
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Verifying vMVCC, a high-performance transaction
library using multi-version concurrency control

Yun-Sheng Chang, MIT CSAIL; Ralf Jung, ETH Zurich; Upamanyu Sharma, MIT CSAIL;
Joseph Tassarotti, New York University; M. Frans Kaashoek

and Nickolai Zeldovich, MIT CSAIL

https://www.usenix.org/conference/osdi23/presentation/chang

Verifying vMVCC, a high-performance transaction library
using multi-version concurrency control

Yun-Sheng Chang, Ralf Jung,† Upamanyu Sharma,
Joseph Tassarotti,▽ M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL † ETH Zurich ▽ New York University

Abstract

Multi-version concurrency control (MVCC) is a widely used,
sophisticated approach for handling concurrent transactions.
vMVCC is the first MVCC-based transaction library that
comes with a machine-checked proof of correctness, pro-
viding clients with a guarantee that it will correctly handle
all transactions despite a complicated design and implemen-
tation that might otherwise be error-prone. vMVCC is im-
plemented in Go, stores data in memory, and uses several
optimizations, such as RDTSC-based timestamps, to achieve
high performance (25–96% the throughput of Silo, a state-
of-the-art in-memory database, for YCSB and TPC-C work-
loads). Formally specifying and verifying vMVCC required
adopting advanced proof techniques, such as logical atom-
icity and prophecy variables, owing to the fact that MVCC
transactions can linearize at timestamp generation prior to
transaction execution.

1 Introduction

Applications routinely rely on databases not just for storing
data durably on disk, but also for ensuring that transactions
execute atomically despite concurrency and crashes. This
simplifies application development, because the application
developer no longer has to worry about concurrency bugs
or partial state left over after a crash. Indeed, this pattern is
so ubiquitous that it is common for cloud providers to offer
databases as a black-box service to application developers.
In this model, application correctness and performance cru-
cially hinges on the database system correctly handling all
possible corner cases and doing so efficiently.
Achieving both correctness and high performance in

a database system for many concurrent transactions is
challenging. In particular, when transactions read and
write an overlapping set of data items, the database sys-
tem must ensure the transactions appear to execute in a
serial order. A widely used technique for improving per-
formance in this setting is multi-version concurrency control,
or MVCC [8, 30, 35, 36], in which the database stores not
just the latest version of a data item, but also past versions.
Storing past versions allows the database system to execute
writes that add a new version, while also being able to use
the older versions to execute reads from transactions that
appear to execute earlier in the serial order.

Multi-version concurrency control requires a sophisti-
cated implementation of its data structures, in order to ef-
ficiently track multiple versions of each tuple, implement
garbage collection (GC), etc. The implementation must also
employ low-level optimizations to get high performance. For
instance, using a mutex on a shared counter to get a unique
ID for each transaction is too costly, and highly scalable
implementations must use contention-free approaches such
as relying on the CPU timestamp counter. The end result,
therefore, is a complex implementation that can have bugs
leading to incorrect or non-serializable executions. These
bugs can be costly: they can cause data to be lost or cor-
rupted; they can lead to many applications being affected;
and tracking down bugs in the database system can be diffi-
cult for application developers.

This paper presents vMVCC, a high-performance MVCC-
based transaction library with a formal specification and a
machine-checked proof of correctness. vMVCC addresses the
core technical challenges faced by the transaction layer in a
database, and can be used to build transactional applications.
Verifying vMVCC requires addressing several challenges.
First, we must formalize a specification that captures the
guarantees provided by MVCC transactions in a concise
manner. Second, we must develop proof techniques to show
that MVCC achieves a serializable execution order in the
presence of concurrency. Finally, we must be able to formally
reason about high-performance implementations that use
low-level programming techniques such as sharded data
structures, accessing the CPU timestamp counter with an
RDTSC-like instruction, etc.
The key technical challenge addressed in vMVCC lies in

dealing with the fact that MVCC’s linearization point hap-
pens before the transaction body runs—the linearization
point is when the timestamp is obtained in Begin(). This
makes it challenging to verify MVCC-based transactions
because, at the linearization point, the transaction has not
executed yet, and the proof does not know what data the
transaction is going to write or whether it is going to com-
mit or abort. However, it is important for the specification
and proof to update the abstract state of the system at the
linearization point, because subsequent transactions must
observe these changes. In contrast, under two-phase locking,
a transaction linearizes at the point when it commits, where
it is well known what state the transaction modified and that
it is about to commit.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 871

2 false 𝑢 7
ts del val tslast

5 true -

tuple

𝑘

key tuple

... ...

index

𝑘 false 𝑣

key del val

13
ts

txn

4 6 13 ⋯

active tids

txnmgr

Figure 1: Overview of the main vMVCC data structures. Implementation
details are not shown on the figure (e.g., the index and the active transaction
IDs are partitioned into multiple shards for scalability).

vMVCC addresses this challenge by adopting prophecy
variables [1, 18]. Our use of prophecy variables allows the
proof to speculatively predict what state the transaction is
going to modify and whether it will commit. This translates
into the proof considering every possible prediction, allow-
ing vMVCC to update the abstract state accordingly at the
linearization point. As the transaction is about to commit,
the proof can check whether the prediction was correct or
not, and either stop considering further an incorrect predic-
tion, or continue with a correct prediction. vMVCC is not
the first to develop or use prophecy variables—many earlier
frameworks developed support for them and proved that
they are a sound proof technique—but it is the first to prove
the correctness of MVCC-based transactions.
We implemented vMVCC in Go, and verified it using the

Goose and Perennial frameworks. vMVCC implements so-
phisticated optimizations such as the use of RDTSC to gen-
erate strictly increasing timestamps, on-the-fly GC of past
versions, and efficient data structures for storing multiple
versions. vMVCC provides a transactional key-value store
interface, similar to Silo [35]. For the YCSB benchmark with
32 worker threads, vMVCC achieves an aggregated through-
put of 18.6M–52M transactions per second, which is 38–96%
of that achieved by the unverified Silo database. For TPC-C,
vMVCC achieves a throughput of 10.7K–33K transactions per
second per warehouse, which is 25–43% of Silo’s throughput.
The key technical contribution of vMVCC lies in demon-

strating how to formally reason about transactions whose lin-
earization point precedes the execution of their transaction
body, using prophecy variables. This verification technique
would be applicable to any system that uses MVCC [8, 10–
12, 14, 19, 27, 30, 32, 35–37]. The second contribution is
vMVCC itself, the first verified MVCC transaction library.
The vMVCC artifact is interesting in its own right, provid-
ing a high-assurance and high-performance implementation,
and can be used as a Go package independent of verifica-
tion. vMVCC includes several other technical contributions,
including a verified algorithm for computing strictly increas-
ing transaction IDs using RDTSC, and a precise specification
of a transaction library interface using logical atomicity [16].
One of the limitations of vMVCC is that it does not im-

plement durability. In-memory databases are widely used
in practice, but we do plan to extend vMVCC to store data
durably on disk so that it persists across crashes, and to for-

mally verify it using techniques from Perennial [3]. Another
limitation of vMVCC is that it provides a simple key-value
data model, as opposed to SQL’s relational data, and does
not support range scans.

2 Design and interface of vMVCC
vMVCC is a transaction library, and applications interact
with it through a standard interface for transactions, as fol-
lows (in Go syntax):
func (db *DB) Begin() *Txn
func (txn *Txn) Write(key K, value V)
func (txn *Txn) Delete(key K)
func (txn *Txn) Read(key K) (V, bool)
func (txn *Txn) Commit() bool
func (txn *Txn) Abort()

vMVCC uses anMVCC design closest to the original protocol
as proposed by Reed [30] (also known as multi-version times-
tamp ordering [36]). The design is based around assigning a
strictly increasing timestamp in Begin() to every transaction,
and storing multiple versions for each key, corresponding
to a range of timestamps for which that version is valid.
When an application modifies a key, using Write(k,v) or
Delete(k), the vMVCC transaction keeps track of the modifi-
cation in a per-transaction write buffer. When an application
invokes Read(k), the transaction first checks its local write
buffer for pending writes to k; if there are no pending writes,
it then searches from the global state the version of key k

whose timestamp immediately precedes the transaction’s
timestamp. On successfully calling Commit(), the transaction
creates a new version for each key in the write buffer with
the transaction’s timestamp as well. On calling Abort(), or
a failed Commit(), the transaction drops its write buffer.

Read-only transactions always succeed in vMVCC because
vMVCC retains all past versions required by active transac-
tions (i.e., those that have begun but not yet committed or
aborted). A transaction involving updates, however, might
fail to commit if another transaction with a higher timestamp
has read or updated the modified key in the meantime. The
reason this requires aborting the first transaction is that, to
achieve linearizability, the second transaction should have
seen the update made by the first one, but it did not.

Data structures. Figure 1 shows the data structures that
vMVCC uses to implement its design. The crux of multi-
versioning lies in the data structure tuple, consisting of a list
of versions, a tslast field to detect conflicts, and amutex (not
shown) used for synchronizing access to this data structure.
Each version corresponds to a range of timestamps for which
it is valid, represented by the ts field, which marks the start
of the validity region. The version is valid until the next
version’s ts field, or, if this is the last version in the tuple,
then it is the latest version. Each version also contains the
value (val) and whether this key is deleted or not (del). The
tslast field of each tuple represents the highest timestamp
of any transaction that has read or written this tuple. It is

872 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 false 𝑢 7
ts del val tslast

5 true −

16

begin body commit

ts = 4 r(𝑘) → 𝑢 ⋯

Txn 4

1

begin body commit

ts = 15 w(𝑘, 𝑣)
Txn 15

3

15 false 𝑣
2

(a) Execution of two transactions in vMVCC.

2 false 𝑢 7
ts del val tslast

5 true −

12

begin body abort

ts = 10 w(𝑘, 𝑣)
Txn 10

3

begin body commit

ts = 12 r(𝑘) → ⊥

Txn 12
2

1

(b) Detecting and aborting write conflicts in vMVCC.

Figure 2: Two example executions of concurrent transactions in vMVCC.

used to detect conflicts if a Write or a Delete with an earlier
timestamp tries to commit later on. On top of tuples, vMVCC
maintains its index, a hash map from keys to tuple pointers.
Keys not present in the index are assumed to be not present
(deleted) at every timestamp.

Every active transaction in vMVCC is represented using a
transaction object, which consists of a unique timestamp ts,
as well as a local write buffer keeping track of the modifica-
tions made by this transaction so far. When the transaction
commits, it tries to acquire the mutexes of the tuples to be
modified, and if successful, atomically applies the modifica-
tion in its local writer buffer. Transaction IDs are generated
by the transaction manager. For the purposes of GC, it also
keeps track of the IDs of active transactions.

Execution examples. Figure 2(a) illustrates an example
of two concurrent transactions accessing the same key 𝑘.
The tuple in the example corresponds to key 𝑘. 1 Txn 4
reads the value 𝑢 from the tuple, as the timestamp of the
corresponding version (i.e., 2) immediately precedes that of
Txn 4. 2 Txn 15 writes 𝑣 to 𝑘 by appending a new version
tagged with its timestamp at commit time, and 3 increases
tslast to 15 + 1, preventing transactions with timestamp
below 16 from modifying this tuple.
This example also shows the concurrency advantages of

MVCC over conventional concurrency control approaches
such as two-phase locking (2PL) and optimistic concurrency
control (OCC). With 2PL, Txn 15 cannot commit until Txn
4 commits, at which point the lock on 𝑘 is released. With
OCC, Txn 4 would have to abort as the value of 𝑘 changes
during the execution of Txn 4.
Figure 2(b) shows an example of how vMVCC detects

and aborts conflicting writes. 1 Txn 12 reads the second

version of the tuple, and 2 increases the tslast field to its
timestamp. 3 Txn 10 attempts to commit and update the
tuple, but fails because the timestamp of Txn 10 is less than
tslast of the tuple (i.e., 12). Thus, Txn 10 aborts.

Garbage collection. To reclaim space occupied by unus-
able versions, vMVCC employs a garbage collector that runs
in the background to remove those versions. The garbage
collector must ensure that the versions it removes cannot
be accessed by any transactions, including those that have
not even begun. Concretely, the garbage collector first de-
termines a lower bound on the transaction IDs of all active
and future transactions. This lower bound can be computed
by finding the minimal transaction ID among the active
ones; if there are no active transactions, the current times-
tamp is used. Because timestamps are strictly increasing (as
described below), the garbage collector can safely remove
versions whose lifetime ends before that lower bound.

Generating timestamps with CPU timestamp counter.
A key requirement for vMVCC is that every transaction is
assigned a strictly increasing timestamp. However, assigning
these timestamps by modifying a shared in-memory counter
leads to contention on that counter. Instead, vMVCC uses
the CPU timestamp counter (e.g., RDTSC on x86 machines) to
generate timestamps in a scalable way. Modern hardware
ensures that timestamps are monotonically increasing and
consistent across cores and sockets [2].

One complication is that two threads running on different
cores may obtain the same timestamp. vMVCC addresses
this problem by using transaction sites to make transaction
IDs unique. Each site has its own ID, which is a short integer
value (e.g., from 0 to 63). When the transaction manager
wants to assign a timestamp, it replaces the low bits of the
timestamp counter with the site ID value. To ensure that
the transaction manager does not use the same site for two
transactions at the same time, vMVCC maintains an array of
mutexes, one per site, and the transaction manager holds the
site’s mutex while computing the timestamp. The transac-
tion manager can pick any site ID, such as the one associated
with the local core. vMVCC takes a more flexible approach
by assigning each thread a site ID in a round-robin man-
ner. Having per-site mutexes ensures that the transaction
manager does not contend when assigning timestamps on
different sites.
Naïvely replacing the low bits of the timestamp counter

with the site ID leads to subtle correctness issues. For exam-
ple, Txn A may choose the highest possible site ID (all ones),
quickly execute, and commit. Txn B, runs after Txn A but
chooses the lowest possible site ID (all zeroes). The processor
ensures that the RDTSC value seen by Txn B is higher than
that seen by Txn A, but once the low bits are replaced with
all-ones and all-zeroes, it may be that Txn B’s transaction
ID is lower than that of Txn A. One possible fix would be
to represent the transaction ID as a tuple of the complete

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 873

64-bit RDTSC value and the site ID. However, since transaction
IDs are used throughout vMVCC, this leads to a noticeable
performance overhead.

Instead, vMVCC modifies the timestamp algorithm to en-
sure that timestamps are strictly increasing. To obtain a
timestamp, the transaction manager first obtains 𝑡, the cur-
rent RDTSC value, and then computes the next highest value
𝑡
′
≥ 𝑡 such that 𝑡′ has the desired site ID in the low bits. The

transaction manager then spins in a loop calling RDTSC until
it returns a timestamp 𝑡′′ > 𝑡

′. The transaction manager then
uses 𝑡′ as the transaction’s ID. The reason this loop-based
design achieves strictly increasing transaction IDs is that the
transaction manager is holding the site’s mutex while the
CPU timestamp counter passed through 𝑡

′. This means no
other thread could have generated the same transaction ID.
In practice, of course, the loop runs for a few cycles at most,
since the RDTSC value will quickly exceed the loop threshold.

Whole-transaction execution. For developer conve-
nience, vMVCC provides an interface that wraps up the
details of beginning, committing, and aborting a transaction,
in db.Run, a higher-order function whose implementation is
as follows:

func (db *DB) Run(body func(txn *Txn) bool) bool {
t := db.Begin()
commit := body(t)
if commit {

return t.Commit()
} else {

t.Abort()
return false

}
}

The developer provides the body of the transaction, which
can use Read, Write, and Delete to access the system state.
The transaction body returns a boolean to indicate whether
it wants to commit or abort.

3 Using and specifying vMVCC
vMVCC is a transaction library that facilitates building and
verifying applications by providing an atomic transaction ab-
straction. We begin with constructing on top of vMVCC an
example application that atomically transfers some amount
from one account to another, along the lines of what a bank
application might do (§3.1). We then describe the formal
specification of vMVCC and how to build arbitrary applica-
tions on top of it (§3.2).

3.1 Example: AtomicXfer
Figure 3 shows the implementation of AtomicXfer (ignore
the inline proof for now). This code is implementing a simple
bank, transferring amt from the src account to dst. If not
enough funds are available in src, the transaction aborts.
vMVCC ensures that the logical effect of the transaction
body, xfer, appears to apply atomically. This frees the devel-
oper fromworrying about other concurrent transactions that

// { 𝑠𝑟𝑐
t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 }

func xfer(txn *Txn, src, dst, amt uint64) bool {
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 }

sbal, _ := txn.Read(src)
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ sbal = 𝑣𝑠 }

if sbal < amt {
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ sbal < amt ∧ ⋯ }

return false
}
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ sbal = 𝑣𝑠 ∧ sbal ≥ amt }

txn.Write(src, sbal - amt)
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ ⋯ }

dbal, _ := txn.Read(dst)
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ dbal = 𝑣𝑑 ∧ ⋯ }

txn.Write(dst, dbal + amt)
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 + amt ∧ ⋯ }

return true
}
// If returning false, then { ⊤ }

// Else { 𝑠𝑟𝑐
t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 + amt }

// ⟨ 𝑠𝑟𝑐 ↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 ⟩

func AtomicXfer(db *DB, src, dst, amt uint64) bool {
body := func(t *Txn) bool {

return xfer(t, src, dst, amt)
}
return db.Run(body)

}
// If returning false, then ⟨ 𝑠𝑟𝑐 ↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 ⟩

// Else ⟨ 𝑠𝑟𝑐 ↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 + amt ⟩

Figure 3: Implementation and proof of AtomicXfer using vMVCC library.

may affect the balance in src or dst, or about the versioning
going on inside of vMVCC. vMVCC also ensures the transac-
tions execute in a linearizable order, so that once AtomicXfer
returns, any subsequent transactions will observe the effects
of this AtomicXfer.

Sequential reasoning in xfer. vMVCC formalizes the fact
that the developer need not consider other concurrent trans-
actions by allowing the developer to use sequential reasoning
for the body of the transaction. To achieve this, vMVCC uses
Iris [17], a modern concurrent separation logic (CSL) [29],
to specify its interface. In Iris/CSL, threads can own logical
resources, and resource ownership can be exclusive, meaning
that if one thread owns a resource, no other thread can own
the same resource. For example, the resource 𝑘 ↦ 𝑣 says that
the value of 𝑘 is 𝑣, and also says that the current thread owns
𝑘—that is, no other thread can own 𝑘 ↦ 𝑣 in the meantime
(and thus no other thread can read or write 𝑘).

In our example, the proof of the transaction body, xfer,
assumes ownership of 𝑠𝑟𝑐 t

↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡
t
↦ 𝑣𝑑 ; the ∗ opera-

tor (“separating conjunction”) says the thread owns both
resources and they are disjoint. Having ownership of these
resources allows the proof to assume that it is the only one
accessing 𝑠𝑟𝑐 and 𝑑𝑠𝑡. This, in turn, allows the developer to
prove xfer as if it was running in isolation, with no other
concurrent transactions. The overall specification for xfer
is that, starting with {𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑}, if xfer runs and

terminates, then it either returns false to abort the trans-
action, or it returns true to commit, and the resources are

874 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

xfer(txn,src,dst,amt)

𝑠𝑟𝑐
t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 𝑠𝑟𝑐

t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 + amt

AtomicXfer(db,src,dst,amt)

𝑠𝑟𝑐 ↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 𝑠𝑟𝑐 ↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 + amt

Figure 4: Figurative specifications of xfer and AtomicXfer. We highlight
the duration of owning the resources with red.

now {𝑠𝑟𝑐
t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 + amt}. To prove this, the

developer considers each line of code, and how that code
affects the resources owned by the thread, as shown in the
proof state comments between lines of code.

Concurrent specification for AtomicXfer. Specifying a
function with exclusive resource ownership (like we did
with xfer) simplifies the reasoning for that function, but at
the cost of limiting its implementations to sequential ones—
only the thread owning the required resources would be
allowed to execute the function.

To specify the behavior of AtomicXfer in Iris/CSL without
requiring ownership of src and dst for the entire duration of
AtomicXfer, vMVCC uses the notion of logical atomicity [16].
Figure 4 shows the flow of resources in a logically atomic
specification of AtomicXfer as compared to that of sequential
xfer. The xfer specification says that the thread owns the
resources throughout the entire execution of xfer, whereas
in AtomicXfer, the specification says that there will be some
point in time at which AtomicXfer appears to run atomically.
One notable difference here is the kinds of resources appear-
ing in the two specifications. Intuitively, the 𝑘

t
↦ 𝑣 used

by xfer says that “this transaction believes the value of 𝑘
is 𝑣”, whereas the 𝑘 ↦ 𝑣 used by AtomicXfer reflects “the
actual value of 𝑘 is 𝑣”. We will explain the meaning of these
resources in more depth in §3.2.

The resulting logically-atomic specification for AtomicXfer
captures that any number of threads are allowed to concur-
rently invoke AtomicXfer, possibly with overlapping src and
dst values. For each thread’s invocation of AtomicXfer, the
specification says that the transfer will execute correctly
and atomically. The application can, in turn, prove that this
maintains some application-level invariant, such as the sum
of the balances of all accounts remains fixed.

Proving AtomicXfer. Proving AtomicXfer involves two
parts. First, the developer proves that xfer meets its specifi-
cation, as described above. Second, the developer uses the
vMVCC library to obtain a proof that AtomicXfer’s specifica-
tion is the logically-atomic equivalent of xfer’s sequential
specification, as shown in Figure 3. The next subsection de-
scribes how vMVCC formally specifies db.Run in the general
case to enable this second step.

{

∗
(𝑘,𝑣)∈𝑚

𝑘
t
↦ 𝑣 ∗ 𝑃(𝑚)

}

body(txn)
{

RET 𝑟 . if 𝑟 then∗
(𝑘,𝑣)∈𝑚

′

𝑘
t
↦ 𝑣 ∗ 𝑄(𝑚,𝑚

′
) else ⊤

}

⟨
𝑚. ∗

(𝑘,𝑣)∈𝑚

𝑘 ↦ 𝑣 ∗ 𝑃(𝑚)

⟩
db.Run(body)

⟨
RET 𝑟 . if 𝑟 then∗

(𝑘,𝑣)∈𝑚
′

𝑘 ↦ 𝑣 ∗ 𝑄(𝑚,𝑚
′
) else∗

(𝑘,𝑣)∈𝑚

𝑘 ↦ 𝑣

⟩
⟹

Figure 5: Specification of db.Run. The angle brackets indicate a logically
atomic specification [16]. The vertical arrow indicates that, as a precondition
for invoking db.Run, the developer must prove the standard Hoare-logic
specification shown above the arrow for body. Not shown is the part of
the specification that describes the representation predicates. We color the
resources established for commit with green, and for abort with red.

3.2 Specifying the transaction interface
Transactions give users an illusion that they are “isolated”
from each other. To capture this intuition, we define the
resource 𝑘

t
↦ 𝑣 (which already showed up in the above

example) as the transaction-local view of the system state. We
can then specify operations that manipulate the transaction-
local view in terms of 𝑘 t

↦ 𝑣:
{

𝑘
t
↦ 𝑣

}

txn.Read(k)
{

RET 𝑣. 𝑘
t
↦ 𝑣

}

{

𝑘
t
↦ 𝑣

}

txn.Write(k,u)
{

𝑘
t
↦ 𝑢

}

{

𝑘
t
↦ 𝑣

}

txn.Delete(k)
{

𝑘
t
↦ ⊥

}

These specifications use standard Hoare-logic syntax, where
{𝑃} op {𝑄} means that, if op runs starting with the resources
specified in precondition 𝑃 , it will return with the resources
as specified in the postcondition 𝑄.
Next, we define the resource 𝑘 ↦ 𝑣 as the logical view

of the system state, representing the linearizable state. The
fact that only a single value of each key is exposed to users
might seem counter-intuitive in the case of MVCC, given
that the system physically stores multiple values for each key.
However, from the application’s point of view, it suffices to
view the abstract state of the system as having a single value
for each key at any given point in time, and updating that
value at the transaction’s linearization point. (We discuss
this in more detail in §4.2.)
The specification of db.Run shown in Figure 5 connects

these two kinds of resources. This is also the top-level the-
orem of vMVCC as a transaction library. The specification
requires the developer to prove a sequential specification
for body with a precondition that takes the transaction-local
view of some set of key-value pairs, 𝑚, along with some

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 875

Time

begin body commit
Txn 10

r(𝑘) → 𝑣 r(𝑘) → 𝑣ts = 10

begin body commit
Txn 15

r(𝑘) → 𝑣 w(𝑘, 𝑣 + 1)ts = 15

𝑘 ↦ 𝑣 𝑘 ↦ 𝑣 + 1

Figure 6: An example of two concurrently running vMVCC transactions.
Both transactions appear to execute their reads and writes at their lin-
earization points (marked as red). The reason linearization points appear
at timestamp generation is that if Txn A linearizes (i.e., runs across its
linearization point) before Txn B, then all reads and writes of A should
appear to happen before that of B. This is precisely what timestamps are
intended to do.

constraints on those values, represented by the predicate
𝑃(𝑚). The postcondition of body says that, if it chooses to
commit, then it should return the transaction-local view of
𝑚

′ with some constraints 𝑄(𝑚,𝑚′
) on how these key-value

pairs relate to the starting state.
Given such a specification for body, the specification of

db.Run says that db.Run(body) will be the logically atomic
equivalent: at some instant during its execution, it will swap
the logical view of𝑚 satisfying 𝑃(𝑚) for that of𝑚′ satisfying
𝑄(𝑚,𝑚

′
). Further, if this transaction aborts (either at its own

will or because of conflicts with another transaction), then
db.Run(body) keeps the logical view of 𝑚 intact.

As an example, we can instantiate 𝑃 and 𝑄 for AtomicXfer
from §3.1 as follows:

𝑃(𝑚) ≜ dom(𝑚) = {𝑠𝑟𝑐, 𝑑𝑠𝑡}

𝑄(𝑚,𝑚
′
) ≜ 𝑚

′
[𝑠𝑟𝑐] = 𝑚[𝑠𝑟𝑐] − 𝑎𝑚𝑡 ∧ 𝑚

′
[𝑑𝑠𝑡] = 𝑚[𝑑𝑠𝑡] + 𝑎𝑚𝑡

The use of 𝑃 and 𝑄 as arbitrary predicates allows the db.Run
specification to capture the behavior of body and transfer it
to the logically atomic specification of db.Run(body). One
technicality here is that 𝑃 and 𝑄 are both pure predicates,
meaning they cannot encode ownership of other resources,
but merely restrict the values of 𝑚 and 𝑚

′.
The specification of db.Run can be regarded as a program-

logic formalization of strict serializability [15] in the database
literature. Serializability comes from the part of the specifi-
cation that says transactions appear to observe and modify
the system state one at a time (at their linearization point),
with strictness owing to the fact that they do so during the
course of their respective execution (and hence the serial
order respects the transaction precedence order).

4 Proving vMVCC
This section describes the important aspects of our proof for
vMVCC. We start with a key verification challenge and how
we solve it with prophecy variables (§4.1). We describe how

Txn 15 commits and updates 𝑘 to 𝑣 + 1

Txn 15 commits and updates 𝑘 to 𝑣 + 2

Txn 18 reads 𝑘, then Txn 15 commits and updates 𝑘
Txn 15 aborts

Txn 15 neither commits nor aborts

Time

begin body commit
Txn 15

r(𝑘) → 𝑣 w(𝑘, 𝑣 + 1)ts = 15

✗

✗

✗

✗

Figure 7: Transaction futures, showing several example futures speculated
through prophecy variables and their interaction with prophecy resolution.

we abstract a tuple from its physical representation contain-
ing multiple versions to its logical view with a single value,
which potentially reflects some update that happens only
in the future (§4.2). We present a key invariant about the
prophecy variable used in vMVCC, and how the invariant
helps maintain other system-wide invariants under correct
and incorrect predictions (§4.3). We discuss how we de-
fine the transaction-local view of the system state, and its
connection to the logical view (§4.4). We finally conclude
this section with the challenges and the approach regarding
proving strict monotonicity of transaction IDs (§4.5).
4.1 Speculation using prophecy variables
We introduce the verification challenge with an example
shown in Figure 6. Observe that in the example, the value
of 𝑘 to be read by Txn 10 is determined up front by 𝑘 ↦ 𝑣

at its linearization point, despite the fact that by the second
read of Txn 10, Txn 15 has already committed and updated
the physical state of 𝑘. Similarly, the write of Txn 15 updates
the logical state to 𝑘 ↦ 𝑣 + 1 before it physically executes.
This kind of “speculative” behavior of MVCC turns out to be
tricky to reason about in a Hoare-logic reasoning style where
the proof considers each line of code in turn and reasons
about how that code updates the abstract and physical states.
The challenge arises from the fact that MVCC transac-

tions linearize when their timestamp is generated. In the
proof, the logical state must be updated at the transaction’s
linearization point, which happens before the transaction
body runs. The changes to the logical state depend both on
the transaction itself (i.e., what data the transaction decides
to write), as well as conflicts with other transactions (i.e.,
whether another transaction reads or writes the same keys
as this transaction in a way that will force this transaction
to abort, as discussed in §2). This poses the question: how
do we know, at the transaction’s linearization point, what
values will a transaction write, and whether a transaction
will encounter a conflict and thus be forced to abort? To
tackle this issue, we use prophecy variables.

Intuitively, prophecy variables allow the proof to speculate
about future execution. In the case of vMVCC, the prophecy
variable is a list of transaction actions, which describes what
actions each transaction will perform, and in what order.

876 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

⊥ ⊥ 𝑣1 𝑣2 𝑣2Linear

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5 𝑣6 𝑣6Speculative

𝑣6Logical (𝑘1 ↦ 𝑣6)

Physical 1 false 𝑣1 4
ts del val tslast

2 false 𝑣2

=

⪰

AR

Key 𝑘1

𝑘1 false 𝑣5

key del val

WriteBuf

Local𝑘1
t
↦ 𝑣5 𝑘2

t
↦ 𝑢4∗

⊕ ⊕ 𝑢4 (from key 𝑘2)

Txn 5

(𝑘
1
,𝑣
5
)

5
𝑘

2

3

Prophecy
CF

(last-value invariant)

(prefix invariant)

(abstraction relation)
(conflict-free invariant)

(transaction-local invariant)

Figure 8: Overview of vMVCC’s key physical states (in blue regions), logical states (in red regions), intermediate states, and the system-wide invariants
relating them (the dotted lines). We introduce the tuple abstraction relation, the prefix invariant and the last-value invariant in §4.2, the conflict-free invariant
in §4.3, and the transaction-local invariant in §4.4. Here 𝑢4 is the value of the speculative view of 𝑘2 at timestamp 5.

We refer to the list as the future-action list. There are two
kinds of actions in vMVCC’s proof: 𝑚

𝑡
(“Txn 𝑡 commits and

applies updates 𝑚 to the system state”) and𝑘

𝑡
(“Txn 𝑡 reads

key 𝑘”). Transaction aborts are represented by a commit
with an empty write-set.

At transaction begin time, vMVCC’s proof uses the
prophecy variable to speculatively predict the execution of
the transaction, which allows the proof to update the logical
state as if it knew what the transaction is going to do. The
main challenge of using the prophecy variable, however, is
that some of the predictions could be incorrect—it predicts
something that does not match what happens later. As an
example, Figure 7 shows five concrete predictions for Txn
15 that increases the value of 𝑘 by 1. Only the bottom pre-
diction turns out to be correct when the transaction actually
commits. The incorrect predictions eventually diverge from
the actual changes made by the transaction, and will make
the logical state inconsistent with the physical state.

To deal with the divergence, the proof performs prophecy
resolution at the point where the transaction actually com-
mits and updates the physical state. Prophecy resolution
allows the proof to stop considering cases corresponding to
predictions that did not match reality, and continue only
with the cases that did. We will elaborate more on cor-
rect/incorrect predictions and prophecy resolution with a
concrete example in §4.3.

This description may make it sound like there are a large
number of cases to consider in the proof, greatly increasing
the proof burden. In practice, the predictions are symbolic,
rather than concrete timestamps, keys, and values; for in-
stance, the prophecy variable speculates the updates made
by a transaction as a symbolic partial map. Furthermore, the
proof can group together many speculative executions (e.g.,
those in which the transaction of interest is speculated to
commit without encountering a conflict), and consider the
entire family of executions just once.

4.2 Incorporating speculation in abstract state
vMVCC exposes a single linearizable copy of the system state,
thereby freeing the users from explicitly reasoning about the
timestamps. Thus, the logical view (shown in the “logical”
row of Figure 8) of vMVCC is a single value for every key,
and the proof must connect this logical view to the physical
state (shown in the “physical” row of Figure 8), consisting of
the Go struct representing each tuple.

This connection is challenging for several reasons, includ-
ing the fact that the Go data structure contains multiple
versions, and the fact that the value in the logical view may
not even be present in the Go data structure, if it is made
by a write speculated by the prophecy variable for an active
transaction. Moreover, reasoning about the physical layout
of the tuple in all intermediate proofs is cumbersome.

To address these challenges, we introduce two intermedi-
ate layers modeled with monotonic lists (i.e., lists that only
grow). The first is the linear view of the tuple, shown in the
“linear” row of Figure 8. The linear view is a contiguous list
of values, indexed by timestamps. The linear view gives us
an elegant way to specify operations on tuples: reading a
tuple with a given timestamp 𝑡 just returns its value at index
𝑡. If the transaction needs to extend tslast, doing so extends
the linear view up to the new tslast timestamp, filling in
new entries with the last value in the list. Writing a tuple
with a given timestamp 𝑡 extends the tuple up to index 𝑡, and
appends the new value to the end.

To capture the speculative behavior of MVCC as described
in §4.1, we add the “speculative” layer, as shown in Fig-
ure 8 as well. The speculative view is yet another contiguous
timestamp-indexed list, much like the linear view, but in-
cludes the writes from transactions that have linearized but
have not yet finished executing and updating the physical
state. The proof looks up and extends the speculative view
at the linearization point (the ability for such extension is
guaranteed by strict monotonicity of vMVCC’s timestamps),

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 877

begin r(𝑘) → 𝑣2 w(𝑘, 𝑣5) commit

𝑘

5
(𝑘,𝑣5)

5
(𝑘,𝑣6)

6

no conflicting actions

Prophecy

⊥ ⊥ 𝑣1Linear

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5Speculative
⪰

(𝑘,𝑣5)

5
(𝑘,𝑣6)

6
𝑘

5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5 𝑣6

⪰

(𝑘,𝑣6)

6
(𝑘,𝑣5)

5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5 𝑣6

⪰

(a) An example execution with a prediction that Txn 5 commits without conflicts.

begin r(𝑘) → 𝑣2 w(𝑘, 𝑣5) commit

𝑘

5
(𝑘,𝑣6)

6
(𝑘,𝑣5)

5

conflicting action: (𝑘,𝑣6)

6

Prophecy

⊥ ⊥ 𝑣1Linear

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2Speculative
⪰

(𝑘,𝑣6)

6
(𝑘,𝑣5)

5
𝑘

5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣2 𝑣6

⪰

(𝑘,𝑣5)

5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣2 𝑣6

(b) An example execution with a prediction that Txn 5 commits despite conflicts.

Figure 9: Two example executions illustrating how the proof handles correct and incorrect predictions in Figure 9(a) and Figure 9(b), respectively. We
indicate the linearization and prophecy resolution points with red and blue dots, respectively. For concreteness, we use Txn 5 in the examples, but in the
actual proof, the timestamp is just a symbolic value 𝑡 that represents all possible timestamps. Note that all these states are sealed in some global invariant to
enable sharing—each thread (or, transaction) can access them only at its atomic steps, including the linearization and prophecy resolution points. This means
that the states could have changed by another thread between two atomic steps.

based on the prophecy variable. The linear view is updated
when physically reading and writing a tuple.

We use these intermediate views to relate vMVCC’s physi-
cal state to its top-level logical view, as shown in Figure 8, for
each key in the system state. The tuple abstraction relation
describes how the physical tuple layout is connected to its
abstract linear view. The prefix invariant requires that the
linear view must be a prefix of the speculative view, cap-
turing the intuition that the speculative view runs ahead
of the linear one. Finally, the last-value invariant says the
last element of the speculative view is equal to the top-level
logical value of that key. vMVCC’s proof heavily relies on
the invariants maintained between these layers.
Modeling these intermediate views as monotonic lists al-

lows the proof to seal their “authoritative” ownership in a
global invariant for sharing among transactions, but at the
same time enables the proof to retain knowledge about exist-
ing prefixes of the lists. As we will see in §4.4, this is crucial
to bridge the gap between reading the logical state at the
linearization point, and reading the physical state later on
when the transaction actually executes.

Abstraction relation underGC. In the presence of GC, the
tuple abstraction relation (shown as AR in Figure 8) cannot
hold on all timestamps, as that would require mutating the
existing part of the linear view when removing unusable
versions from the physical state. As mentioned in §2, the
key idea of GC safety is to identify versions that will not
be accessed by any transactions, including those that have
not even begun. We formalize this line of reasoning with a

monotonic timestamp 𝑡safe, which serves as a lower bound
on the transaction IDs of all active and future transactions.

To start a round of GC, the garbage collector first computes
a new 𝑡safe, and then relaxes the abstraction relation of the
target tuples so that it no longer places any constraints on
versions whose lifetime ends before 𝑡safe. Doing so allows the
garbage collector to delete those versions without violating
the abstraction relation. We further weaken the specification
for reading and writing a tuple at timestamp 𝑡 by requiring
a proof of 𝑡 ≥ 𝑡safe in their precondition, ensuring that the
deleted versions are never observed.

4.3 Maintaining invariants under speculation
One challenge in vMVCC’s proof stems from the fact that
prophecy variables can speculatively predict that a trans-
action will commit in the future, while at the same time
predicting earlier transactions that conflict with it. This
brings up two challenges related to the system-wide invari-
ant maintained by vMVCC’s proof.

The first challenge is that the invariant ensures that trans-
actions cannot commit in the presence of conflicts, which
would be at odds with the (ultimately incorrect) speculative
prediction described above. This makes it impossible for the
proof developer to update the logical state based on the incor-
rect predictions but still maintain the invariant, which must
always hold. To get around this issue, vMVCC’s proof treats
such inconsistent predictions as transaction aborts, which
makes it easy to maintain the invariant and thereby carry
through the prediction to the prophecy resolution point.

878 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The second challenge stems from the fact that an inconsis-
tent prediction, such as the example above, involves multiple
transactions, and therefore relies on prophecy resolution
in multiple threads. The prediction about each individual
transaction and thread could be correct in its own right, but
it is the combination of them that leads to a contradiction.
How should the proof be structured to establish the con-
tradiction despite only doing one prophecy resolution at a
time? vMVCC’s proof addresses this challenge by maintain-
ing a sufficiently strong invariant that carries along facts
from each prediction to derive contradictions against later
predictions as needed, as we describe below.

To illustrate this point, we first sketch out the proof for a
correct prediction, where a transaction commits and there
are no conflicts that would have forced it to abort, and then
show how vMVCC’s proof handles incorrect predictions.

Predicted commit without conflicts. In Figure 9(a), Txn
5 is speculated to commit without encountering any conflict.
The reason is that at its linearization point, the commit ac-
tion of Txn 5 in the future-action list, (𝑘,𝑣5)

5
(there might be

multiple of them in the list, but the proof cares only about
the first one), is conflict-free against all the actions prior to
it. We define 𝑚

𝑡
to be conflict-free against an action 𝑎 if

(1) 𝑎 = 𝑘

𝑡
′ , where 𝑡

′
≤ 𝑡 ∨ 𝑘 ∉ dom(𝑚), or (2) 𝑎 = 𝑚

′

𝑡
′ ,

where 𝑡′ < 𝑡 ∨ dom(𝑚
′
) ∩ dom(𝑚) = ∅. Knowing that Txn

5 will commit without conflicts, the proof safely extends
the speculative view up to timestamp 5 using the old value
𝑣2, and appends the new value 𝑣5 to it (which updates the
logical view to 𝑣5 as well) without violating the conflict-free
invariant, as described below.

Intuitively, the conflict-free invariant requires that a trans-
action reflects its update to the speculative view only if the
first commit action of the transaction is conflict-free against
all the actions prior to it in the future-action list. As we will
see below, this invariant is crucial to prove invariance of the
prefix property between the linear and speculative views.

On reading key 𝑘, the proof resolves the head of the future-
action list to 𝑘

5
. Then, it uses the conflict-free invariant to

deduce that transactions which contain updates to the specu-
lative view, but not to the linear view, must have timestamps
greater than or equal to the timestamp of this read. This
implies that the speculative view can differ from the linear
view only after a timestamp 𝑡 > 5, allowing the proof to
re-establish the prefix invariant after extending the linear
view. A similar reasoning goes for commit, except the proof
additionally uses the promise that Txn 5 will commit to know
the value at timestamp 5 of the speculative view is 𝑣5.

Predicted commit despite conflicts. In Figure 9(b), Txn
5 is speculated to commit despite the presence of conflicts
because its first commit action, (𝑘,𝑣5)

5
, conflicts with an ear-

lier action (𝑘,𝑣6)

6
. The proof, as in the previous case, extends

the speculative view up to timestamp 5 using the old value
𝑣2; however, it does not append the new value 𝑣5 as doing so

would violate the conflict-free invariant, and proceeds as if
the transaction will abort, which makes the invariant true.
For read, the proof of the prefix property is similar to

the previous case. For commit, however, the proof cannot
re-establish the prefix property after extending the linear
view, because it indeed did not apply the new value 𝑣5 at
the linearization point. Fortunately, at this point the proof
knows two facts that contradict each other: (1) reaching the
prophecy resolution point for commit, the execution must
have passed the conflict detection as illustrated in Figure 2(b),
implying the length of the linear view 𝑙 ≤ 5 + 1 (the +1 part
is due to our lists being zero-indexed); (2) some conflicting
action (in this case (𝑘,𝑣6)

6
), which extends the linear view to

at least timestamp 𝑡 > 5, must have happened before Txn 5
commits, implying 𝑙 > 5 + 1. The proof closes this case with
the derived contradiction.

4.4 Abstract state of a transaction
As mentioned in §4.1 (and illustrated in Figure 6), the value
of key 𝑘 to be read by a transaction is determined up front
by 𝑘 ↦ 𝑣 at the transaction’s linearization point. Reading
from the physical state, however, happens only at some later
point in time, and the value is based on 𝑘

t
↦ 𝑣

′, as specified
in §3.2. This means the proof has to somehow connect 𝑘 ↦ 𝑣,
𝑘

t
↦ 𝑣

′, and 𝑣
′′, the result of physically reading the tuple of

𝑘. This section describes how the system-wide invariants
shown in Figure 8 establish that connection.
Let us first consider the case where the transaction has

not written key 𝑘. Our first step then is to show 𝑣 = 𝑣
′.

Recall that at the linearization point of Txn 𝑡 that reads or
writes 𝑘, we extend the speculative view of 𝑘 up to 𝑡 using
its last value. Doing so, along with the last-value invariant,
allows us to deduce that the value of the speculative view at
index 𝑡 is 𝑣 (and will remain so since the speculative view is
monotonic). The proof then follows from the definition of
the transaction-local invariant, which says that if Txn 𝑡 has
not written 𝑘, then 𝑣

′, the transaction-local value, is equal to
the value of the speculative view at index 𝑡.
Our next step is to show 𝑣

′
= 𝑣

′′. Again recall that physi-
cally reading the tuple of 𝑘 at timestamp 𝑡 means extending
the linear view of 𝑘 up to 𝑡 (if the value at 𝑡 is still absent),
and looking up its value at index 𝑡. The proof of 𝑣′ = 𝑣

′′ then
follows immediately from the prefix invariant that requires
the linear view to remain a prefix of the speculative one.

Now consider the case where the transaction has last writ-
ten 𝑘 with value 𝑢. As specified in §3.2, the logical effect of
the write is 𝑘 t

↦ 𝑢. We thus define the remaining case for
the transaction-local invariant: if the transaction has written
𝑘, then the transaction-local value is equal to the value in its
local write buffer.
The contents of the write buffer are also what the spec-

ulated updates in a commit action (i.e., 𝑚 in 𝑚

𝑡
) resolve to.

This allows us to obtain the equality between the speculated
updates with the actual updates at the prophecy resolution

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 879

point, which is crucial when re-establishing the prefix in-
variant as discussed in §4.3.

4.5 Strict monotonicity of transaction ID
Another challenge in vMVCC’s proof is establishing strict
monotonicity of transaction IDs, for vMVCC’s RDTSC-based
algorithm described in §2. The challenge lies not only in
proving that the algorithm generates strictly increasing trans-
action IDs, but also in being able to logically execute the
transaction (i.e., update the logical state) at the linearization
point corresponding to that transaction ID. The reason this
is challenging is that the linearization point for some transac-
tion ID 𝑡

′ might not correspond to any line of code that was
executed for this transaction—the algorithm simply spins in
a loop waiting for RDTSC to advance past 𝑡′, and linearization
occurs when any transaction observes that 𝑡′ has passed.

To formally reason about this algorithm, vMVCC’s proof
maintains a logical table of slots, one per timestamp. The
slot contains the logical set of changes that a transaction
with that timestamp wants to perform, represented as a
ghost function. The actual state changes performed by this
ghost function are determined by prophecy variables, as
described above. The proof uses the slots to invoke the
ghost functions for each timestamp in order, as the RDTSC

clock advances; the proof maintains a “latest-slot” timestamp
corresponding to the last table slot that has been invoked.
The invariant associated with this proof states that this latest
timestamp is always below (or equal to) the real RDTSC clock.
Furthermore each future slot is protected by the site’s mutex
that corresponds to this timestamp.
When the transaction manager first computes 𝑡′, it regis-

ters the 𝑡′ slot in the table, putting in a ghost function that
will perform its transaction’s changes. Since 𝑡′ > 𝑡, the proof
has not yet invoked the ghost function for this slot, and the
current thread also holds the site’s mutex needed to fill this
slot (which proves that no concurrent thread could fill the
same slot). As the transaction manager runs the loop waiting
for RDTSC to move past 𝑡′, it updates the latest-slot with each
iteration, executing all of the ghost functions in the slots that
have been advanced over. The proof takes advantage of later
credits [31] in Iris that enable verification of this “unsolicited
helping” pattern.
The invariant for the slot table says that, for every slot

with a timestamp below the latest-slot, its ghost function
callback has been invoked. As a result, when the transaction
manager’s loop exits, it knows that the latest-slot is at least
as high as 𝑡′, and therefore its ghost callback must have been
invoked (either by this same thread or by some other thread
running the same loop).

5 Implementation and proof details
We implemented vMVCC in Go, and verified its implementa-
tion using the Perennial framework [3] (based on Iris [21–23]
and Coq [33]), using Goose [4] to lift vMVCC’s Go code into

Component Lines of code (Go) / proof (Coq)

Tuple 260 / 1947
Transaction 419 / 4489
Index 85 / 496
Timestamp 24 / 311
Misc 39 / 361
Ghost state - / 947
Global invariants - / 2566

Total 827 / 11117

Figure 10: Lines of code and proof for each component of vMVCC.

Perennial. To enable vMVCC’s proofs of MVCC transaction
linearizability, we incorporated prophecy variable support
from Iris [18] into Perennial.

Figure 10 summarizes the implementation and proof effort,
not including changes to Perennial that were necessary for
the verification. The lines of proof include the specifications
for each function in vMVCC’s implementation. The proof
effort for vMVCC required about 13× as many lines of proof
as lines of code, which is in the same ballpark as other verified
systems that handle concurrency [3, 6, 13].

The implementation contains several low-level optimiza-
tions that improve performance. We used RDTSC to generate
transaction IDs. We also padded data structures to avoid
false cache-line sharing that limits multi-core scalability, and
sharded the index and the set of active transaction IDs to
reduce contention from concurrent accesses.

5.1 Bugs found during verification
Whenwewere first designing and implementing vMVCC, we
were careful to structure the code in a way that makes it clear
why the code is correct, what the invariants are, how they are
maintained, and what guarantees each interface or function
provides. Nevertheless, during the actual verification, we
ran into several bugs in corner cases that we missed or did
not correctly handle in the implementation, highlighting the
importance of formal reasoning. In this subsection, we give
several examples of such bugs.

One interesting bug we found when verifying vMVCC is
related to garbage collection. The buggy code is:

func (site *TxnSite) getSafeTS() uint64 {
site.mutex.Lock()
var tidmin uint64 = MAX_U64 /* buggy */
// var tidmin uint64 = site.getCurrentTS()
for _, tid := range site.tidsActive {

if tid < tidmin {
tidmin = tid

}
}
site.mutex.Unlock()
return tidmin

}

When the garbage collector starts a new round of GC, it first
calls getSafeTS on each site to collect the per-site minimal
transaction ID, and then computes a globally minimal one

880 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

YCSB
(100/0)

YCSB
(50/50)

YCSB
(0/100)

Scan
(100 keys)

TPC-C
(1 WH)

TPC-C
(32 WH)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Pe

rf
or

m
an

ce

51
.9

 M
 t

xn
/s

27
.2

 M
 t

xn
/s

18
.8

 M
 t

xn
/s

1.
7

M
 t

xn
/s

32
.8

 K
 t

xn
/s

32
9.

6
K

 t
xn

/s

Silo vMVCC

Figure 11: Comparison of Silo and vMVCC. For YCSB, each transaction
reads or writes a key sampled from a uniform distribution with a certain
R/W ratio. For TPC-C, the number of warehouses is same as the number of
worker threads.

among them. If every transaction site is empty (i.e., if ev-
ery site returned MAX_U64), the garbage collector generates
a timestamp using an arbitrary site. (Recall that vMVCC
always places a site ID in the low bits of the timestamp, and
the choice of site ID does not matter, as it is purely there
to ensure uniqueness.) The bug arises when a transaction
enters the system right after getSafeTS returns, and then
the garbage collector computes a timestamp larger than the
ID of that transaction. Our fix to this bug is to generate a
timestamp within each site, as shown in the commented-out
code. Doing so ensures that future transaction IDs generated
by this site will be larger than the one getSafeTS returns.
Another subtle bug we discovered is missing the wait

loop when generating transaction IDs, violating the strict
monotonicity of our timestamp generation scheme. The fix
was the looping RDTSC algorithm described in §2. Finally,
since our protocol is centered around timestamps, we also
discovered several off-by-one errors in the implementation
when conducting the verification of vMVCC (e.g., where
greater-than comparisons should have been greater-than-or-
equal-to comparisons).

6 Evaluation
We experimentally answer the following questions:
• Is vMVCC competitive with state-of-the-art unverified
systems? (§6.2)

• Does the use ofMVCC in vMVCC help with long-running
read-only transactions? (§6.3)

• Are the low-level optimizations in vMVCC important for
performance? (§6.4)

• Does vMVCC scale under high-contention workloads?
(§6.5)

6.1 Experimental setup
All experiments were done on an AWS EC2 c5.9xlarge in-
stance with 36 vCPUs (18 physical CPUs, each shared by 2
hardware threads via hyper-threading) and 72 GB of main
memory, running Linux 5.15.0 and Go 1.20.3.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Write

0

3

6

9

12

Th
ro

ug
hp

ut
 (M

 tx
n/

s)

2PL
vMVCC

2PL (with long-running readers)

vMVCC (with long-running readers)

Figure 12: Comparison of 2PL and vMVCC under YCSB (4 keys accessed
per transaction, 𝜃 = 0.85, 24 threads), with and without 8 long-running
reader threads that repeatedly read 1% of the entire key space.

Weused the YCSB benchmark [7] to understand the perfor-
mance characteristics of vMVCC under various workloads.
Unless otherwise specified, we execute each YCSB put or
get in a separate transaction. The data set contains 1M key-
value pairs with each key being an 8-byte integer and value
an 100-byte string. The access pattern follows the uniform
distribution, or the Zipfian distribution, with a parameter 𝜃
controlling the skewness of the distribution. We vary the
read-write ratio and the number of keys accessed in each
transaction.

We also used the TPC-C benchmark, which involves more
sophisticated transactions. TPC-C models the operation of
a wholesale supplier, a common online-transaction process-
ing (OLTP) workload. It contains 9 tables and 5 kinds of
transactions, each with various workload characteristics. In
particular, most transactions can be processed in a single
warehouse, so it is natural and efficient to map each ware-
house to one thread. Our current implementation of vMVCC
requires the key to be an 8-byte integer, and every tuple
needs a key. Because of these limitations we made two modi-
fication to TPC-C. First, we do not support “get customers by
their last name” appearing in the OrderStatus and NewOrder

transactions; they are replaced with just “get customers by
customer ID”. Second, the History table does not have a
primary key, so we randomly generate one for it.

We employ a background GC thread for vMVCC in every
experiment. We repeat each experiment 10 times, each for
30 seconds. We report the mean, minimum, and maximum
(the last two as error bars) among the 10 runs.

6.2 Comparison with Silo
To evaluate whether vMVCC achieves competitive perfor-
mance with state-of-the-art systems, we compare vMVCC to
Silo [35], a high-performance transactional database system.
Because vMVCC does not store data durably, we compare
with MemSilo, a variant of Silo that does not persist its data.
Silo is an OCC/MVCC based system, using OCC to provide
serializability, and using MVCC to access a consistent snap-
shot of old versions. Unlike vMVCC, Silo does not generate
a new version for every write, but only once per snapshot
epoch (on the order of 1 second), which reduces memory
management costs. Silo’s OCC/MVCC design has the ad-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 881

∞ 10 s 5 s 1 s 500 ms 100 ms0

100

200

300

400

Pe
rf

or
m

an
ce

 (K
 tx

n/
s)

2PL vMVCC

Figure 13: Comparison of 2PL and vMVCC under TPC-C (32 warehouses),
with a thread periodically invoking the read-only transaction StockScan.

vantage of lower memory usage and allocation overhead
over vMVCC’s pure MVCC design. On the other hand, Silo
only ensures its snapshot transactions (those that access past
versions) always read a consistent snapshot, without impos-
ing ordering constraints on them with respect to normal
linearizable transactions, whereas in vMVCC, a “snapshot
transaction” is simply a linearizable transaction that does
not perform writes.
Figure 11 shows the results of the comparison for sev-

eral configurations of YCSB and TPC-C, normalizing to the
throughput achieved by Silo. Similarly to Silo, each worker
thread in vMVCC generates the workload parameters and
then immediately processes the transaction. We used a YCSB
profile where each transaction accesses a single key sam-
pled from a uniform distribution. vMVCC achieves 96.6%
the throughput of Silo for a read-only workload in YCSB,
and 38.8% for a write-only workload. For TPC-C, vMVCC
achieves 43% the throughput of Silo for 1 warehouse and
25.7% for 32 warehouses. We hypothesize that the perfor-
mance difference between Silo and vMVCC is largely due to
(1) vMVCC’s higher memory allocation overhead for storing
past versions, and (2) its inefficient way of executing range
scans—lacking a tree-like index structure, vMVCC relies on
the continuity invariant of TPC-C [34], and expands a range
query into multiple point queries. To test these hypotheses,
we conducted the following two experiments.

First, we ran the same write-only YCSB workload, except
that we fixed the write value to some statically allocated
string, and modified vMVCC to perform in-place update
on its tuples, without changing any other parts of the code
(hence the resulting system is not even correct, but it is
merely for us to understand more about vMVCC’s perfor-
mance characteristics). Applying these changes increases
the relative performance from 38.8% to 87.3%.

Second, we ran an additional range scan workload where
each transaction first randomly picks a starting key, and then
reads the next 100 keys. Silo executes each transaction with
a single scan, whereas vMVCC issues 100 reads. Figure 11
shows the results in the “scan” column. vMVCC achieves
48.1% of Silo’s throughput; the difference mostly attributes
to more cache misses in vMVCC.
Based on these experiments, we conclude that the gap

between vMVCC’s performance and that of Silo is indeed

1 2 4 8 16 32
Number of Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

 tx
n/

s)

base
+ sharding/padding
+ sharding/padding + FAI
+ sharding/padding + RDTSC

Figure 14: Throughput of vMVCC with different optimizations enabled.
The benchmark is YCSB (1 key read per transaction, 𝜃 = 0.2).

largely due to memory allocation and vMVCC’s lack of sup-
port for range scans. For benchmarks that do not stress these
two aspects, vMVCC achieves performance competitive with
Silo.

6.3 Robustness to long-running readers
One main advantage of MVCC over traditional concurrency
control protocols is that its performance should remain stable
even in the presence of long-running readers. To confirm
that vMVCC’s design indeed achieves these performance
benefits, we implemented a variant of vMVCC that uses two-
phase locking for concurrency control instead of MVCC, and
compared the performance of vMVCC with this 2PL variant.

YCSB. We first compare vMVCC and 2PL under the YCSB
workload, using a YCSB profile where each transaction reads
or writes 4 keys. We fixed the number of threads to 24, 𝜃
to 0.85, and varied the read-write ratio from 0% to 100%.
We then ran one experiment without long-running readers,
and another one where the workload includes 8 transactions
repeatedly reading 10K keys (1% of the entire key space).

Figure 12 shows the results. In the absence of long-running
readers, 2PL performs better than vMVCC for all read-write
ratios except for the read-only workload (comparing the
solid lines). The difference stems from MVCC’s overhead of
(1) generating timestamps and (2) keeping past versions and
the associated memory allocation costs.
In the presence of long-running readers (comparing the

solid and dashed lines of each system), vMVCC’s throughput
drops slightly between the range of 11.5%–22.2%, whereas
2PL’s throughput drops significantly as the write ratio in-
creases (e.g., 72.6% and 84.9% for write ratio 80% and 100%,
respectively). As a result, the performance of 2PL with long-
running readers is worse than that of vMVCC for workloads
with 40% or more writes; for instance, under write ratios
80% and 100%, vMVCC performs 2.2× and 4× better than 2PL,
respectively. The reason is that, in 2PL, the long-running
readers hold read locks on keys for a long duration, prevent-
ing other transactions from writing to those keys.

TPC-C. We also compare vMVCC and 2PL under the TPC-C
workload. Similarly to prior work [36], we add a read-only
transaction StockScan that counts the number of each item in

882 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 4 8 16 32
Number of Threads

0.0

6.6

13.2

Th
ro

ug
hp

ut
 (M

 tx
n/

s)

θ = 0.8
θ = 0.85
θ = 0.9
θ = 0.95

(a) Read scalability of vMVCC under high-contention workloads.

1 2 4 8 16 32
Number of Threads

0.0

2.4

4.8

Th
ro

ug
hp

ut
 (M

 tx
n/

s)

θ = 0.8
θ = 0.85
θ = 0.9
θ = 0.95

(b) Write scalability of vMVCC under high-contention workloads.

Figure 15: Scalability analysis under high contention. The benchmark is YCSB (4 keys accessed per transaction).

all warehouses. We parametrize the workload by the interval
of invoking StockScan. Figure 13 shows the results.
When no StockScan is invoked (represented by the ∞ in-

terval on the x-axis), 2PL performs better than vMVCC by
around 14%. However, when there are StockScan transac-
tions running, NewOrder transactions that update the stock
table will conflict with StockScan, and block under 2PL con-
currency control. As the interval between StockScan trans-
actions decreases, 2PL’s performance drops significantly,
whereas vMVCC throughput remains more-or-less the same,
since StockScan accesses old versions of tuples and does not
impact other transactions. For StockScan intervals 500 and
100 ms, the throughput of vMVCC is 11× and 54.4× that of
2PL. In terms of latency, vMVCC maintains its 99.9% latency
around 3.4 ms across all StockScan intervals, whereas the
99.9% latency of 2PL increases from 3.2 ms in the absence
of StockScan transactions, to a few tens and occasionally
hundreds of ms when StockScan is invoked every 100 ms.

6.4 Low-level optimizations

vMVCC implements (and verifies) two low-level optimiza-
tions to achieve high performance on many cores: (1)
padding and sharding data structures and mutexes, to avoid
cache-line contention, and (2) using RDTSC to generate trans-
action IDs without shared-memory contention. To under-
stand whether they are important for performance, we en-
able each optimization in turn and measure the resulting
performance. To stress the implementation, we chose a
lightweight YCSB profile where each transaction accesses a
single key. We chose a low-contention setting (𝜃 = 0.2) so
that transactions largely access different portions of the key
space; we will evaluate scalability under high contention in
the next subsection.

To evaluate the benefit of the RDTSC-based transaction ID
generation, we compare with two alternatives. The first is a
lock-based design where the transaction manager acquires a
mutex to get (and increment) the next transaction ID counter.
The second is a lock-free implementation that uses the fetch-
and-increment (FAI) instruction to atomically obtain the next
transaction ID.

Figure 14 shows the results. The optimizations have little
effect on a single core, but significantly improve vMVCC’s
performance on 32 cores. Partitioning and padding index and
transaction sites improves vMVCC’s performance by 2.8×
at 32 cores. Using FAI increases throughput by a further 3×
over the lock-based design at 32 cores. Finally, RDTSC-based
transaction IDs achieve yet another 3.7× improvement in
throughput compared to FAI at 32 cores. In summary, the
results show that all of these optimizations are important
for scaling vMVCC’s performance with many cores.
Enabling all the optimizations, vMVCC’s throughput

scales by 15.6× using 16 threads. The result suggests that
vMVCC eliminates almost all contention on its internal data
structures (when the keys themselves do not contend). The
throughput scales further by 1.66× when doubling the num-
ber of threads to 32, implying that vMVCC can benefit from
hyper-threading even though not as much as from having
more physical cores.

6.5 Scalability under contention
The previous section showed that vMVCC scales nearly lin-
early for a low-contention workload, with its low-level op-
timizations. In this section, we evaluate vMVCC’s scalabil-
ity under high-contention workloads, using a YCSB profile
where each transaction issues 4 reads/writes, with the skew-
ness parameter 𝜃 ranging from 0.8 to 0.95.

Figure 15 shows the results. For reads (Figure 15(a)), before
reaching the hyper-threading threshold (i.e., 18 cores), the
throughput scales almost linearly with respect to the number
of threads, except for extremely contended workloads (e.g.,
𝜃 = 0.95): the aggregated throughput of 16 threads is 14.9×
that of a single thread for 𝜃 = 0.8, and 12.6× for 𝜃 = 0.95. Scal-
ability drops after reaching the hyper-threading threshold
because of interference, especially for higher skewness: us-
ing 32 threads achieves 22.8× better performance for 𝜃 = 0.8,
and 16.9× for 𝜃 = 0.95.
For writes (Figure 15(b)), asides from hyper-threading

interference, having more contention also causes more con-
flicts between transactions, and hence higher abort rates.
For instance, the abort rate at 32 threads for 𝜃 = 0.8 is 4.8%,
whereas for 𝜃 = 0.95 is 27.6%. The result is that vMVCC’s

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 883

throughput with 32 threads is 11.7× that of a single thread
for 𝜃 = 0.8 and 9.9× for 𝜃 = 0.95.

The results show that vMVCC’s performance scales with
the number of cores even for workloads of high contention.

7 Related work
vMVCC is the first formally verifiedMVCC-based system, but
builds on prior work on formal verification and specification
of transactions, as we now discuss.

Verified systems. The closest related work to vMVCC is
GoTxn [6], a verified transaction library that uses 2PL for
concurrency control. GoTxn stores data durably to disk and
uses the verified GoJournal [5] journaling system to provide
crash atomicity. vMVCC uses a more sophisticated concur-
rency control plan (MVCC), which allows it to achieve high
performance for long-running read-only transactions, while
GoTxn uses standard 2PL which does not perform well with
long-running readers. vMVCC also implements and veri-
fies sophisticated optimizations, such as strictly increasing
RDTSC-based timestamps, which are not present in GoTxn.

Malecha et al. [28] verified a simple relational database, fo-
cusing on SQL queries, the relational data model, and the use
of B+-trees on disk. These issues are complementary to the
focus of vMVCC, which targets handling concurrent trans-
actions using sophisticated concurrency control protocols
and low-level optimizations.

Prophecy variables. Abadi and Lamport [1] first proposed
prophecy variables as a proof technique to establish refine-
ment mappings between state machines. Jung et al. [18]
later integrated it in a Hoare-style program logic. Prior work
using prophecy variables is mostly focused on verification
of protocols and small examples of data structures and algo-
rithms, such as RDCSS, the Herlihy-Wing queue [18], and
the atomic snapshot algorithm [24].
In this paper, we apply prophecy variables in a sophis-

ticated transaction library. We use prophecy variables to
make more elaborate predictions about the behavior of trans-
actions, including what data they read and write, and we
demonstrate that prophecy variables are useful for reasoning
about transactions.

Framework for specifying and verifying transactions.
Lesani et al. [25] develop a framework for verifying software
transactional memory systems and apply it to the NOrec
transactional memory algorithm [9]. NOrec uses a form of
OCC, in which transactions check whether they have been
invalidated by conflicting writes during commit time. As
with 2PL, NOrec transaction’s linearization point occurs dur-
ing commit, and hence does not appear to require prophecy
variables in its proof.

vMVCC uses logically atomic triples to specify transac-
tions, instead of classical serializability and linearizability
definitions [15] that are based on trace equivalence (e.g., as

used by GoTxn). This makes it easier to verify clients of
a transaction library by proving Hoare triples about code
running inside of the transaction library. Prior work has
similarly found it useful to introduce alternate specifications
for transactions and serializability in the context of formal
verification. The Push/Pull model [20] provides a set of prim-
itive operations which can be used to describe a variety of
transactions. Any system that can be decomposed into these
operations is guaranteed to be serializable. C4 [26] is a frame-
work that supports verifying transactional objects, that is,
concurrent data structures that allow chaining multiple op-
erations together in an atomic transaction. The framework
supports composing transactional objects as components of
a higher-level transactional object.

8 Conclusion
This paper presented vMVCC, the first MVCC-based trans-
action library with a machine-checked proof of correctness.
A key challenge in verifying vMVCC lies in reasoning about
the linearization of transactions under MVCC, where the lin-
earization point occurs before the transaction body actually
runs. vMVCC addressed this challenge by using prophecy
variables to speculate whether upcoming transactions are
going to commit, and what values they are going to write,
thereby allowing vMVCC to state and prove a simple yet
general specification for its top-level transaction interface
using logical atomicity. vMVCC incorporates further low-
level optimizations, such as using RDTSC to generate strictly
increasing transaction IDs, with corresponding proofs of
correctness, to achieve high performance. An evaluation
demonstrated that, for a range of YCSB and TPC-C work-
loads, vMVCC’s throughput is 25–96% of the throughput
of Silo, a state-of-the-art unverified system; that vMVCC
benefits from MVCC to achieve good performance for long-
running read-only transactions compared to two-phase lock-
ing; and that vMVCC’s low-level optimizations are important
for achieving high performance. At the same time, vMVCC’s
proof effort—13× as many lines of proof as lines of code—is
on par with other verified concurrent systems.

Acknowledgments
We are grateful to Anish Athalye, Sanjit Bhat, Alexandra
Henzinger, Jon Howell, Derek Leung, the anonymous review-
ers, and our shepherd, Adriana Szekeres, for their valuable
feedback that improved this paper. We thank Tej Chajed for
discussions on transactions and the Perennial framework.
This work was supported by a grant from Amazon AWS
through the Science Hub program, and by NSF awards CCF-
2123864 and CCF-2318722. The code and proof of vMVCC is
available at:

https://pdos.csail.mit.edu/projects/vmvcc.html

884 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://pdos.csail.mit.edu/projects/vmvcc.html

References
[1] M. Abadi and L. Lamport. The existence of refinement

mappings. In Proceedings of the 3rd Annual IEEE Sym-
posium on Logic in Computer Science, pages 165–175,
Edinburgh, Scotland, July 1988.

[2] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zel-
dovich. OpLog: a library for scaling update-heavy data
structures. Technical Report MIT-CSAIL-TR-2014-019,
MIT Computer Science and Artificial Intelligence Lab-
oratory, Cambridge, MA, Sept. 2014.

[3] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zel-
dovich. Verifying concurrent, crash-safe systems with
Perennial. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP), pages 243–258,
Huntsville, Ontario, Canada, Oct. 2019.

[4] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zel-
dovich. Verifying concurrent Go code in Coq with
Goose. In Proceedings of the 6th International Work-
shop on Coq for Programming Languages (CoqPL), New
Orleans, LA, Jan. 2020.

[5] T. Chajed, J. Tassarotti, M. Theng, R. Jung, M. F.
Kaashoek, and N. Zeldovich. GoJournal: a verified, con-
current, crash-safe journaling system. In Proceedings of
the 15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 423–439, Virtual
conference, July 2021.

[6] T. Chajed, J. Tassarotti, M. Theng, M. F. Kaashoek, and
N. Zeldovich. Verifying the DaisyNFS concurrent and
crash-safe file system with sequential reasoning. In
Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 447–
463, Carlsbad, CA, July 2022.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with YCSB. In Proceedings of the 1st ACM Symposium on
Cloud Computing (SOCC), pages 143–154, Indianapolis,
IN, June 2010.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, D. Woodford, Y. Saito, C. Tay-
lor, M. Szymaniak, and R. Wang. Spanner: Google’s
globally-distributed database. In Proceedings of the 10th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Hollywood, CA, Oct. 2012.

[9] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec:
streamlining STM by abolishing ownership records. In
Proceedings of the 15th ACM Symposium on Principles

and Practice of Parallel Programming, pages 67–78, Ban-
galore, India, Jan. 2010.

[10] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton:
SQL Server’s memory-optimized OLTP engine. In Pro-
ceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, New York, NY, June
2013.

[11] etcd Authors. etcd API, Apr. 2023. https://etcd.io/
docs/v3.6/learning/api/#revisions.

[12] J. M. Faleiro and D. J. Abadi. Rethinking serializable
multiversion concurrency control. In Proceedings of
the 41st International Conference on Very Large Data
Bases (VLDB), Kohala Coast, HI, Aug.–Sept. 2015.

[13] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg,
and D. Costanzo. CertiKOS: An extensible architec-
ture for building certified concurrent OS kernels. In
Proceedings of the 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
653–669, Savannah, GA, Nov. 2016.

[14] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, and V. Srinivasan. Amazon Redshift and
the case for simpler data warehouses. In Proceedings
of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Australia, May–June
2015.

[15] M. P. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans-
actions on Programming Languages Systems, 12(3):463–
492, 1990.

[16] B. Jacobs and F. Piessens. Expressive modular fine-
grained concurrency specification. In Proceedings of
the 38th ACM Symposium on Principles of Programming
Languages (POPL), pages 271–282, Austin, TX, Jan. 2011.

[17] R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal,
and D. Dreyer. Iris from the ground up: a modular foun-
dation for higher-order concurrent separation logic.
Journal of Functional Programming, 28:e20, 2018.

[18] R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport,
A. Timany, D. Dreyer, and B. Jacobs. The future is
ours: prophecy variables in separation logic. In Pro-
ceedings of the 47th ACM Symposium on Principles of
Programming Languages (POPL), pages 45:1–45:32, New
Orleans, LA, Jan. 2020.

[19] K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA: Fast
memory-optimized database system for heterogeneous
workloads. In Proceedings of the 2016 ACM SIGMOD
International Conference on Management of Data, San
Francisco, CA, June–July 2016.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 885

https://etcd.io/docs/v3.6/learning/api/#revisions
https://etcd.io/docs/v3.6/learning/api/#revisions

[20] E. Koskinen and M. Parkinson. The push/pull model of
transactions. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 186–195, Portland, OR, June
2015.

[21] R. Krebbers, R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer,
and L. Birkedal. The essence of higher-order concurrent
separation logic. In Proceedings of the 26th European
Symposium on Programming (ESOP), pages 696–723,
Uppsala, Sweden, Apr. 2017.

[22] R. Krebbers, A. Timany, and L. Birkedal. Interactive
proofs in higher-order concurrent separation logic. In
Proceedings of the 44th ACM Symposium on Principles of
Programming Languages (POPL), pages 205–217, Paris,
France, Jan. 2017.

[23] R. Krebbers, J. Jourdan, R. Jung, J. Tassarotti, J. Kaiser,
A. Timany, A. Charguéraud, and D. Dreyer. MoSeL:
a general, extensible modal framework for interactive
proofs in separation logic. In Proceedings of the 23rd
ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 77:1–30, St. Louis, MO, Sept.
2018.

[24] L. Lamport and S. Merz. Prophecy made simple. ACM
Transactions on Programming Languages and Systems,
44(2):6:1–6:27, Apr. 2022.

[25] M. Lesani, V. Luchangco, and M. Moir. A framework for
formally verifying software transactional memory algo-
rithms. In Proceedings of the 23rd International Confer-
ence on Concurrency Theory (CONCUR), page 516–530,
Newcastle upon Tyne, UK, Sept. 2012.

[26] M. Lesani, L. Xia, A. Kaseorg, C. J. Bell, A. Chlipala,
B. C. Pierce, and S. Zdancewic. C4: verified transac-
tional objects. Proceedings of the ACM on Programming
Languages, 6(OOPSLA):1–31, 2022.

[27] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions.
In Proceedings of the 2017 ACM SIGMOD International
Conference on Management of Data, Chicago, IL, May
2017.

[28] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky.
Toward a verified relational database management sys-
tem. In Proceedings of the 37th ACM Symposium on
Principles of Programming Languages (POPL), Madrid,
Spain, Jan. 2011.

[29] P. W. O’Hearn. Resources, concurrency, and local rea-
soning. Theoretical Computer Science, 375(1):271–307,
2007.

[30] D. P. Reed. Naming and Synchronization in a Decentral-
ized Computer System. PhD thesis, Massachusetts Insti-
tute of Technology, Sept. 1978. http://hdl.handle.
net/1721.1/16279.

[31] S. Spies, L. Gäher, J. Tassarotti, R. Jung, R. Krebbers,
L. Birkedal, and D. Dreyer. Later credits: Resourceful
reasoning for the later modality. In Proceedings of the
27th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), Ljubljana, Slovenia, Sept.
2022.

[32] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis,
T. Grieger, K. Niemi, A. Woods, A. Birzin, R. Poss,
P. Bardea, A. Ranade, B. Darnell, B. Gruneir, J. Jaffray,
L. Zhang, and P. Mattis. CockroachDB: The resilient
geo-distributed SQL database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management
of Data, Portland, OR, June 2020.

[33] The Coq Development Team. The Coq Proof Assis-
tant, version 8.15, Jan. 2022. URL https://doi.org/
10.5281/zenodo.5846982.

[34] Transaction Processing Performance Council (TPC).
TPC benchmark C standard specification, revision 5.11,
Feb. 2010. https://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-c_v5.11.0.pdf.

[35] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), Farmington, PA, Nov. 2013.

[36] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An
empirical evaluation of in-memory multi-version con-
currency control. Proceedings of the VLDB Endowment,
10(7):781–792, Mar. 2017.

[37] J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller,
E. Tschannen, S. Atherton, A. J. Beamon, R. Sears,
J. Leach, D. Rosenthal, X. Dong, W. Wilson, B. Collins,
D. Scherer, A. Grieser, Y. Liu, A. Moore, B. Muppana,
X. Su, and V. Yadav. FoundationDB: A distributed un-
bundled transactional key value store. In Proceedings of
the 2021 ACM SIGMOD International Conference onMan-
agement of Data, pages 2653–2666, Virtual conference,
June 2021.

886 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://hdl.handle.net/1721.1/16279
http://hdl.handle.net/1721.1/16279
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

	Introduction
	Design and interface of vMVCC
	Using and specifying vMVCC
	Example: [0.5]AtomicXfer
	Specifying the transaction interface

	Proving vMVCC
	Speculation using prophecy variables
	Incorporating speculation in abstract state
	Maintaining invariants under speculation
	Abstract state of a transaction
	Strict monotonicity of transaction ID

	Implementation and proof details
	Bugs found during verification

	Evaluation
	Experimental setup
	Comparison with Silo
	Robustness to long-running readers
	Low-level optimizations
	Scalability under contention

	Related work
	Conclusion

