediately triggers the vEXT on that core. Otherwise,

DV-Ext records the vEXT information and does not deliver

it until the target vCPU resumes execution.

The DV-driver assigns a unique VMID to each DuVisor

during initialization and writes this VMID to the per-core

h_vmid register every time a DuVisor is scheduled on a phys-

ical core. The VMID ensures that DuVisor’s I/O threads can

Core 0

hu_vcpuid

h_vmid VM0 …

hu_vitr

0 1 2
EXT

I/O Thread

vEXT to

vCPU0

IPI

Core 2

hu_vcpuid

h_vmid

vCPU0

VM0

Core 3

hu_vcpuid

h_vmid

vCPU1

VM0

vCPU 1

Core 1

hu_vcpuid

h_vmid VM0

vIPI to

vCPU1

vEXT to

vCPU2

DV-driver

vCPU 0

vIRQ FaultWrite

I/O Thread1

2
5

6

3

4

Figure 5: Exitless interrupt virtualization with user-level posted

interrupt and V-mode posted interrupt. vEXT represents virtual

external interrupt and vIPI represents virtual IPI.

only send posted interrupts to vCPUs with the same VMID

as theirs. Since h_vmid is only accessible in HK mode, the

DuVisor process and the guest VM cannot modify its value.

Each vCPU has its VCPUID, which the guest kernel writes

to hu_vcpuid during the boot process of each corresponding

vCPU. The VCPUID is used by DV-Ext to identify the core

on which the target vCPU is executing before delivering an

interrupt.

Figure 5 depicts how a vEXT is delivered using user-level

posted interrupts. For example, the I/O thread on core 0 at-

tempts to insert a vEXT to vCPU 0 by writing the target

vCPU’s associated location in hu_vitr ①. DV-Ext then finds

that vCPU 0 is executing on core 2 and generates a vEXT

on core 2 ②. If the sending thread attempts to send a wrong

VCPUID or has a different VMID from the receiver, writ-

ing to hu_vitr will trigger a fault and wake up the DV-driver

to handle this issue. For instance, the I/O thread on core 1

attempts to deliver a vEXT to a nonexistent vCPU 2 ③, and

DV-Ext identifies this as an invalid operation and informs the

DV-driver to handle the fault ④.

In addition to vEXTs, a multi-vCPU VM also requires ef-

ficient virtual IPIs (vIPIs) for inter-vCPU communications.

To this end, DV-Ext supports V-mode posted interrupts that

allow both sender and receiver vCPUs to incur no VM exit

for a vIPI. Figure 5 also shows how a vIPI is generated us-

ing V-mode posted interrupts. The VMID and the VCPUID

have the same effect as they do in user-level posted interrupt

cases. Specifically, the vIPI issued from vCPU 0 on core 2

to vCPU 1 via writing hu_vitr ⑤ is triggered by DV-Ext on

core 3, where vCPU 1 is running ⑥.

Furthermore, virtual timer interrupts (vTimers) are neces-

sary for each DuVisor VM. DV-Ext supports directly firing

an expired vTimer inside the VM. Currently, a DuVisor VM

can receive vTimers without VM exits, but it must trap to

the DuVisor to set up timer events. Although the hardware

can further remove the VM exits of setting timer events, we

do not consider it necessary because the infrequent vTimers

have little impact on VM performance.

234 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6 Implementation

6.1 DV-Ext Implementation

We chose the RISC-V platform to implement DV-Ext be-

cause it has rich open-sourced implementations of system-

on-chip (SoC). We used a 5-stage in-order scalar processor,

specifically the RISC-V Rocket Core [34], with a configura-

tion of 16KB L1 ICache, 16KB L1 DCache, 512KB shared

L2 cache, and 16GB DRAM.

DV-Ext does not require intrusive modifications to the

CPU hardware to implement these VM-plane registers

and instructions. Specifically, hu_er, hu_einfo, hu_vpc, and

hu_ehb are aliases of ucause, utval, uepc, and utvec from

RISC-V N-Ext (i.e., the user-level interrupts extension), and

HURET is implemented based on N-Ext’s URET. The HU-

FLUSHGPA instruction is implemented by exposing H-Ext’s

HFENCE.GVMA to the HU mode. Similarly, h_enable and

h_deleg are implemented by extending H-Ext’s hstatus, hide-

leg, and hedeleg. Therefore, most architectural implementa-

tions for these registers and instructions can be reused. Only

hu_vcpuid, hu_vitr, and h_vmid are newly added registers for

exitless interrupt virtualization.

Our DV-Ext implementation added 481 lines of Chisel to

extend the existing H-Ext implementation [35] and support

DVE. Additionally, we added 14 lines of Chisel to extend

RISC-V PMP for VM memory restriction.

6.2 Software Implementation

Our prototype system of DuVisor consists of 7,128 LoC

(5,052 lines of Rust, 166 lines of assembly, and 1,910 lines

of C). The code of libraries we use is not included in the im-

plementation effort. To implement the virtualization of CPU,

memory and interrupt, 4,984 lines of Rust and 166 lines of

assembly were written, in which the assembly is used to ac-

cess architecture-dependent registers. For the virtualization

of I/O devices, we ported the I/O backend of virtio block

and virtio network devices from the kvmtool to DuVisor to

reduce coding effort, accounting for 1,287 lines of C. We

applied our design (e.g., the user-level posted interrupts) to

these virtual devices as well as made some optimizations.

Since there is no available DPDK support for RISC-V plat-

forms currently, We also extended the virtio network backend

with a user-space NIC driver using 623 lines of C to achieve

a relatively fair performance comparison with KVM’s ma-

ture vhost-net backend. These I/O backend implementations

comprise 1,910 lines of C in total.

We wrote a tiny Linux kernel module to work as the DV-

driver and it has 337 LoC. DV-driver provides an ioctl sys-

tem call for DuVisor to request several services. First, the

DV-driver detects whether the hardware supports DV-Ext and

enables it when a user process requests it. Second, it sets up

the h_deleg register to configure DVEs. Third, the DV-driver

allocates contiguous physical memory regions for DuVisor

from Linux’s contiguous memory allocator (CMA) and pins

Table 5: CVEs in different KVM subsystems that can be success-

fully exploited in NOVA/DeHype and DuVisor’s architecture.

We omit 31 CVEs that cannot attack the host kernel.

Subsystem
KVM NOVA/DeHype DuVisor

PE DoS DL PE DoS DL PE DoS DL

Memory Virtualization 3 6 1 1 1 0 0 0 0

Interrupt Virtualization 3 13 2 3 13 2 0 0 0

ISA Emulation 4 14 1 3 7 0 0 0 0

Para-Virtualization 0 4 0 0 0 0 0 0 0

VM Exit Handling 6 11 0 6 11 0 0 0 0

Device Virtualization 5 4 3 0 0 0 0 0 0

Sum 80 47 0

the physical memory regions to ensure their availability at

runtime. Before returning to HU mode, the DV-driver also

dives into the M-mode OpenSBI and configures the PMP

entries to restrict the VM’s physical memory access range.

Each PMP entry is set up with a pmpcfg register specifying

the V bit and memory accessibility as well as a pmpaddr reg-

ister recording the physical address and length. The host ker-

nel should also have a PMP fault handler that terminates the

fault process gracefully. Currently, our prototype does not im-

plement such a fault handler for simplicity, but it is not hard

to extend the existing exception handler to implement one.

Lastly, the DV-driver initializes a VMID for each DuVisor

process that will be used by interrupt virtualization.

Based on the Linux kernel which already switches the gen-

eral purpose registers and V-mode CSRs, we further modi-

fied the context switch logic (74 LoC) to save and restore the

DV-Ext registers if the process has enabled DV-Ext. If the

next scheduled thread is not a vthread from the same VM,

the PMP registers are also switched.

7 Security Analysis and Evaluation

In this section, we analyze the overall system security of Du-

Visor from the perspective of an attacker.

Attack from Guest to Host Kernel. A hostile VM can ex-

ploit vulnerabilities to compromise the hypervisor. If these

vulnerabilities are exploited in kernel mode, the attacker can

achieve VM escape, steal sensitive kernel data, and even

crash the entire kernel. Table 5 shows such CVEs in differ-

ent KVM subsystems and how many of them can be success-

fully exploited in NOVA [87]/DeHype [91] and DuVisor’s ar-

chitecture. NOVA and DeHype, limited by hardware, cannot

fully move these subsystems to user mode, thus still leaving

58.75% of the vulnerabilities undefended. In contrast, Du-

Visor has deprivileged all of these subsystems in HU mode,

reducing the host kernel’s attack surface and preventing any

of these CVEs from directly jeopardizing it.

Table 6 lists typical vulnerabilities that we evaluated on

DuVisor. Their security and reliability threats are confined

within the DuVisor processes. Therefore, they cannot harm

the host kernel directly.

Attack from Guest to DuVisor. In theory, a malicious

guest can exploit vulnerabilities to attack the user-level Du-

Visor. To enhance security, DuVisor is developed in Rust, a

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 235

Table 6: Case studies of KVM CVEs. This table lists 6 representa-

tive KVM CVEs that have the potential to disrupt the normal execu-

tion of the host kernel, resulting in DoS or even more severe attacks.

To evaluate the impact of these CVEs on a system running DuVisor,

we emulated the vulnerabilities in the corresponding subsystems of

DuVisor. The results show that these CVEs only cause DuVisor it-

self to crash, while the host kernel can continue to execute other

programs (including DuVisor VMs) correctly.

CVE-* Attack Effect

2017-12188 Memory Virtualization: KVM’s misconfiguration of the

stage-2 page table allows the guest to access host memory,

which can cause the host OS to crash or even be controlled.

2018-16882 Interrupt Virtualization: A use-after-free issue in the

posted interrupt handling may allow hostile VMs to execute

arbitrary code in HK mode.

2016-8630 ISA Emulation: Improper implementation for instruction de-

coding of KVM may cause host kernel crashes and jeopardize

the availability of the host OS.

2020-8834 VM Exit Handling: KVM’s imperfect isolation of the guest

states allows malicious VMs to corrupt the stack and destroy

the availability of the entire system.

2016-5412 Para-Virtualization: The incorrect implementation of a hy-

percall in KVM could lead to an infinite loop that crashes the

host kernel.

2019-6974 Device Virtualization: A use-after-free vulnerability in de-

vice virtualization may lead to VM escape in the kernel.

high-performance language that guarantees memory safety

and thread safety. This greatly reduces the security risks

associated with memory vulnerabilities [6, 7, 9, 12, 14] and

threading vulnerabilities [8,11,14], such as the use-after-free

bugs [9, 12] in traditional hypervisors written in C/C++. In

addition, a vulnerable DuVisor can be promptly patched in

user space without rebooting the host OS.

Attack from DuVisor to Host Kernel. Although the Du-

Visor design prevents a malicious VM from directly compro-

mising the host kernel through the in-kernel hypervisor com-

ponent, the VM may still attempt to attack the host kernel af-

ter controlling the DuVisor. Various existing techniques can

be leveraged to defend against such user-level attacks, which

are orthogonal to the DuVisor design. The static resource al-

location and vhost-user devices in DuVisor significantly re-

duce the system calls. For example, DuVisor only requires

17 system calls to serve a Linux VM at runtime. Therefore,

the kernel can use seccomp [24] to effectively restrict the sys-

tem calls and their parameters that a DuVisor can invoke at

runtime. The host kernel can also be reconstructed as a mi-

crokernel to improve its isolation, although this is beyond the

scope of this paper.

Furthermore, neither the DV-driver nor the DV-Ext inter-

face gives DuVisor additional capabilities to compromise the

host kernel. First, the DV-driver has a small enough code base

that it could be formally verified. Second, although the DV-

driver allows user-level processes to request physical mem-

ory, it can still effectively isolate them with the help of the dy-

namic PMC mechanism. Third, the registers and instructions

introduced by DV-Ext cannot be exploited by user-level code

to attack the kernel. The hu_er and hu_einfo registers provide

information related to DVE and do not leak any data from the

host kernel. The hu_vitr, hu_vcpuid, hu_vpc, and hu_ehb reg-

isters, as well as HUFLUSHGPA, only control VM behaviors

and have no effect on the host kernel. The HURET instruc-

tion and DVE implement mode switches between the HU

mode and a VM, but cannot directly enter the HK mode.

8 Performance Evaluation

We answer the following four questions in this section:

Q1: How does the DuVisor compare to the KVM/QEMU in

terms of hypervisor primitive cost? (§8.2)

Q2: How does the performance of applications running on

DuVisor compare to that of KVM/QEMU? (§8.3)

Q3: What is the performance impact of DV-Ext on the co-

located KVM/QEMU that does not use this extension? (§8.4)

Q4: How much performance impact does the extended PMP

mechanism have on DuVisor’s performance? (§8.5)

8.1 Experimental Setup

We ran experiments on the cycle-accurate FireSim plat-

form [59], which consists of two FPGA boards. Each FPGA

board has eight RISC-V processors (3.2GHz, rv64imafdch),

16GB RAM, and 115GB storage. We created a local area net-

work (LAN) between the two boards using 1Gbps IceNICs

for network-related benchmarks. Both FPGA boards were

controlled by an EC2 instance running CentOS 7.6.1810

on a 16-core Intel E5-2686 v4 CPU (2.3 GHz) and 240 GB

RAM. We used OpenSBI v0.8 [31] as the firmware for RISC-

V, and used Linux kernel 5.10.26 as the host kernel, which

was equipped with the DV-driver. The baseline is KVM [23]

(with H-Ext [35] support) and QEMU v7.0.0-rc0 running on

Linux 5.16.

For Q1 and Q2, posted interrupts can greatly improve

the performance in interrupt-intensive scenarios, but the cur-

rent open-sourced RISC-V hardware does not support this

feature. To make a fair performance comparison, we ex-

tended DV-Ext’s interrupt virtualization support to the kernel

level and implemented an optimized KVM/QEMU (“KVM-

OPT”) that enables kernel-level posted interrupts. To an-

swer Q3, we compared KVM with a slightly modified KVM

(“KVM-DVext”) that was patched with context save/restore

code related to DV-Ext and virtualization registers. For Q4,

we compared DuVisor with a PMP-less version (“DuVisor-

noPMP”) that removes PMP checking from the hardware.

8.2 Microbenchmarks

In this section, we quantify the performance of five fre-

quently used hypervisor primitives. We leveraged the cycle

CSR to measure CPU cycles. Figure 6 shows the average

cost of the five operations in KVM and DuVisor. We calcu-

lated the average cycle count after recording the total time

spent performing each operation 10,000 times. For three syn-

chronous exceptions, we only compared DuVisor with KVM

because there is no difference between KVM and KVM-OPT

when interrupt virtualization is not involved. For the other

two asynchronous exceptions, results of KVM, KVM-OPT

236 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 150

 300

 450

 600

 750

KVM DuVisor

O
v
e

rh
e

a
d

(a) Hypercall

Exit
Entry

Handling618

214

 0

 1500

 3000

 4500

 6000

 7500

KVM DuVisor

(b) Stage-2 Page Fault

Entry/Exit
GetPage
Mapping

Metadata
Other6344

694

 0

 1000

 2000

 3000

 4000

 5000

 6000

KVM DuVisor

(c) MMIO

Entry/Exit
Transfer
Decode

Other4758

494

 0

 1000

 2000

 3000

 4000

 5000

 6000

KVM KVM-OPT DuVisor

(d) Virtual IPI

Exit
vIPI Insert4692

147 147
 0

 1000

 2000

 3000

 4000

 5000

KVM KVM-OPT DuVisor

(e) Virtual Ext IRQ

vEXT Insert4084

184 184

Figure 6: Breakdown of different hypervisor primitives (Unit: cycles). (a) shows a null hypercall. Exit: from invoking a hypercall in the

guest VM to arriving at the hypercall handler in the hypervisor. Entry: the reverse procedure of Exit. Handling: processing in the hypercall

handler. (b) shows a stage-2 page fault handling. Entry/Exit: from triggering a stage-2 page fault in the VM to arriving at the #S2PF handler,

and the reverse procedure. GetPage: getting the available physical page for the fault GPA. Mapping: the PTE update in the stage-2 page table.

Metadata: maintaining the metadata of the physical page to be mapped. Other: other logic such as lock protections and fault GPA checking.

(c) shows an MMIO emulation. Entry/Exit: from invoking an MMIO operation in the VM to arriving at the user-space MMIO handler, and

the reverse procedure. Transfer: transfers between the kernel in HK mode and the user-space VMM in HU mode, which DuVisor gets rid

of. Decode: decoding the corresponding virtual MMIO device according to the fault address. Other: other logic, such as checking if the

fault address belongs to the MMIO address range. (d) shows a virtual IPI sending. vIPI Insert: For KVM, from the hypervisor inserting the

virtual IPI and kicking the receiver vCPU to the receiver vCPU’s arriving at the IPI handler. For KVM-OPT and DuVisor, from the sender

vCPU’s writing hu_vitr register to the receiver vCPU’s arriving at the IPI handler. Exit: Only for KVM, from the sender vCPU’s invoking

SEND_IPI hypercall to the hypervisor’s insertion, and from the receiver vCPU’s being kicked to it being inserted with the pending virtual IPI.

(e) shows an I/O notification sending. vEXT Insert: For KVM-OPT and DuVisor, from the I/O thread’s writing hu_vitr register to the vCPU

thread’s arriving at the IRQ handler. For KVM, from the I/O thread invoking the SET_INTERRUPT interface to the receiver vCPU’s arriving

at the IPI handler.

and DuVisor are shown.

In the hypercall microbenchmark, both KVM and DuVisor

ran a guest VM with a single vCPU pinned to a pCPU. The

guest VM invoked a null hypercall, which trapped to the hy-

percall handler and then returned immediately without doing

any functional operations. The number of cycles between the

start of the hypercall and its return position was counted. As

shown in Figure 6-a, DuVisor consumes 65.37% (404 cycles)

less time during the hypercall procedure than KVM. This

is because DuVisor in the user space does not need to per-

form operations that are only necessary in the kernel (e.g.,

enabling and disabling preemption and interrupts).

For stage-2 page fault handling, each hypervisor ran a

guest VM with a single vCPU pinned to a pCPU. The guest

VM read one byte from a page unmapped in the stage-2 page

table, triggering a stage-2 page fault exception trapped to

the hypervisor. The hypervisor allocated memory and estab-

lished a valid mapping in the stage-2 page table before re-

suming the vCPU execution. We collected cycles before and

after the guest VM read. As shown in Figure 6-b, DuVisor

spends about 89.06% (5,650 cycles) less time compared with

KVM. The main reason for the decreased cycles is that the

KVM implementation is generic but more complex, whereas

DuVisor can choose a dedicated but more concise implemen-

tation. According to our breakdown of the stage-2 page fault

handling in KVM, most of the time is spent on getting the

available physical page for the guest fault address, account-

ing for about 59.52% (3,776 cycles) of the total time as the

GetPage part shows. Similarly, the Other and Metadata parts

in KVM account for 23.31% (1,479 cycles) of the whole pro-

cess, consisting of many generic Linux kernel logic, such as

finding virtual memory area (VMA), taking locks of mmap

and maintaining metadata in Linux page structures. In com-

parison, DuVisor only spends 26 cycles in the GetPage part

and 324 cycles in the Other and Metadata part.

For MMIO emulation, a single-vCPU guest VM pinned to

a pCPU performed a load operation from an MMIO address

of a virtual console device, which trapped to the user-level

hypervisor and immediately returns. We counted the elapsed

cycles of the MMIO read operation. The result shows that

DuVisor takes 89.62% (4,264 cycles) less time than KVM

primarily due to the shorter path of MMIO handling as shown

in Figure 6-c. Traditional hypervisors such as KVM offload

most MMIO emulations to user mode for security and relia-

bility, which leads to a longer path than DuVisor. The break-

down shows that 65.89% (3,135 cycles) of the time during

the MMIO emulation in KVM is spent on multiple world

switches: VM(V) ↔ KVM(HK) ↔ QEMU(HU).

For vIPIs, both KVM and DuVisor ran a dual-vCPU guest

VM and pin two vCPUs to separate cores. The sender vCPU

sent an IPI and waited for the ACK from the receiver vCPU

by polling on the shared memory, while the receiver vCPU

wrote to the shared memory as soon as entering the IPI han-

dler to inform the sender. We calculated the cycles on the

sender vCPU from sending IPI to getting ACK from the

shared memory. Figure 6-d shows the results. Since both

KVM-OPT and DuVisor leverage hardware posted interrupt

support, their virtual IPI processes are done without hypervi-

sor involvement and thus equally cost 147 cycles. In contrast,

the KVM spends 4,692 cycles on sending a vIPI. To send an

IPI, the sender vCPU has to invoke a hypercall and trap to the

KVM (Exit part), which occupies 11.83% of the total cost.

While the rest 88.17% is cost by the cumbersome vIPI Insert

part, in which the hypervisor sends the vIPI request, kicks

the receiver vCPU, and inserts the vIPI before resuming the

receiver vCPU.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 237

For virtual external interrupts, a single-vCPU guest VM

pinned to a pCPU spun and waited for external interrupts. We

calculated the average consumed cycles from the hypervisor

inserting a virtual external interrupt to the vCPU acknowl-

edging the inserted interrupt in the interrupt handler. Using

the same hardware posted interrupt support, both KVM-OPT

and DuVisor averagely spend 184 cycles. While KVM needs

4,084 cycles in total due to the long emulation processes,

such as kicking the vCPU.

8.3 Application Benchmarks

Table 7: Descriptions of application benchmarks.

Name Description

Netperf Netserver v2.6.0 on the local server (guest VM) and Netperf v2.6.0

on the remote client (native) to test the TCP stream throughput for 5

seconds.

iperf3 iperf v3.9 on both the local server (guest VM) and the remote client

(native) to test the TCP throughput for 10 seconds.

Memcached Memcached v1.6.10 running the memtier benchmark 1.3.0 on the re-

mote client to test transactions per second. The thread number is set to

the same as the number of server vCPUs. Each round of the test lasts

5 seconds.

Hackbench Hackbench using Unix domain sockets and default 10 process groups

running in 100 loops, measuring the time cost.

CPUPrime CPU test in sysbench v0.4.12 that calculates prime numbers up to the

max prime 10000. The thread number is set to the same as the number

of server CPUs.

In this section, we evaluated the performance of five ap-

plication benchmarks described in Table 7, compared KVM-

OPT and DuVisor’s results with native, and analyzed the rea-

sons for the performance differences. We ran the benchmark

in three VMs with 1, 2 and 4 vCPUs, respectively. Every VM

was equipped with 512MB memory, a virtio-based network

device, and a virtio-based block device. In each case, we as-

signed the same number of CPUs and memory size to na-

tive as to VMs via maxcpus and mem using the kernel com-

mand line. To demonstrate the best performance of the in-

kernel KVM, we used vhost-net as the network backend of

the KVM-OPT VMs. For DuVisor VMs, we implemented

a lightweight user-space network backend driver by porting

ixy [51], a 1,000-LoC user-space ixgbe driver, to FireSim’s

IceNet. Each vCPU and I/O thread of a guest VM was pinned

to a separate physical CPU to avoid instability caused by the

host kernel scheduler. All applications were evaluated after

warmup to eliminate stage-2 page faults during benchmarks.

As shown in Figure 7-a and Figure 7-b, both KVM-OPT

and DuVisor make full use of the NIC’s bandwidth with dif-

ferent vCPU numbers and have no significant overhead com-

pared to native. Because KVM-OPT and DuVisor used dif-

ferent network backends, their performance when running

network-intensive applications can vary due to backend im-

plementations. Nevertheless, what we intend to demonstrate

is that DuVisor can attain comparable performance to KVM-

OPT’s mature vhost-net with a simply-implemented user-

space network backend. For the network-intensive mem-

cached application shown in Figure 7-c, DuVisor has a sim-

ilar performance to KVM-OPT. However, they introduce up

to 35% virtualization overhead when compared with the na-

tive. According to our analysis, the reasons for the perfor-

mance degradation mainly consist of the longer network data

transfer path and the sub-optimal frontend/backend notifica-

tions. Massive small memcached requests travel longer than

native before reaching the memcached in VMs due to the

I/O virtualization. Besides, guest VMs’ interrupt frequency

during the benchmark is much higher than that of the native

due to the frequent notifications from the backend drivers,

making memcached threads in VMs have less CPU time to

process requests. We also compared QEMU/KVM with na-

tive on Intel and ARM platforms with similar configurations

and find that they also introduce 15% to 40% overhead.

As shown in Figure 7-d, DuVisor is also comparable to

KVM-OPT and native for hackbench. It is worth noting that

KVM, which did not use the hardware interrupt virtualiza-

tion, will incur about 12% more overhead in this experiment.

The reason is that many IPIs are generated under this test, and

the virtual IPI operation can be effectively accelerated by the

posted interrupt, as shown in Figure 6-d. This also explains

why DuVisor’s better microbenchmark performance results

in no better application performance than KVM-OPT. Infre-

quent VM exits in DuVisor and KVM-OPT result in very low

costs for hypervisor primitives (<5% CPU cycles), which are

hardly observable in application benchmarks. Figure 7-e in-

dicates that KVM-OPT and DuVisor attain the same perfor-

mance as native execution in the CPUPrime benchmark.

As a result, the design of DuVisor does not introduce per-

formance overhead compared with KVM-OPT, while achiev-

ing better host kernel security and reliability.

8.4 Impact on Co-located KVM VMs

When co-locating a traditional in-kernel hypervisor together

with a user-level hypervisor, both hypervisors can indepen-

dently configure registers related to virtualization, which can

lead to VM state conflicts if not handled properly. There-

fore, the host kernel needs to save and restore virtualization-

related registers during context switches between them, in-

troducing additional switching latency. To clarify how much

impact such delay has on KVM, we evaluated and com-

pared the application performance of KVM and KVM-

DVext (with necessary context save/restore code). Figure 8

shows that there is no discernible performance difference

between KVM and KVM-DVext, indicating that such addi-

tional switching latency due to DuVisor’s co-location has lit-

tle impact on traditional VMs.

8.5 Memory Virtualization Overhead

Scaling Memory: To show DuVisor’s memory scalability

compared with KVM-OPT, we ran memcached in a 4-vCPU

guest VM with 512MB, 1024MB, 1536MB and 2048MB

memory. As shown in Figure 9-a, DuVisor achieves almost

the same performance as KVM-OPT in all cases. Compared

with KVM-OPT, the memory virtualization of DuVisor dif-

fers only in that it places the stage-2 page table configuration

in the user space and extends PMP for security checks. There-

238 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0%

20%

40%

60%

80%

100%

120%

1 2 4N
o
rm

a
liz

e
d
 O

v
e
rh

e
a
d

 (a) Netperf

vCPU(s)
0%

20%

40%

60%

80%

100%

120%

1 2 4

 (b) iperf3

vCPU(s)
0%

20%

40%

60%

80%

100%

120%

140%

1 2 4

 (c) Memcached

vCPU(s)
0%

20%

40%

60%

80%

100%

120%

1 2 4

 (d) Hackbench

vCPU(s)
0%

20%

40%

60%

80%

100%

120%

1 2 4

KVM-OPT
DuVisor

(e) CPUPrime

vCPU(s)

Figure 7: Normalized VM performance of real-world applications running in KVM-OPT and DuVisor. The Y-axis is the normalized

overhead compared with the corresponding native environment. Error bars are added due to the performance fluctuation.

-6%

-3%

0%

3%

6%

9%

Netperf
iperf3

Memcached

Hackbench
CPUPrime

O
v
e
rh

e
a
d

1-vCPU 2-vCPU 4-vCPU

Figure 8: Normalized performance overhead of real-world ap-

plications of KVM-DVext compared with KVM.

fore, there is little impact on the memory access latency and

thus scales well as the memory size grows.

Impact of PMP: DuVisor slightly extends the PMP hard-

ware with a V bit to verify the validity of memory accesses

from guest VMs. To evaluate whether this memory protec-

tion mechanism degrades the memory performance of the

VM, we compared the memory test results of lmbench be-

tween DuVisor and DuVisor-noPMP in a dual-vCPU VM

with 512MB memory. As shown in Figure 9-b, the memory

bandwidth of the VM is almost the same with and without

PMP checking. The result shows that the design of PMC

does not introduce significant overhead to VMs.

0

0.2%

0.4%

0.6%

0.8%

512MB

1024MB

1536MB

2048MB

N
o
rm

a
liz

e
d
 O

v
e
rh

e
a
d

(a) Memory Sizes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

cp wr rd rdwr
frd fwr fcp bzero

bcopyM
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
/s

)

(b) Memory Bandwidth

DuVisor
DuVisor-noPMP

Figure 9: Performance of DuVisor’s memory virtualization. (a)

DuVisor’s normalized overhead of different sizes of memory com-

pared with KVM-OPT using memcached. (b) DuVisor’s memory

performance w/ and w/o PMC using bw_mem of lmbench.

9 Discussion and Limitations

Nested Virtualization. In traditional nested virtualiza-

tion [41, 71, 77, 92], VM exits are intercepted by the L0 hy-

pervisor (bare-metal one) before being handled by the L1

hypervisor (nested one), incurring tremendous runtime over-

head. Prior work [72] optimizes nested VM exits via para-

virtualization and passthrough. In the future, we plan to ex-

tend the idea of DVE to optimize nested virtualization by

directly trapping VM exits to the L1 hypervisor.

Memory Utilization. DuVisor’s PMP-based memory virtu-

alization may lead to low memory utilization. To cover all

VM memory with a limited number of PMP regions, we use

the coarse-grained physical memory protection that can re-

sult in memory fragmentation and scalability issues. Addi-

tionally, it is difficult to support memory multiplexing (e.g.,

deduplication and overcommitment) among VMs based on

PMP. Fortunately, such limitations can be mitigated by mem-

ory migration software mechanisms [65]. They can also be

resolved through scalable fine-grained memory protection

hardware mechanisms. For example, the RISC-V PMP ta-

ble [25] has been proposed recently, which extends PMP to

support physical memory restriction in page granularity.

IOMMU Support. Although IOMMU [29] is not yet sup-

ported on currently available RISC-V hardware, DuVisor is

theoretically able to support it. Specifically, the stage-2 page

table of IOMMU can be directly controlled by DuVisor, as

the DV-driver can restrict access from guest devices by the

IOPMP mechanism [30] with the V bit introduced by DV-Ext.

The passthrough of the guest devices and the management

of IOMMU’s stage-1 page table within VMs is no different

from traditional virtualization.

DV-Ext Universality. While the current prototype is imple-

mented on RISC-V platforms, applying DV-Ext to other ar-

chitectures would also be feasible, as they all share the same

high-level virtualization functions. Consider Intel VMX

hardware virtualization as an example.

CPU virtualization: Intel VMX directs all VM exits to the

host kernel mode, and guest states in the in-memory VMCS

can only be obtained and configured with the kernel-only

VMREAD and VMWRITE instructions. To apply DV-Ext,

Intel can just take VM exits and expose such VMX instruc-

tions to the DuVisor in the host user mode, while preventing

access to host states (e.g., host CR3) in the VMCS.

Memory virtualization: The stage-2 page tables can be

managed by the user-mode DuVisor without hardware mod-

ifications. However, PMP-like primitives are also necessary

to enforce security. Fortunately, such hardware has emerged

with confidential VM extensions [1, 21, 64, 69]. To apply

DV-Ext, Intel can extend existing TDX’s Physical Address

Metadata Table (PAMT) [47] to provide fine-grained physi-

cal memory protection for DuVisor.

Interrupt virtualization: Intel can expose VMCS fields re-

lated to virtual interrupts to the DuVisor to deliver virtual in-

terrupts. Specifically, virtual interrupts can be issued in user

space by writing the VMCS with the user-mode VMX in-

structions mentioned above.

Host Kernel Vulnerability. Although DuVisor minimizes

the attack surfaces of in-kernel hypervisors that are exposed

to VMs, it does not completely exclude the host kernel from

the VMs’ runtime. Resource management (e.g., schedul-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 239

ing and physical interrupt handling) involves non-hypervisor

components in the host kernel, which may still contain many

vulnerabilities, especially in mainstream monolithic kernels.

Consequently, DuVisor is still vulnerable to the vulnerabil-

ities of non-hypervisor components. Reconstructing it as

microkernels may mitigate the problem, however, there are

tradeoffs among compatibility, performance, and security.

10 Related Work

Moving Kernel Functions to Userspace. Deprivileging ker-

nel features to userspace is a classic approach to enhance se-

curity, ease development, and improve performance. Micro-

kernel is one typical design [52,62,70,78], where system ser-

vices such as file systems and drivers run in user mode. For

monolithic kernels, similar methods also exist, which imple-

ment the file systems [50, 79], scheduler [57], network ser-

vice [75] and sandbox [53] in user space. In terms of hyper-

visor functions, research focuses on reducing the hypervisor

TCB by moving some of its functions to userspace, as demon-

strated by designs such as DeHype [91] and NOVA [87]. Un-

like DuVisor, they still require an in-kernel trusted module

to perform VM-plane functions via hardware virtualization

interfaces. DuVisor is the first system that entirely moves

runtime VM-plane functions to user space, benefiting virtual-

ization architectures on both monolithic kernels [40, 61] and

microkernels [55].

Securing VMs. Apart from the above solutions, many other

studies have investigated how to achieve better isolation for

VMs atop unreliable hypervisors. Numerous efforts have fo-

cused on reducing the hypervisor TCB [66,81,85,92]. Cloud-

Visor [92] leverages nested virtualization to deprivilege the

Xen [40] hypervisor. HypSec [66] separates a tiny Corevi-

sor as TCB from the KVM hypervisor. Other approaches

have worked on hardening the hypervisor TCB, such as

SeKVM [67, 68], which use formal verification to ensure se-

curity guarantees of hypervisors. Unlike DuVisor, these solu-

tions still rely on in-kernel hardware virtualization interfaces

and incur modest performance overhead compared to unmod-

ified traditional hypervisors.

Some solutions improve hypervisor reliability by provid-

ing per-VM hypervisor instances that are isolated from each

other. Nexen [84] deconstructs the hypervisor into per-VM

non-privileged service slices. HyperLock [90] decomposes

the hypervisor into isolated shadow copies for each VM. In

contrast to DuVisor, they still rely on traditional hardware

virtualization interfaces and suffer from performance penal-

ties of software isolation mechanisms. Others propose hard-

ware extensions to remove the vulnerable hypervisor from

the TCB [39, 58, 60, 66, 89]. NoHype [60] eliminates the hy-

pervisor and its attack surfaces by static partitioning physical

resources with hardware modifications. Nonetheless, it dis-

allows resource oversubscription and is thus impractical for

deployment in production scenarios.

Industrial confidential virtual machine (CVM) solutions,

such as AMD SEV-SNP [1] and ARM CCA [5, 69], lever-

age specialized hardware security extensions to protect the

data of VMs against a malicious hypervisor, which cannot ac-

cess or taint the memory and registers of VMs. Both CVMs

and DuVisor are vulnerable to non-hypervisor DoS attacks

because they both rely on the host kernel. However, unlike

CVMs, DuVisor can avoid DoS attacks due to in-kernel hy-

pervisor vulnerabilities by deprivileging all VM-plane func-

tions to user space to minimize the host kernel’s runtime at-

tack surfaces exposed to VMs. On the other hand, CVMs re-

quire guest OS device driver modifications, while DuVisor

supports unmodified VMs.

CVM and DuVisor are orthogonal techniques that can be

combined for greater benefits. The design of DuVisor can be

applied to defend against DoS attacks due to in-kernel hyper-

visor vulnerabilities for CVMs, which we plan to explore as

future work. Existing CVMs are controlled by the in-kernel

hypervisor through secure firmware interfaces (e.g., ARM

CCA’s RMM and TF-A, Intel TDX module) that can only

be invoked in the host kernel. DuVisor can be used alongside

CVMs by exposing these interfaces to user space, thereby

eliminating shared in-kernel hypervisor vulnerabilities.

11 Conclusion

We introduce the first delegated virtualization architecture

that delegates all VM-plane virtualization functions to user

space without trapping into the host kernel, minimizing at-

tack surfaces exposed to VMs by in-kernel hypervisor com-

ponents. To enable delegated virtualization, we present DV-

Ext and DuVisor. DV-Ext is a hardware virtualization exten-

sion that securely exposes hardware virtualization interfaces

to user space. DuVisor is a user-level hypervisor design that

directly serves VM-hypervisor interactions in user space. We

also present security techniques to prevent malicious use of

DV-Ext. We have implemented a prototype for DV-Ext and

DuVisor on the RISC-V platform. The security and perfor-

mance evaluation results demonstrate that DuVisor protects

the host kernel from hypervisor vulnerabilities without com-

promising performance compared to Linux KVM, establish-

ing a new direction for secure virtualization research and de-

velopment.

12 Acknowledgments

We express our sincere gratitude to our shepherd Jason Nieh

for providing us with valuable suggestions that significantly

helped in improving our paper. We thank the anonymous

OSDI reviewers for their insightful suggestions. We are grate-

ful to Yubin Xia and Rong Chen for their thorough and

constructive comments that greatly improved this paper. We

also thank Chenhui Ji and Yifan Tan for their contributions

to the artifact evaluation. This work was supported in part

by the National Natural Science Foundation of China (No.

62002218, 61925206, 62132014).

240 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AMD SEV-SNP: Strengthening VM Iso-

lation with Itegrity Protection and More.

https://www.amd.com/system/files/TechDocs/

SEV-SNP-strengthening-vm-isolation-wit

h-integrity-protection-and-more.pdf. Referenced

May 2023.

[2] AMD64 Architecture Programmer’s Manual, Volume 2: Sys-

tem Programming. https://www.amd.com/system/files/

TechDocs/24593.pdf. Referenced May 2023.

[3] An EPYC Escape Case Study of KVM. https://

googleprojectzero.blogspot.com/2021/06/

an-epyc-escape-case-study-of-KVM.html. Referenced

May 2023.

[4] ARM Architecture Reference Manual ARMv8, for ARMv8-

A architecture profile. https://developer.arm.com/

documentation/102105/latest. Referenced May 2023.

[5] ARM CCA Hardware Architecture. https://developer.

arm.com/documentation/ddi0615/latest/. Referenced

May 2023.

[6] CVE-2013-1796. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2013-1796. Referenced May

2023.

[7] CVE-2014-0049. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2014-0049. Referenced May

2023.

[8] CVE-2014-7842. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2014-7842. Referenced May

2023.

[9] CVE-2018-16882. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-16882. Referenced May

2023.

[10] CVE-2019-19332. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-19332. Referenced May

2023.

[11] CVE-2019-6974. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-6974. Referenced May

2023.

[12] CVE-2019-7221. https://bugs.chromium.org/p/

project-zero/issues/detail?id=1760. Referenced

May 2023.

[13] CVE-2021-22543. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-22543. Referenced May

2023.

[14] CVE-2021-29657. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-29657. Referenced May

2023.

[15] CVE-2021-4093. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-4093. Referenced May

2023.

[16] CVE-2021-43056. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-43056. Referenced May

2023.

[17] CVE-2021-8106. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2017-8106. Referenced May

2023.

[18] DPDK. hhttps://www.dpdk.org/. Referenced May 2023.

[19] Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual. https://www.intel.com/content/

dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-v

ol-3c-part-3-manual.pdf. Referenced May 2023.

[20] Intel® Architecture Instruction Set Extensions Pro-

gramming Reference. https://software.intel.

com/content/www/us/en/develop/download/

intel-architecture-instruction-set-extensio

ns-programming-reference.html. Referenced May 2023.

[21] Intel® Trust Domain Extensions (Intel®

TDX). https://www.intel.com/content/

www/us/en/developer/articles/technical/

intel-trust-domain-extensions.html. Referenced

May 2023.

[22] KVM CVE. https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=KVM. Referenced May 2023.

[23] KVM RISC-V. https://github.com/KVM-riscv. Refer-

enced May 2023.

[24] Linux Seccomp. https://en.wikipedia.org/wiki/

Seccomp. Referenced May 2023.

[25] PMP Table Extension. https://

docs.google.com/document/d/

158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/

edit#heading=h.rjobwmo1vft1. Referenced May 2023.

[26] QEMU: A Generic and Open Source Machine Emulator and

Virtualizer. https://www.qemu.org/. Referenced May 2023.

[27] QEMU-KVM Guest to Host Kernel Escape Vulnerability:

vhost/vhost_net kernel buffer overflow. https://bugs.

gentoo.org/show_bug.cgi?id=CVE-2019-14835. Refer-

enced May 2023.

[28] RISC-V Hypervisor Extension, Version 1.0.0-rc. https://

github.com/riscv/riscv-isa-manual/blob/master/

src/hypervisor.tex. Referenced May 2023.

[29] RISC-V IOMMU Specification. https://github.com/

riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.

pdf. Referenced May 2023.

[30] RISC-V IOPMP Specification. https://github.com/

riscv-non-isa/iopmp-spec. Referenced May 2023.

[31] RISC-V OpenSBI, Version 0.8. https://github.com/

riscv-software-src/opensbi/releases/tag/v0.8. Ref-

erenced May 2023.

[32] RISC-V Privileged Architectures, Version 1.12. https://

github.com/riscv/riscv-isa-manual/releases/

download/Priv-v1.12/riscv-privileged-20211203.

pdf. Referenced May 2023.

[33] RISC-V “N” Standard Extension for User-Level Inter-

rupts, Version 1.1. https://five-embeddev.com/

riscv-isa-manual/latest/n.html. Referenced May

2023.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 241

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-wit
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-wit
h-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-{KVM}.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-{KVM}.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-{KVM}.html
https://developer.arm.com/documentation/102105/latest
https://developer.arm.com/documentation/102105/latest
https://developer.arm.com/documentation/ddi0615/latest/
https://developer.arm.com/documentation/ddi0615/latest/
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2013-1796
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2013-1796
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2014-0049
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2014-0049
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2014-7842
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2014-7842
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2018-16882
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2018-16882
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2019-19332
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2019-19332
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2019-6974
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2019-6974
https://bugs.chromium.org/p/project-zero/issues/detail?id=1760
https://bugs.chromium.org/p/project-zero/issues/detail?id=1760
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-22543
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-22543
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-29657
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-29657
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE}-2021-4093
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE}-2021-4093
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-43056
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-43056
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE}-2017-8106
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE}-2017-8106
hhttps://www.dpdk.org/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-v
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-v
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-v
ol-3c-part-3-manual.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensio
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensio
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensio
ns-programming-reference.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword={KVM}
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword={KVM}
https://github.com/{KVM}-riscv
https://en.wikipedia.org/wiki/Seccomp
https://en.wikipedia.org/wiki/Seccomp
https://docs.google.com/document/d/158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/edit#heading=h.rjobwmo1vft1
https://docs.google.com/document/d/158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/edit#heading=h.rjobwmo1vft1
https://docs.google.com/document/d/158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/edit#heading=h.rjobwmo1vft1
https://docs.google.com/document/d/158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/edit#heading=h.rjobwmo1vft1
https://www.qemu.org/
https://bugs.gentoo.org/show_bug.cgi?id={CVE-}2019-14835
https://bugs.gentoo.org/show_bug.cgi?id={CVE-}2019-14835
https://github.com/riscv/riscv-isa-manual/blob/master/src/hypervisor.tex
https://github.com/riscv/riscv-isa-manual/blob/master/src/hypervisor.tex
https://github.com/riscv/riscv-isa-manual/blob/master/src/hypervisor.tex
https://github.com/riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.pdf
https://github.com/riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.pdf
https://github.com/riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.pdf
https://github.com/riscv-non-isa/iopmp-spec
https://github.com/riscv-non-isa/iopmp-spec
https://github.com/riscv-software-src/opensbi/releases/tag/v0.8
https://github.com/riscv-software-src/opensbi/releases/tag/v0.8
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://five-embeddev.com/riscv-isa-manual/latest/n.html
https://five-embeddev.com/riscv-isa-manual/latest/n.html

[34] Rocket Chip. https://github.com/chipsalliance/

rocket-chip. Referenced May 2023.

[35] Rocket Chip H-Ext PR. https://github.com/

chipsalliance/rocket-chip/pull/2841. Referenced

May 2023.

[36] The Architecture of VMware ESXi. https://www.vmware.

com/content/dam/digitalmarketing/vmware/en/pdf/

techpaper/ESXi_architecture.pdf. Referenced May

2023.

[37] The Current State of Kernel Page-table Isolation. https://

lwn.net/Articles/741878/. Referenced May 2023.

[38] XEN CVE. https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=XEN. Referenced May 2023.

[39] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xi-

aolan Zhang, and Nathan C. Skalsky. HyperSentry: Enabling

Stealthy in-Context Measurement of Hypervisor Integrity. In

Proceedings of the 17th ACM Conference on Computer and

Communications Security, CCS ’10, page 38–49, New York,

NY, USA, 2010. Association for Computing Machinery.

[40] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Warfield. Xen and the Art of Virtualization. In Proceedings

of the 19th ACM Symposium on Operating Systems Principles,

SOSP ’03, page 164–177, New York, NY, USA, 2003. Asso-

ciation for Computing Machinery.

[41] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael

Factor, Nadav Har’El, Abel Gordon, Anthony Liguori, Orit

Wasserman, and Ben-Ami Yassour. The Turtles Project: De-

sign and Implementation of Nested Virtualization. In Proceed-

ings of the 9th USENIX Conference on Operating Systems

Design and Implementation, OSDI’10, page 423–436, USA,

2010. USENIX Association.

[42] Edouard Bugnion, Scott Devine, and Mendel Rosenblum.

Disco: Running Commodity Operating Systems on Scalable

Multiprocessors. SIGOPS Oper. Syst. Rev., 31(5):143–156,

oct 1997.

[43] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy

Sugerman, and Edward Y. Wang. Bringing Virtualization to

the x86 Architecture with the Original VMware Workstation.

ACM Trans. Comput. Syst., 30(4), nov 2012.

[44] J. P. Buzen and U. O. Gagliardi. The Evolution of Virtual Ma-

chine Architecture. In Proceedings of the June 4-8, 1973, Na-

tional Computer Conference and Exposition, AFIPS ’73, page

291–299, New York, NY, USA, 1973. Association for Comput-

ing Machinery.

[45] Sanchuan Chen, Fangfei Liu, Zeyu Mi, Yinqian Zhang,

Ruby B. Lee, Haibo Chen, and XiaoFeng Wang. Leveraging

Hardware Transactional Memory for Cache Side-Channel De-

fenses. In Proceedings of the 2018 on Asia Conference on

Computer and Communications Security, ASIACCS ’18, page

601–608, New York, NY, USA, 2018. Association for Comput-

ing Machinery.

[46] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello,

George Coker, Tim Deegan, Peter Loscocco, and Andrew

Warfield. Breaking up is Hard to Do: Security and Function-

ality in a Commodity Hypervisor. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles, SOSP ’11,

page 189–202, New York, NY, USA, 2011. Association for

Computing Machinery.

[47] Intel Corporation. Architecture Specification: Intel Trust Do-

main Extensions (Intel TDX) Module, Section 13. 2020.

[48] R. J. Creasy. The Origin of the VM/370 Time-Sharing System.

IBM Journal of Research and Development, 25(5):483–490,

1981.

[49] Christoffer Dall and Jason Nieh. KVM/ARM: The Design and

Implementation of the Linux ARM Hypervisor. In Proceed-

ings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems,

ASPLOS ’14, page 333–348, New York, NY, USA, 2014. As-

sociation for Computing Machinery.

[50] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo

Chen. Performance and Protection in the ZoFS User-Space

NVM File System. In Proceedings of the 27th ACM Sym-

posium on Operating Systems Principles, SOSP ’19, page

478–493, New York, NY, USA, 2019. Association for Com-

puting Machinery.

[51] Paul Emmerich, Maximilian Pudelko, Simon Bauer, Stefan

Huber, Thomas Zwickl, and Georg Carle. User Space Net-

work Drivers. In Proceedings of the ACM/IEEE Symposium

on Architectures for Networking and Communications Sys-

tems (ANCS 2019), September 2019.

[52] Vinod Ganapathy, Matthew J. Renzelmann, Arini Balakrish-

nan, Michael M. Swift, and Somesh Jha. The Design and Im-

plementation of Microdrivers. In Proceedings of the 13th In-

ternational Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS XIII, page

168–178, New York, NY, USA, 2008. Association for Comput-

ing Machinery.

[53] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A

Delegating Architecture for Secure System Call Interposition.

In Proceedings of the Network and Distributed System Secu-

rity Symposium, NDSS 2004, San Diego, California, USA. The

Internet Society, 2004.

[54] P. H. Gum. System/370 Extended Architecture: Facilities for

Virtual Machines. IBM Journal of Research and Development,

27(6):530–544, 1983.

[55] Gernot Heiser and Ben Leslie. The OKL4 Microvisor: Con-

vergence Point of Microkernels and Hypervisors. In Proceed-

ings of the 1st ACM Asia-Pacific Workshop on Workshop on

Systems, APSys ’10, page 19–24, New York, NY, USA, 2010.

Association for Computing Machinery.

[56] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and

Christos Kozyrakis. A Case against (Most) Context Switches.

In Proceedings of the Workshop on Hot Topics in Operating

Systems, HotOS ’21, page 17–25, New York, NY, USA, 2021.

Association for Computing Machinery.

[57] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir

Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rom-

bakh, Paul Turner, and Christos Kozyrakis. GhOSt: Fast &

242 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip/pull/2841
https://github.com/chipsalliance/rocket-chip/pull/2841
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=XEN
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=XEN

Flexible User-Space Delegation of Linux Scheduling. In Pro-

ceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles, SOSP ’21, page 588–604, New York, NY,

USA, 2021. Association for Computing Machinery.

[58] Seongwook Jin, Jeongseob Ahn, Sanghoon Cha, and Jaehyuk

Huh. Architectural Support for Secure Virtualization under

a Vulnerable Hypervisor. In Proceedings of the 44th An-

nual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO-44, page 272–283, New York, NY, USA, 2011.

Association for Computing Machinery.

[59] Sagar Karandikar, Howard Mao, Donggyu Kim, David Bian-

colin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel

Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle

Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach,

and Krste Asanović. Firesim: FPGA-Accelerated Cycle-Exact

Scale-out System Simulation in the Public Cloud. In Pro-

ceedings of the 45th Annual International Symposium on Com-

puter Architecture, ISCA ’18, page 29–42. IEEE Press, 2018.

[60] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee.

NoHype: Virtualized Cloud Infrastructure without the Virtual-

ization. In Proceedings of the 37th Annual International Sym-

posium on Computer Architecture, ISCA ’10, page 350–361,

New York, NY, USA, 2010. Association for Computing Ma-

chinery.

[61] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony

Liguori. KVM: the Linux Virtual Machine Monitor. In Pro-

ceedings of the Linux symposium, volume 1, pages 225–230.

Dttawa, Dntorio, Canada, 2007.

[62] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-

dronick, David Cock, Philip Derrin, Dhammika Elkaduwe,

Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas

Sewell, Harvey Tuch, and Simon Winwood. SeL4: Formal

Verification of an OS Kernel. In Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems Principles,

SOSP ’09, page 207–220, New York, NY, USA, 2009. Asso-

ciation for Computing Machinery.

[63] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste

Asanović, and Dawn Song. Keystone: An Open Framework

for Architecting Trusted Execution Environments. In Pro-

ceedings of the 15th European Conference on Computer Sys-

tems, EuroSys ’20, New York, NY, USA, 2020. Association

for Computing Machinery.

[64] Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang, Haib-

ing Guan, and Haibo Chen. Analysis and Optimization of

Network I/O Tax in Confidential Virtual Machines. In Pro-

ceedings of the 2023 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’23, Boston, MA, July

2023. USENIX Association.

[65] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and

Haibing Guan. TwinVisor: Hardware-Isolated Confidential

Virtual Machines for ARM. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles,

SOSP ’21, page 638–654, New York, NY, USA, 2021. Asso-

ciation for Computing Machinery.

[66] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting Cloud

Virtual Machines from Hypervisor and Host Operating Sys-

tem Exploits. In Proceedings of the 28th USENIX Security

Symposium (USENIX Security 19), pages 1357–1374, Santa

Clara, CA, August 2019. USENIX Association.

[67] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and

John Zhuang Hui. Formally Verified Memory Protection for

a Commodity Multiprocessor Hypervisor. In Proceedings of

the 30th USENIX Security Symposium (USENIX Security 21),

pages 3953–3970. USENIX Association, August 2021.

[68] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John

Zhuang Hui. A Secure and Formally Verified Linux KVM Hy-

pervisor. In 2021 IEEE Symposium on Security and Privacy

(SP), pages 1782–1799, 2021.

[69] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason

Nieh, Yousuf Sait, and Gareth Stockwell. Design and Verifi-

cation of the ARM Confidential Compute Architecture. In

Proceedings of the 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22), pages 465–

484, Carlsbad, CA, July 2022. USENIX Association.

[70] J. Liedtke. On Micro-Kernel Construction. SIGOPS Oper.

Syst. Rev., 29(5):237–250, dec 1995.

[71] Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and

Marc Zyngier. NEVE: Nested Virtualization Extensions for

ARM. In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, page 201–217, New York, NY,

USA, 2017. Association for Computing Machinery.

[72] Jin Tack Lim and Jason Nieh. Optimizing nested virtualiza-

tion performance using direct virtual hardware. In Proceed-

ings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating

Systems, ASPLOS ’20, page 557–574, New York, NY, USA,

2020. Association for Computing Machinery.

[73] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas

Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan

Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and

Mike Hamburg. Meltdown: Reading Kernel Memory from

User Space. In Proceedings of the 27th USENIX Security

Symposium (USENIX Security 18), pages 973–990, Baltimore,

MD, August 2018. USENIX Association.

[74] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and

Ruby B. Lee. Last-Level Cache Side-Channel Attacks are

Practical. In 2015 IEEE Symposium on Security and Privacy,

pages 605–622, 2015.

[75] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher

Alfeld, Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita

Dukkipati, William C. Evans, Steve Gribble, Nicholas Kidd,

Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick,

Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn,

Paul Turner, Valas Valancius, Xi Wang, and Amin Vahdat.

Snap: A Microkernel Approach to Host Networking. In Pro-

ceedings of the 27th ACM Symposium on Operating Systems

Principles, SOSP ’19, page 399–413, New York, NY, USA,

2019. Association for Computing Machinery.

[76] Zeyu Mi, Haibo Chen, Yinqian Zhang, Shuanghe Peng, Xi-

aofeng Wang, and Michael K. Reiter. CPU Elasticity to Mit-

igate Cross-VM Runtime Monitoring. IEEE Transactions on

Dependable and Secure Computing, 17(5):1094–1108, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 243

[77] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing

Guan. (Mostly) Exitless VM Protection from Untrusted Hy-

pervisor through Disaggregated Nested Virtualization. In Srd-

jan Capkun and Franziska Roesner, editors, Proceedings of the

29th USENIX Security Symposium, USENIX Security 2020,

August 12-14, 2020, pages 1695–1712. USENIX Association,

2020.

[78] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo

Chen. SkyBridge: Fast and Secure Inter-Process Communi-

cation for Microkernels. In Proceedings of the 14th EuroSys

Conference 2019, EuroSys ’19, New York, NY, USA, 2019.

Association for Computing Machinery.

[79] Samantha Miller, Kaiyuan Zhang, Mengqi Chen, Ryan Jen-

nings, Ang Chen, Danyang Zhuo, and Thomas E. Anderson.

High Velocity Kernel File Systems with Bento. In Marcos K.

Aguilera and Gala Yadgar, editors, Proceedings of the 19th

USENIX Conference on File and Storage Technologies, FAST

2021, February 23-25, 2021, pages 65–79. USENIX Associa-

tion, 2021.

[80] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. Im-

proving Xen Security through Disaggregation. In Proceedings

of the 4th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments, VEE ’08, page 151–160,

New York, NY, USA, 2008. Association for Computing Ma-

chinery.

[81] Anh Nguyen, Himanshu Raj, Shravan Rayanchu, Stefan

Saroiu, and Alec Wolman. Delusional Boot: Securing Hy-

pervisors without Massive Re-Engineering. In Proceedings

of the 7th ACM European Conference on Computer Systems,

EuroSys ’12, page 141–154, New York, NY, USA, 2012. As-

sociation for Computing Machinery.

[82] Gaoning Pan, Xingwei Lin, Xinlei Ying, Jiashui Wang, and

Chunming Wu. Scavenger: Misuse Error Handling Leading

To QEMU/KVM Escape. In Black Hat Asia, 2021.

[83] L. H. Seawright and R. A. MacKinnon. VM/370—A study of

multiplicity and usefulness. IBM Systems Journal, 18(1):4–17,

1979.

[84] Le Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo

Chen, Binyu Zang, and Jinming Li. Deconstructing Xen.

In Proceedings of the 24th Annual Network and Distributed

System Security Symposium, NDSS 2017, San Diego, Califor-

nia, USA, February 26 - March 1, 2017. The Internet Society,

2017.

[85] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazu-

masa Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hi-

rano, Kenichi Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji

Kono, Shigeru Chiba, Yasushi Shinjo, and Kazuhiko Kato.

BitVisor: A Thin Hypervisor for Enforcing i/o Device Secu-

rity. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments,

VEE ’09, page 121–130, New York, NY, USA, 2009. Associ-

ation for Computing Machinery.

[86] Baibhav Singh and Rahul Kashyap. Back To The Future: A

Radical Insecure Design of KVM on ARM. In Black Hat USA,

2018.

[87] Udo Steinberg and Bernhard Kauer. NOVA: A

Microhypervisor-Based Secure Virtualization Architec-

ture. In Proceedings of the 5th European Conference on

Computer Systems, EuroSys ’10, page 209–222, New York,

NY, USA, 2010. Association for Computing Machinery.

[88] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong

Lim. Virtualizing I/O Devices on VMware Workstation’s

Hosted Virtual Machine Monitor. In Proceedings of the 2001

USENIX Annual Technical Conference (USENIX ATC 01),

Boston, MA, June 2001. USENIX Association.

[89] Jakub Szefer and Ruby B. Lee. Architectural Support for

Hypervisor-Secure Virtualization. In Proceedings of the 17th

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS XVII,

page 437–450, New York, NY, USA, 2012. Association for

Computing Machinery.

[90] Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian Jiang.

Isolating Commodity Hosted Hypervisors with HyperLock.

In Proceedings of the 7th ACM European Conference on Com-

puter Systems, EuroSys ’12, page 127–140, New York, NY,

USA, 2012. Association for Computing Machinery.

[91] Chiachih Wu, Zhi Wang, and Xuxian Jiang. Taming Hosted

Hypervisors with (Mostly) Deprivileged Execution. In Pro-

ceedings of the 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA,

February 24-27, 2013. The Internet Society, 2013.

[92] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang.

CloudVisor: Retrofitting Protection of Virtual Machines in

Multi-Tenant Cloud with Nested Virtualization. In Proceed-

ings of the 23rd ACM Symposium on Operating Systems Prin-

ciples, SOSP ’11, page 203–216, New York, NY, USA, 2011.

Association for Computing Machinery.

A Artifact Appendix

Abstract

The artifact evaluation of DuVisor contains two parts: the security

evaluation and the performance evaluation. For security evaluation,

we evaluate representative CVEs in the DuVisor on the QEMU-

emulated RISC-V platform. For performance evaluation, we mea-

sure the performance of various microbenchmarks and application

benchmarks on native, DuVisor, vanilla KVM and optimized KVM

using the cycle-accurate FireSim platform.

Scope

Security Evaluation: DuVisor is able to prevent host kernel from

crashing even if the user-level VM-plane is attacked. As mentioned

in the Table 6 of our paper, this artifact emulates 6 representative

KVM CVEs and evaluates their impact on the system. The results

can show that these CVEs could crash DuVisor itself, but the host

kernel can continue to execute other programs (including DuVisor

VMs) normally.

Performance Evaluation: DuVisor achieves higher security while

also maintains comparable performance to the optimized KVM (i.e.,

KVM-OPT in our paper). As shown in Figure 7-10 of our paper, this

artifact compares various benchmarks between DuVisor and KVM,

and also evaluates the impact of DV-Ext hardware extension KVM.

244 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The results can show that DuVisor performs good and DV-Ext has

little impact on existing KVM.

Contents

• Run-time environment: FireSim cycle-accurate FPGA plat-

form based on AWS EC2 instances (two C5 and one F1)

• Hardware: QEMU (security AE) and RocketChip (perfor-

mance AE)

• Software: OpenSBI, Linux, QEMU, DuVisor, related bench-

marks

• Metrics: Benchmark results, usually latency and throughput

• Estimated time: about 20 hours with pre-built software im-

ages

• Available on GitHub: https://github.com/

IPADS-DuVisor/ae-guide/tree/main/

Hosting

The artifacts are available on the GitHub, please refer to the main

branch of this guide: https://github.com/IPADS-DuVisor/

ae-guide/tree/main/

Requirements

Because the FireSim platform relies on special AWS FPGA (F1) in-

stances, requiring multiple machines and complicated environment

configurations. Besides, a newer version of FireSim platform may

not be compatible with an older one. To simplify the AE procedure,

we provided pre-configured AWS instances for reviewers.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 245

https://github.com/IPADS-DuVisor/ae-guide/tree/main/
https://github.com/IPADS-DuVisor/ae-guide/tree/main/
https://github.com/IPADS-DuVisor/ae-guide/tree/main/
https://github.com/IPADS-DuVisor/ae-guide/tree/main/

	Introduction
	Background and Motivation
	Hardware-assisted Virtualization
	Vulnerabilities of Hypervisors
	Limitations of Deprivileged Execution

	System Design Overview
	Delegated Virtualization Extension
	DuVisor Design
	Handling VM Exits
	Restricted Memory Virtualization
	I/O and Interrupt Virtualization

	Implementation
	DV-Ext Implementation
	Software Implementation

	Security Analysis and Evaluation
	Performance Evaluation
	Experimental Setup
	Microbenchmarks
	Application Benchmarks
	Impact on Co-located KVM VMs
	Memory Virtualization Overhead

	Discussion and Limitations
	Related Work
	Conclusion
	Acknowledgments
	Artifact Appendix

