
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

An Extensible Orchestration and Protection Framework
for Confidential Cloud Computing

Adil Ahmad and Alex Schultz, Arizona State University;
Byoungyoung Lee, Seoul National University; Pedro Fonseca, Purdue University

https://www.usenix.org/conference/osdi23/presentation/ahmad

An Extensible Orchestration and Protection Framework
for Confidential Cloud Computing

Adil Ahmad†, Alex Shultz†, Byoungyoung Lee∗, Pedro Fonseca§

†Arizona State University ∗Seoul National University §Purdue University

Abstract
Confidential computing solutions are crucial to address the
cloud privacy concerns. Although SGX has witnessed signif-
icant adoption in the cloud, the reliance on hardware imple-
mentation is restrictive for cloud providers in terms of orches-
trating deployments and providing stronger security to their
clients’ enclaves. eOPF addresses this limitation by provid-
ing a comprehensive, secure hypervisor-level instrumentation
framework with the ability to monitor all enclave-OS inter-
actions and implement protected services. eOPF overcomes
several challenges including bridging the semantic gap be-
tween the hypervisor and SGX and attesting the co-location
of the framework with enclaves. Using eOPF, we implement
two protected services that provide platform resource orches-
tration and complementary enclave side-channel defense. Our
evaluation shows that eOPF incurs very low performance
overhead (<2%) in its default state and only modest overhead
(geometric mean of 17% on SPEC) when strong, comple-
mentary side-channel defenses are enabled, making eOPF an
efficient and practical solution for the cloud.

1 Introduction

The previous two decades have shown a substantial growth in
internet services enabled by the cloud. Unfortunately, using
cloud services requires users to outsource sensitive code, data,
or both to cloud infrastructures shared by untrusted individ-
uals. Moreover, the rise in cyber-attacks and corresponding
increasing governmental regulations on sensitive information
management (e.g., CCPA, GDPR) have made cloud privacy a
first-order concern for many cloud providers and users. Thus,
the cloud model success increasingly depends on providing
strong privacy guarantees.

Cloud providers have been trying to accommodate the user
demand for privacy using confidential computing solutions.
Such solutions allow secure computation on cloud machines
without trusting the machine’s huge and vulnerable software
codebase like the operating system (OS). Among several ap-

proaches, the hardware-protected Intel Software Guard eXten-
sions (SGX) enclaves have turned out to be the most popular
key building block. In particular, SGX is already deployed
by major cloud providers (e.g., Microsoft Azure [24], IBM
Cloud [55]), thanks in no small part due to the extensive
software ecosystem (e.g., development kits and library OSs)
that aids the development of new SGX programs and porting
existing codebases [17, 25, 76, 83].

Despite the strong security properties of SGX, its inflexi-
ble hardware implementation poses pragmatic challenges for
cloud providers and users. For instance, modern cloud ser-
vices aim to be elastic, which often comes with a pay-as-you-
go model that requires detailed fine-grained resource usage ac-
counting. Unfortunately, SGX only provides detailed enclave-
usage data to the OS, which is untrusted even when cloud
providers run containerized instances since the OS’ large
codebase is susceptible to attacks from untrusted users on
the machine. Moreover, since SGX’s inception, many attacks
have been discovered against enclaves, which are currently
difficult for cloud providers to mitigate. In particular, hard-
ware updates for several attacks (e.g., digital side-channels)
were never implemented by Intel, eroding user trust in the
security capabilities of SGX and exposing users to attacks.

This paper proposes eOPF, a framework designed to pro-
vide a privileged trusted software environment for cloud
providers to deploy secure services on enclave-running plat-
forms. eOPF leverages virtualization extensions to enable
trustworthy and complete interposition between enclaves and
the OS. By virtue of such interposition, eOPF allows cloud
providers to build protected services that enhance enclaves.
In particular, this paper shows how eOPF can be used to (a)
securely orchestrate enclaves (e.g., control and monitor en-
clave resource usage) and (b) add complementary enclave
side-channel defenses.

Leveraging a framework like eOPF to enable services for
enclaves poses several technical challenges. First, to enable
protection and resource monitoring, the framework should
interpose between the OS and enclave and mediate all OS-
enclave interactions. Unfortunately, this capability is not na-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 173

tively available to the virtualization layer. Second, for remote
users to trust that their enclaves are protected, they should de-
termine that their enclaves are co-located with the framework.
Unfortunately, there is currently no mechanism to guaran-
tee such co-location. Third, even if previous challenges are
solved, it is necessary to show how to securely implement
orchestration and protection services using the framework.

eOPF achieves complete interposition of all enclave-OS
interactions through a combination of hardware-enabled in-
terception features and several indirect mechanisms (§4.1).
In particular, Intel CPUs allow a virtualization-based frame-
work to intercept all SGX supervisor instructions, which are
used to manage enclave creation and destruction. To reliably
trap on all events during enclave execution (e.g., enclave start
and stop events), eOPF carefully leverages a combination of
memory protection (namely extended page tables), the x86
single-step mode, and interrupt-interception mechanisms.

We address the co-location challenge by designing, to our
knowledge, the first platform-enclave co-attestation proto-
col allowing enclave users to trust that their enclaves are
protected (§4.2). Instead of naively leveraging the virtual-
ization framework for enclave installation, which does not
prove co-location to a remote user, eOPF leverages a combi-
nation of the cloud provider’s initial provisioning, intercepted
enclave installation, and SGX remote attestation to achieve
co-location guarantees for cloud users.

In its current form, eOPF includes a library of functions to
allow cloud providers and users to enable several orchestra-
tion and protection services (§5). For instance, eOPF imple-
ments a library of side-channel defenses that users can select
during runtime. The defense capabilities are implemented
at a resource-level (e.g., page tables, caches) in a principled
manner to isolate resources responsible for side-channel and
ensure full protection. Additional services can be flexibly
implemented through further software libraries.

We implemented a proof-of-concept eOPF framework with
services on the Bareflank extensible framework [3]. In addi-
tion, we analyze the end-to-end security of the system and
show that eOPF is effective at preventing diverse attacks
against its interposition, co-attestation, and implemented ser-
vices. Furthermore, we demonstrate eOPF’s performance (§8)
using benchmarks and real-world programs—the SPEC CPU
2006 integer suite [13], Redis [12], and Lighttpd [9]. Our re-
sults indicate that the base framework (without side-channel
defenses) incurs less than 2% performance impact to enclaves,
and when all side-channel defenses are enabled, it incurs a ge-
ometric mean performance overhead of 17%, hence suitable
for diverse use-cases in today’s clouds.

2 Confidential Cloud Computing

This section describes the confidential cloud computing sys-
tem model, threat model, and research goal of eOPF. Fig. 1
provides an overview of the system model.

Cloud machine

User

Sensitive data

and result

Enclave

Provider-controlled

protected layer (eOPF)

Enclave

System Admin

Logs and

usage rules

Complementary

protection rules

Figure 1: Our confidential computing model.

2.1 System Model

We assume that users want to run sensitive computations on
the cloud (e.g., healthcare analytics on genetic information of
several individuals [16]). They trust the cloud provider (like
other confidential computing approaches [2, 47, 48]) but do
not trust other users on the machine. The cloud provider does
not trust users and aims to protect users from each other, since
some may be malicious.

The cloud provider leverages SGX to enable users to se-
curely run computations in enclaves, without trusting the bulk
of the software stack or other users. SGX has several ad-
vantages over other approaches. First, SGX provides strong
confidentiality and integrity guarantees against a wide-range
of attacks [33]. Second, SGX is now widely-available in Intel
server machines [4], a sizeable portion of all servers in the
market today. Third, there are mature software development
kits (SDKs) allowing users to port their programs to SGX
enclaves [17] and library operating systems [76,83] that allow
users to easily run legacy programs inside enclaves.

Our model also assumes that the cloud provider runs a
type-1 hypervisor on the machine (e.g., AWS Nitro [2], pro-
tected KVM [54]) and provisions containerized instances for
users. Type-1 hypervisors provide better security guarantees
due to a thin software codebase running at the virtualiza-
tion layer (i.e., Intel VMX [52]). Containerized instances in-
crease resource efficiency and simplify resource provisioning;
hence, containerized instances underlay increasingly popu-
lar cloud models, such as microservices and serverless com-
puting [1, 11, 72]. Moreover, since users run their sensitive
computations inside SGX enclaves, the traditional isolation
limitations of container instances do not apply. Nevertheless,
our model also directly applies to scenarios where the cloud
provider provisions virtual machines (VMs) (§9).

Since the cloud machine runs enclaves of different users,
the cloud provider needs to deploy a flexible, protected layer
to easily manage enclave instances, including managing re-
source oversubscription (e.g., AWS burstable instances [6])
to maximize resource efficiency. Furthermore, the cloud
provider wants to use this layer to offer enhanced, comple-
mentary protection for enclaves against attacks that SGX does
not protect, potentially by charging a higher cost.

174 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2 Threat Model and Assumptions

The cloud provider and honest users assume that a dishonest
user (or other third-parties) may compromise the machine’s
operating system, by leveraging a kernel vulnerability or mis-
configuration. After OS compromise, they assume that an
attacker will launch attacks to (a) steal sensitive information
from enclaves using digital side-channels [40, 43, 60, 84, 88]
or (b) launch attacks against the platform or other users using
enclaves (e.g., to prevent malware introspection [74]).
Assumptions. This heading describes our assumptions about
the security of the SGX processor and hypervisor, as well as
the availability of a trusted key management service.
SGX processor. We trust that the processor is correctly im-
plemented. In particular, it correctly prevents direct access of
enclaves from external software and implements all crypto-
graphic and remote attestation primitives.
Hypervisor. We trust the hypervisor is correct and securely
initialized on the cloud machine by the trusted cloud provider.
A cloud provider can securely initialize a hypervisor by lever-
aging UEFI secure boot [87] or verified late launch (e.g.,
Intel TXT [52, 63]). Leveraging a trusted platform mod-
ule (TPM) [23], the provider can also attest the correct initial-
ization remotely. Note that although we trust the hypervisor,
its compromise cannot harm existing SGX guarantees since
enclaves are protected from hypervisors. Please refer to §7.3
for a hypervisor TCB discussion.
Key management service. We assume the availability of a
trusted local or remote key management service (KMS). A
trusted local key management service can be designed using
a TPM. In either scenario, we assume that our system has
secure access to the KMS (e.g., using an isolated channel to a
local device [89] or authenticated encrypted channel).
Out-of-scope. We do not consider attacks through micro-
architectural defects, software vulnerabilities inside enclave
programs, system calls, and physical attacks. We also exclude
attacks through micro-architectural defects (e.g., speculative
execution attacks [29, 56, 85]). Defenses enabled by our sys-
tem (§5.2) for side-channels also prevent the exploitation of
micro-architectural defects [27, 56] in SGX enclaves through
these channels. However, the root cause of micro-architectural
defects are hardware bugs, and as such they are already rou-
tinely addressed by Intel through microcode or hardware up-
dates [7, 51]. Existing schemes [57, 75, 76] can prevent vul-
nerability exploitation in buggy enclave programs and protect
enclaves from malicious system call results [25, 49]. Finally,
physical attacks that infer DRAM access patterns and electro-
magnetic analysis are very expensive [58].

2.3 Research Goal

Given the mistrust of the OS, this paper’s research goal is
to design a hypervisor-level instrumentation framework that

allows cloud providers to enable protected services on en-
clave platforms. The framework is designed to be flexible and
support two use-case classes: (a) secure enclave orchestration
(e.g., preventing dishonest users from running enclaves, mon-
itoring enclave resource usage) and (b) complementary side-
channel defense for enclaves (e.g., by isolating resources).

Combining a hypervisor-level framework with SGX is fa-
vorable for cloud providers and users. From a cloud provider’s
perspective, hypervisor-only approaches [47, 48] offer more
control but they require significant investment to design in-
house full enclave abstractions and implement the correspond-
ing SDKs. From a user’s perspective, hypervisor-only ap-
proaches offer flexible functionality (e.g., resource isolation)
but they have a single point-of-failure (i.e., the cloud hyper-
visor) in terms of data protection. Our approach solves both
problems by leveraging SGX with its robust software ecosys-
tem [17,76,83] and complementary data protection guarantees
in the event of a cloud hypervisor compromise. Hence, co-
leveraging SGX and a hypervisor is a best-of-both-worlds
scenario for cloud providers and users.

3 Background on Intel SGX

Intel SGX [64] allows a process to create protected execution
contexts called enclaves. This section describes memory pro-
tection, lifecycle, and remote attestation aspects of SGX since
they are relevant to eOPF.
Enclave page cache (EPC). This is a reserved physical mem-
ory region where enclaves reside. SGX relies on the operating
system to over-subscribe the EPC using demand paging (i.e.,
securely retrieving pages from an encrypted backing store
using page faults and updating page tables).
Enclave lifecycle. An enclave is created by the OS using
SGX supervisor leaf instructions (ENCLS). During enclave ex-
ecution, the untrusted and enclave parts of the process execute
SGX user leaf instructions (ENCLU) for a world switch.

Enclave Creation. The OS executes ECREATE to create an
enclave context. After context creation, the OS invokes EADD
to copy initial code and data, provided by the user, from non-
enclave to enclave pages. Then, the OS executes EEXTEND
to measure the copied page (explained in the next section).
Finally, the OS executes EINIT to finalize the enclave.

Enclave Entry/Exit/Resumption. The untrusted part of the
process can transition to the enclave mode using EENTER.
Afterward, the enclave executes EEXIT to transition back to
the untrusted mode, for two reasons: (a) synchronous exits
(i.e., to perform a system-call or shutdown the enclave) and
(b) asynchronous exits (i.e., to handle page faults, interrupts,
and exceptions). After handling the reason for an exit, the
process executes ERESUME to resume the enclave.
Remote attestation. SGX enables remote users to assert that
their code and initial data is correctly loaded into an enclave

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 175

by sending them the enclave measurement (MRENCLAVE
or Me) signed using the SGX CPU’s attestation key.

The enclave measurement process is entirely determinis-
tic [30]. The measurement algorithm has an initialization, up-
date, and finalization stage. During initialization (ECREATE),
the CPU creates an initial SHA-256 hash using the OS-
provided SGX Enclave Control Structure (SECS), which con-
tains the enclave’s metadata (e.g., base address and size). In
the update stages, the CPU updates the hash using each page
added into the enclave (at EADD) alongside an OS-provided
security information (SECINFO) block. The SECINFO block
contains information about the page’s metadata (e.g., offset
and permissions). In the same stage, the CPU measures each
added page in 512-bit blocks (at EEXTEND). Lastly, in the fi-
nalization stage, the enclave’s measurement is hashed one
last time with the total count of bits that are updated in the
MRENCLAVE (at EINIT).

In formal terms, assuming an enclave of N pages (P1 to
PN) with Z total bits, the entire enclave measurement is:

Me = H f in(Hupd(...Hupd(Hupd(IV,SECS),P1)...,PN),Z)

In this equation, IV are the initialization vectors. Additionally,
for simplicity, we assume that Hupd(state,P) also includes a
hash of the SECINFO of page P.

4 eOPF Design

eOPF provides a privileged trusted software environment
for cloud providers to build protected services on their SGX-
compatible confidential computing platforms. eOPF lever-
ages hypervisor-level instrumentation to enable trustworthy
and complete interposition between enclaves and the OS. This
interposition allows users to run protected services that aug-
ment enclave security and improve resource management
(e.g., measure enclave execution time).

Hypervisor-level or virtual machine extensions (VMX) [52]
allow eOPF to monitor and control the execution of the OS,
e.g., observe and manipulate page tables. In particular, by
leveraging VMX, eOPF can intercept supervisor instructions
executed by the OS and exceptions raised by the machine.
Moreover, eOPF can also leverage VMX features to protect
its TCB from the OS and external devices.

Designing a secure hypervisor-level instrumentation frame-
work for enclaves poses several challenges that we address:
C1: Semantic VMX-SGX gap. Complete and reliable inter-
position of enclave interactions is needed to build protected
services. While VMX framework can natively trap on SGX
supervisor instructions for enclave management, it cannot
natively trap SGX user instructions that determine when an
enclave starts or stops. These latter events are typically junc-
tions of information exchange between enclaves and the OS;
hence, interposition is critical to augment enclave security.
C2: Co-location attestation hurdle. SGX’s remote attesta-
tion allows a remote user to know that their programs are

Enclave
TRP

Untrusted process

(a) EPT-based enclave entry and resume monitor

eOPF

Interposition layer

Return

Resume

Disable
perms.

Enable
perms.

eenter

eresume

Trap

1 4

5

2

3

6

Enclave
TRP

Untrusted process

(b) Single-step-based synchronous enclave exit monitor

eOPF

Interposition layer

Set MTF

Resume
after exitexecute

Trap

eresumeeexit

4

1

23

Figure 2: eOPF’s interposition on enclave entries and syn-
chronous enclave exits.

running inside an enclave, but provides no guarantees that
this enclave is running on the cloud provider’s machine. With-
out such guarantees, users cannot tell that their enclaves are
protected by eOPF.

C3: Practical service libraries. It is necessary to show how
to leverage the enclave instrumentation framework to build
protected services. To help users easily build such services,
it is necessary to design and implement easy-to-use libraries
with core functions (e.g., transparently augment enclave pro-
tections against classes of attacks).

4.1 Enclave Life-Cycle Interposition

eOPF achieves complete interposition over all interactions
between an enclave and the OS using native x86 features and
new indirect interposition mechanisms.

Enclave management monitor. eOPF leverages the native
capabilities of x86 virtualization to trap all SGX supervisor
instructions (ENCLS), which are used for enclave creation,
deletion, and other management tasks. In particular, eOPF
sets the ENCLS-interception bit and its corresponding instruc-
tion bitmap in the x86 Virtual Machine Control Structure
(VMCS) [52] to trap ENCLS instructions. On a trap, eOPF
undertakes three sequential steps. First, eOPF implements
service-specific operations needed for the instruction (refer
to §4.2 and §5.1). Second, eOPF executes the trapped instruc-
tion using its trusted code and parameters provided by the

176 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OS. Third, eOPF resumes the OS’ execution from after the
instruction by updating the processor’s program counter.
EPT-enforced enclave entry and resume monitor. eOPF
tracks enclave entry and resume events using the extended
page tables (EPT). EPT allows a virtualization framework to
protect regions of the physical memory from unauthorized
read, write, and execute operations. By removing execute
permissions from the enclave page cache (EPC) region, eOPF
can ensure that every time enclave code is executed it raises
a trap. The challenge, however, is that the trap is raised as
an enclave exit, and there is no guarantee that the OS will
resume the enclave after eOPF resolves the trap.

eOPF addresses the challenge by creating a trusted resume
pointer (TRP), a reserved location within the process’ address
space that is guaranteed to execute ERESUME. eOPF inserts the
TRP at a location where it does not significantly impact the
OS’ process memory management (i.e., only shares top-level
page table with the remaining addresses). The OS is notified
through a shared memory channel and kernel module (§6) to
reserve the TRP region. eOPF write-protects the TRP and
page tables that address this location using EPT, ensuring the
TRP cannot be modified by the OS.

Fig. 2-(a) illustrates the EPT-based enclave entry and re-
sume scheme employed by eOPF. On every processor core,
eOPF leverages the EPT to disable execute permissions for
all enclave page cache (EPC) regions (1). Hence, when a
process transitions into the enclave region (i.e., using EENTER
or ERESUME) (2), the CPU traps the operation with an EPT
violation (3). eOPF resolves the violation by enabling exe-
cution permissions (4) and redirecting the program counter
(rip) to the TRP (5). Finally, the enclave resumes (6).
Dual enclave exit monitors. eOPF uses the x86 single step
mode and interrupt interception features to track synchronous
and asynchronous enclave exits, respectively.

Single-step-based synchronous exit monitor. eOPF lever-
ages the x86 single step mode to trap synchronous exits (e.g.,
for an exit-based system call). In particular, since system soft-
ware is not allowed to intercept enclave execution apart from
debug mode, the execution (from EENTER to EEXIT) within
an enclave is considered a single step [32].

Fig. 2-(b) illustrates the synchronous exit monitor process
during an exit-based enclave system call. eOPF enables an
the single-step mode by setting the MTF in the current pro-
cessor’s VMCS (1) before entering the enclave (2). Hence,
the processor’s execution traps to eOPF’s monitor when the
enclave executes EEXIT (3 ∼ 4). eOPF disables this trap al-
lowing the exit to be processed by the system. This process is
repeated at the next enclave entry.

Interrupt-based asynchronous exit monitor. Apart from syn-
chronous exits, the enclave performs asynchronous exits in
order to service interrupts (e.g., raised by the timer hardware).
eOPF ensures that all interrupts are trapped by setting the
interrupt-interception bit inside the VMCS.

UsereOPF

initiate communication2

send signed certificate3

eOPF-user

channel est.

pre-measure

if 𝑝𝑀𝑒 = 𝑝𝑀𝑒
′

initiate SGX attestation

Send report (with𝑀𝑒)

Identifier-provisioned

enclave installation

Attest-based

co-loc. check

Enclave

Cloud

Provider

Enclave creation

initiated by OS

share secret key (ECDH)4

9

8

7

Verify𝑀𝑒 contains eid

10

provision

certificate
1

Prepare enclave

and send to OS
5send (𝑝𝑀𝑒 , 𝑒𝑖𝑑)6

append eid

𝐾𝐹𝑂 𝐾𝐹𝑂

11

Figure 3: The platform-enclave co-attestation protocol.

4.2 Platform-Enclave Co-Attestation
SGX’s attestation does not tell a user that their enclaves are
running on their cloud provider’s machine. In particular, the
attestation report only contains information about the plat-
form’s security version (microcode) [53]. This is a significant
challenge that motivates eOPF’s co-attestation protocol.

Without a guarantee of co-location between enclaves and
eOPF, an attacker (e.g., a malicious user) who has compro-
mised a cloud machine’s operating system could trick users
into sending data to enclaves unprotected by eOPF. In partic-
ular, the attacker could exfiltrate a user’s code from a cloud
machine, send it to their own SGX-capable machine, and in-
stall it inside an unprotected enclave. Afterwards, the attacker
could route all network traffic from the cloud machine to their
own machine, and trick the user into sending their confidential
data to the unprotected enclave. This potential attack would
not require collusion with the VMM, since VMMs must allow
network traffic to a cloud user’s machine.

A naive approach to prevent this attack would be to lever-
age eOPF’s interposition (last section) and design an entirely
new in-house SGX attestation approach. Unfortunately, that
is a significant undertaking that would require complex at-
testation functionality to be redundantly re-implemented and
make enclave security completely reliant on eOPF, instead
of complementary to SGX protections.

eOPF implements a more secure, novel co-attestation pro-
tocol that leverages both eOPF’s interposition and SGX re-
mote attestation. The key insight of our approach is that
eOPF’s interposition allows it to bind an infeasible-to-guess
secret (as a watermark) to a user’s enclave created on its ma-
chine, which will be transmitted and validated through SGX
remote attestation to the remote user.

The eOPF co-attestation protocol has three stages. First,
with the help of the trusted cloud provider, a remote user
establishes a secure communication channel with an eOPF
instance. Through this channel, the user sends a secret to this
eOPF instance. Second, during enclave creation, the eOPF

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 177

instance securely and transparently inserts that secret into
initial enclave memory. Third, the remote user leverages SGX
attestation to verify the initial enclave contents and validate
that co-attestation secret is valid, thereby confirming that the
enclave is co-located with a cloud provider eOPF instance.
In all these steps, eOPF uses a side-channel resistant crypto-
graphic library (e.g., EverCrypt [69]) to protect secret keys.
Fig. 3 illustrates our co-attestation protocol.
eOPF-user channel establishment. With the provider’s
help, an eOPF instance on a cloud machine and a user of the
machine establish a secure communication channel. In partic-
ular, during initial platform provisioning, the cloud provider
installs the eOPF framework on the machine with a signed
digital attestation certificate (1). This certificate and the cor-
responding private key is securely stored by eOPF using a
trusted key management service (e.g., protected storage de-
vice or a trusted platform module) (§2.2).

When a remote user wants to run enclaves on the machine,
the user will first establish a secure communication channel
with the eOPF framework (2 – 4). In particular, the user asks
the framework to authenticate itself (2) and the framework
responds with its signed certificate (3). If the certificate sig-
nature is valid—based on the cloud provider’s off-the-band
provided public key (PubKC)—the remote user and the eOPF
instance establish a shared secret key (KFO) (4). Note that
eOPF does not require direct access to the network. In par-
ticular, all eOPF-user communication can be routed through
the operating system. This approach is safe since all com-
munication after shared channel establishment is end-to-end
encrypted (using KFO) and is similar to how enclaves use the
operating system as an untrusted network transport.
Identifier-provisioned enclave installation. Once a secure
channel between the user and an eOPF instance is estab-
lished, the eOPF instance installs a secret identifier into a
user-specified enclave during enclave creation. We explain
this process in the next paragraphs.

The user compiles a special enclave binary with one empty
reserved memory page (4KB) at the end using a custom linker
script and sends it to the OS. The reserved memory page will
be used to hold a random 4KB secret (called eid). The user
also creates a premeasurement (pMe) of this enclave binary.
The pMe is a hash of all enclave binary pages using SGX’s
enclave measurement algorithm (described in §3) except the
last reserved page. In formal terms, assuming the enclave has
N pages (P1 to PN), the pMe is calculated as follows:

pMe = Hupd(...Hupd(Hupd(IV,SECS),P1)...,PN−1)

The user sends the enclave binary to the OS (5). Simulta-
neously, the user sends the pMe and eid to eOPF using their
secure communication channel (6).

During enclave creation, eOPF recreates pMe to attest
that the correct user enclave is being initialized on the ma-
chine (7). In particular, on enclave creation (§4.1), eOPF
recreates the hash using an internal SHA-256 library config-

ured with the OS-provided parameters to ECREATE and EADD
instructions (i.e., SECS, SECINFO, and page contents). If the
premeasurement matches pMe, eOPF transparently modifies
the last enclave page to include the eid (8). This requires
trapping EADD and replacing the contents inside the physical
page being added to the enclave.

There are three requirements for the above operations to
securely happen. First, the OS should not modify an enclave
page while it is being measured by eOPF. Second, the OS
should not read the eid while it is being copied into the en-
clave. Third, after copying eid, there should be no additional
pages added to the enclave. eOPF fulfills the first two re-
quirements using EPT. In particular, eOPF write-protects the
SECINFO and page contents of the enclave page before the
premeasurement process. Similarly, while adding eid to the
reserved page, eOPF removes all permissions from the page
before executing EADD. These protections are only disabled
after EADD executes (§4.1). Finally, eOPF does not allow any
EADD operation on the enclave after adding eid, ensuring that
it really is the user’s enclave, and not a malicious enclave
designed by the OS to steal eid.

Please refer to §9 for a discussion on how this co-attestation
step can be potentially achieved without premeasurement.
Attestation-based co-location check. Once the enclave is
securely provisioned with a secret identifier (eid) that is only
known to the eOPF instance, a remote user can leverage SGX
remote attestation (§3) to check whether their enclave contains
that identifier or not (9 ∼ 11). In formal terms, assuming a
correct enclave page with eid is Peid and Z total bits, the
correct enclave measurement should be as follows:

Me = H f in(Hupd(pMe,Peid),Z)

Since eid is a 4KB identifier, there is an infinitesimally small
chance for an attacker to randomly guess (2−32768); hence, this
measurement can only hold if the enclave memory contains
eid provisioned by eOPF, proving co-location.

5 eOPF Protected Services

eOPF allows cloud providers to implement protected services
in an extensible manner. This section demonstrates eOPF’s
value by presenting the design of two services that help cloud
providers manage resources and augment enclave security.

5.1 Secure Enclave Orchestration
The secure enclave orchestration service gives cloud providers
the ability to control what enclaves run on their platform, de-
tect when enclaves are used for malicious purposes, and ob-
tain detailed enclave-related resource usage for accountability
and billing. This section describes how eOPF allows cloud
providers to achieve such orchestration.
Protected launch control. eOPF ensures that only users ap-
proved by the cloud provider are allowed to run enclaves on

178 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cloud machines. In modern SGX machines, cloud providers
leverage flexible launch control (FLC) [53] to provision a plat-
form and provide launch tokens to their customers without
relying on Intel’s provisioning service. Unfortunately, flex-
ible launch is controlled by the untrusted OS using MSRs,
IA32_SGXLEPUBKEYHASH{0-3} and the attacker can exploit
this feature to launch arbitrary enclaves. eOPF leverages vir-
tualization features to trap all writes to MSRs (i.e., WRMSR)
and disallows modifications to launch control MSRs. Hence,
all valid changes to the FLC feature must come from the cloud
provider directly to eOPF.

Malware scanning. An attacker may try to hide malware
on the cloud machine using shielded environments like en-
claves [39,74]. For instance, research shows that attackers can
use TPMs to hide attack targets from forensic analysts [39]. A
typical approach to detect malware on a machine is by scan-
ning binaries and signature matching against a database of
known malware. Although a simple approach, this is effective
in practice (e.g., one study shows 59% of known malware can
be detected by signature matching tools [81]).

eOPF enables secure scanning of enclave contents within
its framework during enclave creation. In particular, during
enclave creation, as each page is being added to the en-
clave (§4.1), eOPF compares the hash of contents against
known malware hashes. eOPF also provides the ability to
prevent the attacker from installing a barebones enclave and
leveraging it to insert malware (e.g., by enabling execute per-
missions on data pages). This is achieved by intercepting
and rejecting EMODPE, an ENCLS leaf instruction leveraged
for changing existing enclave page permission changes and
adding additional pages.

One concern with enclave content scanning is user privacy
especially in scenarios where enclave code is an intellectual
property (e.g., services like 23andMe [16] with proprietary
healthcare analysis algorithms). Such concerns can be miti-
gated if the cloud provider runs their scanning tool inside an
enclave and makes the source code of the scanner publicly-
available for enclave attestation by remote users. If a propri-
etary scanner is used, the provider can employ SGX sandbox
enforcement mechanisms [19, 49]. With these, users can trust
that the proprietary scanning tool will be unable to leak sensi-
tive information from the scanning enclave.

Resource usage statistics. Once an allowed enclave is run-
ning on the machine, eOPF collects detailed statistics about
the enclave’s machine resource usage and periodically sends
it to a system administrator.

By default, eOPF collects information about two resources:
CPU time and memory. In particular, eOPF collects how
much time (in cycles using RDTSCP) is dedicated to the user’s
enclaves by implementing timers at enclave entries and ex-
its. To prevent the OS from modifying CPU timer informa-
tion, eOPF disallows all changes to timer-related MSRs [52].
eOPF also collects how much memory is allocated to the en-

clave. This is achieved by monitoring enclave page addition
(EADD) and enclave page removal (EWB) instructions.

If a user enables complementary enclave side-channel de-
fense, enclaves use additional resources (§5.2). eOPF also
collects statistics of such usage for reporting purposes. In par-
ticular, eOPF tracks whether hyperthreading is disabled on a
CPU core to defeat per-core side-channels. If the user selects
static memory allocation for paging side-channel defense, this
information is also collected. Finally, eOPF reports whether
the enclave is using an isolated last-level cache or not, and
how many partitions within the LLC are reserved for the user.

5.2 Complementary Side-Channel Defense

This service allows users to enable complementary principled
defenses against digital side-channels. Digital side-channel at-
tacks allow untrusted software on a machine (e.g., the OS) to
observe the interactions of trusted software and the hardware
platform [70]. Observation allow attackers to infer memory
access patterns of an enclave program, which has been shown
to leak sensitive enclave data (e.g., cryptographic keys) be-
cause many programs have data-dependent pathways [26].

To reason about defeating side-channels, we divide hard-
ware resources based on how they can be observed (hence, ex-
ploited) into cross-core and per-core resources. For instance,
last-level cache is shared by all processor cores, hence it can
be observed by attacker on any core, while the L1/L2 caches
are private to each processor core and can only be observed if
the attacker runs code within the same core.

Using our classification and by integrating techniques from
literature [60, 61, 66, 67], this service offers principled side-
channel defense that can be flexibly enabled by users with
minimal effort. In particular, the service isolates cross-core
resources, ensuring an attacker cannot simultaneously observe
enclave access onto the resource from any other core. More-
over, the service invalidates or deactivates per-core resources
to ensure an attacker is unable to observe enclave access se-
mantic when they run sequentially on a processor core after
an enclave, or parrallely on an enclave-running core.

5.2.1 Cross-Core Resource Isolation

Page tables. The page table is created and maintained by the
untrusted OS. The OS can infer page-granular (4KB for SGX
enclaves) access patterns of an enclave through an enclave’s
page tables. In particular, the OS can modify the enclave’s
page tables to induce page faults [88] or stealthily observe
the access bits of the enclave’s page table entries [84]. To
avoid these attacks, eOPF allows the OS to create and delete
the page tables, at enclave creation and deletion, respectively.
However, eOPF prevents modifications to the page tables
during enclave execution. Therefore, eOPF employs temporal
isolation to protect the page tables.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 179

After enclave creation, eOPF write-protects an enclave’s
page tables using EPT. During each enclave entry, eOPF also
checks the CR3 value to ensure that the OS did not try to create
duplicated enclave page tables. Hence, eOPF ensures that the
attacker cannot induce enclave page faults during execution.
Furthermore, eOPF scans the enclave’s page tables and sets
the access bit of each entry, ensuring that the attacker cannot
leak information through access bits. At enclave shutdown,
eOPF disables write-protection to let the OS handle page
table deallocation. Please refer to §9 as to how this defense
can be extended to support oblivious page swapping.
Last-level cache (LLC). The LLC contains cache lines from
all programs executing on all processor cores. Hence, the LLC
is vulnerable to cache attacks [26,74]. To defeat these attacks,
eOPF partitions the LLC such that an enclave’s cache lines
are spatially isolated from untrusted programs.

Cache Allocation Technology (CAT) allows isolating cache
lines of different CPU processors across different partitions
in the LLC. Leveraging CAT, eOPF divides the LLC into
enclave and non-enclave partitions. At enclave entries and
resumes, eOPF switches the processor to the enclave parti-
tion, while the untrusted software (on other processors) use
the non-enclave partition. On enclave exits, eOPF reverts the
processor back to the non-enclave partition. While each parti-
tion can support unlimited enclaves, CAT can only support
15 distrusting partitions concurrently at this time. In particu-
lar, the latest CAT implementation has 16 domains [52] and
1 partition must remain reserved for untrusted software. In
the future, if additional domains are implemented, eOPF can
support additional distrusting partitions.

eOPF creates new LLC partitions using CAT-related MSRs,
IA32_L3_MASK_N. A processor follows the partition speci-
fied in its register IA32_PQR_ASSOC. Whenever a partition
is changed, all cache-lines must be invalidated to enforce
the change. eOPF achieves this using WBINVD. Furthermore,
eOPF prevents modifications to CAT MSRs during enclave
execution to ensure full control over CAT.

5.2.2 Per-Core Resource Invalidation and Deactivation

Intra-core computational units (ICUs). Such units include
Arithmetic Logic Units (ALUs) and Translation-Lookaside
Buffer (TLBs). An attacker can abuse hyper-threading, a hard-
ware feature that allows concurrent execution of two threads
on the same processor core, to infer an enclave’s access se-
mantics onto ICUs [21, 44]. To defeat these attacks, eOPF
ensures that hyper-threading is deactivated on the processor
core that is running an enclave.

eOPF notifies the OS using its shared memory chan-
nel (§6) that a certain enclave should execute without hyper-
threading. The OS can disable hyper-threading in software
(e.g., OpenBSD does this by default [10]) by programming the
x86 Local APIC [52]. In particular, once hyper-threading is
disabled on a processor, it does not raise hardware interrupts.

Hence, eOPF monitors each core for hardware interrupts and
if it observes hardware interrupts on enclave-running (hyper-
threaded) processor cores, it terminates the enclave. On each
enclave exit, ICUs are automatically flushed by the SGX pro-
cessor, leaving no observable intermediatte effect.
L1 and L2 cache. Enclave and untrusted programs that run
sequentially or in parallel (using hyper-threading) on a proces-
sor core share cache lines across the L1 and L2 caches. An at-
tacker can exploit this sharing to leak enclave contents through
cache attacks [26,43]. eOPF deactivates hyper-threading (pre-
vious section) to prevent parallel attacks. To protect against
sequential attacks, eOPF invalidates the L1/L2 cache (us-
ing WBINVD) at enclave exits. Hence, all enclave contents are
flushed back to memory and the attacker observes an empty
cache state on each attack.
Branch predictor units (BPUs). Branch predictor units like
the branch target buffer (BTB) and pattern history table (PHT)
predict the control-flow of a computation in an out-of-order
CPU. Attackers can use them to infer an enclave’s control-
flow by observing whether a particular branch was taken or
not [40,60]. Unfortunately, the SGX CPU does not provide na-
tive mechanisms to invalidate these units. Nevertheless, eOPF
deactivates the components critical for their side-channel ex-
ploits and designs software invalidation.

Prior work has shown that reliable attacks on the BTB re-
quire specialized units such as the Last Branch Record (LBR)
or Intel Processor Trace (PT) [60], particularly because of
the BTB’s small size in comparison to other predictors. The
LBR and PT are performance tools that cannot be used by en-
claves. Hence, eOPF deactivates the LBR and PT by setting
MSRs, IA32_DEBUGCTLA and IA32_RTIT_CTL, respectively,
and denying all modifications to these MSRs.

eOPF uses knowledge of the PHT’s structure to implement
a software invalidation technique, ensuring the attacker is un-
able to observe intermediate enclave artifacts on the PHT. In
particular, the PHT contains 16,384 entries and is indexed
by the lowest log2N bits of a conditional branch instruction’s
address [40]. Each PHT entry is a 2-bit Finite State Machine
with 4 states: (a) Strongly Not-Taken, (b) Weakly Not-Taken,
(c) Weakly-Taken, and (d) Strongly-Taken. An entry is up-
dated each time the processor takes (or does not take) a branch.
Using this knowledge, eOPF generates conditional branches
aligned to each PHT entry. For each branch, the code performs
an always-true arithmetic comparision and takes the branch.
Therefore, each PHT entry moves towards the Strongly-Taken
state. eOPF runs the code thrice to ensure that the final state
of each PHT entry is Strongly-Taken. Hence, the attacker
always observes a uniform state of the PHT.

6 Implementation

We built a prototype of eOPF using the Bareflank extensible
framework [3]. However, in practice, eOPF can be built using

180 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

any VMX framework or type-1 hypervisor (§2.1). By default,
eOPF enables EPT protections, traps all enclave events and
critical processor-related events (e.g., WRMSR), and enables
the enclave orchestration service (refer to §4.1 and §5.1).
Apart from bootstrapping and VMX-specific code, the base
framework includes a SHA-256 hash generator [65] for co-
attestation and kernel module for eOPF-OS communication.
Furthermore, we implemented three eOPF modules: a paging
module (PM) for page table protections, a caching module
(CM) for L1/L2 and last-level cache protections, and a branch-
ing module (BM) for BPU protections.

Our prototype does not currently implement communica-
tion with the user. Such communication is a one-time cost at
enclave creation; hence, it does not impact runtime results.
Also, Bareflank does not currently support IOMMU to protect
the framework against device-based attacks. Nevertheless,
IOMMU should be enabled by default in cloud machines and
it is not an additional slowdown factor incurred by eOPF.

7 Security Analysis

This section provides a security analysis of eOPF and pro-
tected services by discussing several attacks and implemented
defenses (Fig. 4). It concludes with a brief TCB discussion.

7.1 Analyzing Framework Security

Preventing attacks against interposition. eOPF requires
secure interposition of enclave and important system events.
To prevent this interposition, the attacker can try to over-
write the VMCS, a data structure that contains the ENCLS-
interception bitmap, the monitor trap flag (MTF), and is re-
sponsible for enabling other important interception function-
ality (e.g., WRMSR traps). Moreover, the attacker can try to
modify the TRP and trick eOPF into thinking the enclave
resumed. eOPF prevents all aforementioned attacks (§4.1).

The VMCS and its extended instruction bitmaps are lo-
cated in protected eOPF memory and the attacker is unable
to modify these structures to disable ENCLS or other system
functionality interposition. The protected memory is created
from virtualization extensions. In particular, eOPF uses EPT
protections to prevent software access and IOMMU protec-
tions to prevent device access [89]. The critical data structures
(or tables) of EPT and IOMMU are also stored within the pro-
tected memory; hence, the OS cannot access them. Finally,
the TRP is located in a reserved region of the enclave pro-
cess’ address space, it cannot be overwritten due to memory
protections, and its page tables are also write-protected.
Preventing attacks against co-attestation. The attacker can
attempt to circumvent co-attestation by trying to leak secret
eOPF keys provisioned in the machine or the enclave unique
ID (eid), trying to guess eid, and replaying communication.
eOPF prevents all such attacks (§4.2).

Potential attacks eOPF defense

Against interposition (§4.1)
Modify VMCS Prevent software and device access

using EPT and IOMMU, resp.
Disable mem. protections Access-protect EPT/IOMMU structures
Modify TRP Write-protect TRP and its PTs

Against co-attestation (§4.2)
Leak eOPF secrets Store in protected memory/storage

and use SC-resistant crypto libraries
Steal eid using enclave Only install to pre-measured enclave
Guess eid Use very large number
Replay communication Use Random nonces

Against enclave orchestration (§5.1)
Modify LC MSRs Trap writes to MSRs
Hide resource usage Trap EADD; prevent TSC MSR changes
Hide malware in enclaves Scan initial content and disable changes

Against side-channel defense (§5.2)
Write to page tables Write-protect using EPT
Disable/modify CAT Trap writes to MSRs
Enable hyper-threading Monitor interrupts on signalled cores
Enable LBR/PT Trap corresponding MSRs

Figure 4: Table illustrates how eOPF defends against several
attacks directed at its framework and protected services.

The platform is securely provisioned by the trusted cloud
provider and all secret keys established during provisioning
are securely maintained within the system’s protected key
management system (e.g., a persistent dedicated storage).
Every subsequent cryptographic operation is also securely
performed in a side-channel resistant manner ensuring the
attacker cannot leak keys while they are being used. More-
over, during enclave installation, the eid is directly received by
eOPF through a secure communication channel with a remote
user and securely kept in protected memory. The possibility
of the attacker being able to guess the correct eid is infinitesi-
mally small (2−32768). This is harder than guessing an RSA
cryptographic key. Finally, even though the OS can record
and replay network packets, all network communication is
secured using random nonces to prevent replay attacks.

7.2 Analyzing Services Security

Preventing attacks against enclave orchestration. After
compromising the OS, the attacker can attempt to run arbitrary
enclaves by modifying launch control MSRs or hide their
enclave resource usage from the cloud provider. Additionally,
an attacker might try to hide malware inside enclaves. eOPF
prevents all aforementioned attacks.

eOPF ensures that SGX flexible launch control features
can only be configured by the cloud provider by intercept-
ing all writes to the launch control MSRs. Hence, even a
user that has compromised the OS cannot run enclaves on
a machine without obtaining a launch token from the cloud
provider. Since eOPF interposes all enclave supervisor and
user interactions, it can trivially measure how the enclave is
using resources. In particular, it uses RDTSCP to measure CPU

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 181

time on enclave entries and traps all instructions that insert or
remove enclave pages. To prevent the attacker from keeping
malware inside enclaves, eOPF scans enclave contents at load
time and prevents subsequent code changes.
Preventing attacks against side-channel defense. The at-
tacker can attempt to disable side-channel defenses by modi-
fying entries inside enclave page tables (e.g., reset access bit),
modify CAT configuration to disable last-level cache isolation,
resume hyper-threading to leverage per-core side-channels,
and re-enable LBR/PT to exploit BTB-related side-channels.
eOPF protects against all aforementioned attacks (§5.2).

Access and dirty bits are set in enclave page table entries,
and the tables are write-protected (using EPT) to prevent addi-
tional modifications. To modify CAT partitions, the OS would
need to write to CAT-related MSRs (using WRMSR) and such
a write is trapped by eOPF. If the attacker re-enables hyper-
threading, they will be caught since the processor core will
raise an interrupt that will be intercepted by eOPF. Finally,
LBR and PT configurations can only be changed by writing
to MSRs, and any such attempt is caught by eOPF.

7.3 Analyzing eOPF’s TCB
This section analyzes eOPF’s TCB followed by a brief dis-
cussion on the impact of attacks on eOPF to a user.

eOPF allows the OS to handle most functionality and only
interposes on sensitive interactions (e.g., MSR writes). Hence,
from a cloud machine’s perspective, eOPF only marginally
increases the TCB, which can be rigorously tested.

On a virtualized cloud machine, eOPF’s complete TCB
includes the hypervisor. We find this acceptable for several
reasons. In particular, even though hypervisors can be large,
the attacker-exploitable interface is typically significantly nar-
rower than monolithic OSs, resulting in fewer discovered vul-
nerabilities in hypervisor codebases [28, 77]. The exploit of
these vulnerabilities can be made significantly more challeng-
ing by using memory lockdown and compiler instrumentation
to ensure hypervisor code integrity and control-flow integrity,
respectively, with a small performance impact [86]. Moreover,
eOPF’s TCB can be reduced using hypervisor compartmen-
talization [77]. In such scenarios, eOPF can execute alongside
a tiny security monitor and enforce security invariants while
remaining isolated from the large cloud hypervisor.

Finally, since eOPF is external to the enclave and the mi-
crocode, it cannot access enclave contents and, during its
operation, it is not exposed to enclave secrets. Hence, attacks
against eOPF cannot harm the existing SGX guarantees.

8 Performance Evaluation

This section describes eOPF’s performance through custom
benchmarks and diverse real-world programs.
Setup. We evaluated eOPF using SGX desktop and server
machines (Fig. 5). Although SGX is deprecated on desktops,

Desktop Server

Hardware
CPU model i7-8700 Xeon Gold 6348
CPU sockets 1 2
Cores × threads 6 × 2 28 × 2
Clock speed 3.20GHz 2.60GHz
Cache (L1/L2/LLC) 64KB/256KB/12MB 64KB/1.2MB/42MB
LLC ways 16 12
RAM size 16GB 512GB
EPC size 128MB 128GB

Software
Linux kernel 5.4 5.11
SGX SDK 2.3 2.15
SGX driver Legacy 2.6 DCAP 1.41

Figure 5: Machine platforms used for evaluation.

we used the desktop because we observed a large number of
enclave exits on it. In particular, the desktop has a smaller EPC
which leads to frequent page faults (which cause exits) when
running large enclaves [68]. Many of eOPF’s side-channel
defenses incur extra costs at exits; hence, the desktop machine
allows us to better observe worst-case overheads.

We leveraged two software optimizations to reduce enclave
exits, both of which are well-supported by modern systems.
First, unless noted otherwise, we used the exitless (or switch-
less) system call setting for all experiments. This setting is
now widely-supported (e.g., even the relatively basic SGX
SDK supports it [17]) and is known to improve performance
by avoiding expensive enclave exits using background request
handling threads and system call batching. Other work also
evaluates SGX enclaves using this option [22, 68]. Second,
we configured both machine kernels as tickless [15] to reduce
enclave exits due to frequent timer interrupts [66].
Terminology. eOPF refers to the base framework with all
interposition and cloud orchestration features but no runtime
side-channel defense. eOPF+PM refers to the system with
the paging module enabled for paging side-channel defense.
eOPF+CM refers to caching module enabled on a system
to prevent cache attacks, while eOPF+BM refer to the sys-
tem enabled with BPU defenses. Hyper-threading in enclave-
running cores is disabled for both CM and BM. When all
side-channel defenses are enabled, we refer to the system as
eOPF+PM+CM+BM. Our baseline in all experiments was a
non-virtualized system.

8.1 Microbenchmarks
This section describes our experiments to find the raw cost of
eOPF’s enclave interposition and side-channel protection at
different events through two benchmarks.
Enclave event interposition benchmark. We created a test
program that executes 100k barebones enclave entry and exit
tests. In the entry test, the application enters the enclave while
providing current (pre-entry) time as argument. The enclave
measures the time it took to enter and returns to the appli-

182 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 6: Overheads at enclave entry and exit for eOPF on
our server machine. TF means trap flag. SGX’s EENTER and
EEXIT instruction cost was comparable to existing work [68].

cation. In the exit test, the same set of operations occur but
from enclave to the application. To get a detailed picture, we
also measured the time to perform eOPF-specific tasks (e.g.,
switch EPT during entry) from inside the framework. The
time was measured everywhere using RDTSCP. Finally, we
disabled exitless mode for this experiment to get the full cost
of exits. Fig. 6 shows the performance overhead incurred in
our experiment with native SGX and eOPF.

eOPF overhead. eOPF adds 59% overhead to enclave en-
tries, while it adds 71% overhead to enclave exits.

On each entry, eOPF incurs a virtual machine exit to handle
the EPT violation, which takes 9639 cycles on our machine.
We believe some of this cost is because eOPF is implemented
on Bareflank, which is designed for modularity instead of
performance; hence, it can be further optimized. Once the
violation is handled, eOPF sets the trap flag to trap subsequent
exits and switches the EPT to allow enclave execution. These
tasks take 1067 cycles.

On each enclave exit, eOPF incurs a virtual machine exit
for the trap flag, which only takes 1608 cycles on our machine.
Afterwards, eOPF switches the EPT to trap subsequent en-
clave entries which takes 812 cycles on our machine.
Side-channel protection benchmark. We ran a benchmark
enclave program that continuously writes to a large 256 MB
buffer on both machines. We ran the enclave continuously for
60 seconds and measured incurred performance overheads
(using RDTSCP) while enabling different side-channel protec-
tion modules. Since the resources affected by the caching
and branching modules (CM and BM) have different sizes on
each of our test machines, we ran their experiments on each
machine. Fig. 7 shows the runtime performance overhead.

eOPF+PM overhead. Paging defenses introduce a one-time
cost, during the enclave’s lifetime, at enclave creation. The
paging module performs the following steps: (a) maps guest
page tables to eOPF’s address space, (b) scans entire page
tables (including non-enclave entries) to find the enclave re-
gions and sets access/dirty bits, and (c) write-protects enclave
page table entries. On the server machine, these steps adds an

Invalidation Time (kcycles) Time (ms)
Min Max Min Max

Desktop
CM (L1/L2 + LLC) 247 10560 0.08 3.35
BM (PHT) 120 844 0.04 0.30
Total 367 11404 0.12 3.65

Server
CM (L1/L2 + LLC) 3240 19454 1.25 7.48
BM (PHT) 373 494 0.14 0.19
Total 3613 19947 1.39 7.67

Figure 7: Overheads due to resource invalidation at enclave
exits for CM and BM.

additional ∼1.9 seconds to our enclave’s creation. We expect
this cost is negligible for longer-running enclaves.

eOPF+CM overhead. At enclave exits, eOPF’s cache de-
fenses (§5.2.1 and §5.2.2) require (a) partitioning the last-
level cache (LLC) and switching partitions during enclave
execution and (b) writing back and invalidating the caches at
enclave exits. Please refer to §8.2 for the runtime overhead.

Partitioning the LLC and switching partitions is fast: it
takes ∼200 cycles to update a model-specific register (using
WRMSR). Cache write-back and invalidation time depends on
the state and size of the cache. On the desktop machine, we
noticed that it took up to 3.35 ms, whereas its lower bound
(through consecutive invalidations) was 0.08 ms. Cache inval-
idation took from 1.25 ms to 7.48 ms on the server.

Despite a smaller cache, invalidation on the desktop is not
that much faster than the server. The reason is that, unlike
server machines where SGX does not implement hardware
memory integrity [41], the desktop enforces integrity using
a Merkle tree. This tree is updated on each cache-line that
is flushed to DRAM [46], incurring 6 additional memory
accesses per-cache-line. Notably, invalidating non-enclave
memory on the desktop machine took only up to 0.81 ms.

eOPF+BM overhead. We executed our custom branch pre-
dictor flush to invalidate the PHT (§5.2.2). The lower bound
for invalidation was 0.04 and we saw an upper bound of 0.30
milliseconds. Since typically branch misprediction adds a 5
nanoseconds latency [36], our evaluation results indicate that
all branches were being mispredicted.

Benchmark result summary. eOPF interposition and side-
channel protection cost is only incurred at enclave entry or
exits. Although the cost can be high, these events are only
a small fraction of the program’s execution and can be sig-
nificantly reduced with widely-available optimizations like
switchless enclaves and tickless kernels (§8). For instance, in
our experiments with SGX SDK’s switchless benchmark [14],
we noticed only 3k exits for 2 million enclave calls. Hence,
as the next section will demonstrate, eOPF’s overhead on
real-world programs using software optimizations is typically
modest, even with all side-channel protections enabled.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 183

8.2 Real-world Enclave Programs

Common settings and results. While partitioning sensitive
functionality of a program to run inside an enclave was the
initial SGX intent, it has evolved over the years to run entire
programs inside enclaves using Library OSs [25, 76, 80, 83],
particularly for convenience reasons. In fact, even Intel has
officially adopted (and continuously supports) the Gramine
Library OS (formerly Graphene [83]) as an SDK for run-
ning Linux programs inside SGX [5]. Hence, we also used
the Occlum and Gramine Library OSs [76, 83] to run Linux
programs inside enclaves for evaluation.

Unless noted otherwise, we ran programs on the server
machine using an enclave partition size of 1/12*LLC, the
smallest allowed CAT-based partition on the server machine.
This setting allows the machine to be shared amongst the most
number of users, highly desirable in cloud machines. We ran
each program 10 times and report the average.

Since eOPF+PM only incurs a one-time performance over-
head during enclave creation, in our long-running programs,
its performance impact was negligible. Hence, we do not
illustrate its overhead in Fig. 8 and Fig. 9

We also evaluated the overhead incurred by the base frame-
work alone (i.e., no side-channel modules were enabled) dur-
ing each real-world program’s execution inside enclaves. The
base framework must interpose all enclave events, which
increases the runtime cost (§8.1). However, our evaluation
shows that this cost is very small during execution. On the
server machine, the framework’s cost is less than 2% on aver-
age during execution of each real-world program described
in this section, primarily because exits are low and CPU vir-
tualization (required by the framework) is lightweight.
Assorted (SPEC). SPEC is a collection of well-known CPU
and memory-intensive programs that are useful to assess real-
world system performance. It has been used for evaluation
by the Occlum LibOS (which we used for this experiment)
and includes real-world programs (e.g., compiler toolchains
and compression libraries) that are evaluation targets for other
SGX systems [75]. The Occlum LibOS is designed to support
SPEC 2006 integer benchmarks out-of-the-box, unlike the
latest SPEC 2017. Hence, we decided to evaluate our system
with SPEC 2006 integer benchmarks.

Fig. 8 illustrates eOPF’s performance across SPEC using
reference datasets on the server machine. Encouragingly, even
with all protections enabled, most programs incurred a mod-
est performance overhead—7 out of 11 incurred less than
20% slowdown, and the geometric mean slowdown was 17%.
Across all programs, the biggest slowdown factor was cache
protections. Since our experiments used switchless system
calls and tickless kernels (§8), most programs incurred very
few enclave exits and showed modest performance overhead.
Nevertheless, the smaller enclave LLC partition had a con-
siderable effect (e.g., 311%) on the performance of highly
memory-intensive programs like gcc and omnetpp.

We also ran SPEC programs on the desktop machine using
test datasets to estimate performance in worst-case scenarios
with many enclave exits. Since reference workloads require
significant memory, it is infeasible to run them on the desktop
machine. Fig. 9 illustrates eOPF’s performance on the desk-
top using 1/8*LLC, the closest to fair sharing for each core.
With both CM and BM enabled, the geometric mean overhead
was 34% on the desktop machine. Since the desktop machine
only has a 128 MB EPC, demand paging was inevitable. Thus,
the programs incurred many more enclave exits because of
page faults and performance was (expectedly) lower than the
server machine. We noticed two programs, mcf and sjeng, in-
curred a very high overhead. We found that their test datasets
required up to 1 GB of memory, hence their enclaves incurred
the most exits (due to page faults) per-second.
Key-value store (Redis). Key-value stores like Redis [12]
are widely used in cloud environments. We evaluated Redis
using default settings and its official redis-benchmark, which
tests 20 different key-value store operations including GET,
SET, MSET, and POP. We ran each operation for 100,000
iterations using the default settings of 50 parallel clients. In its
default state, Redis only keeps the key-value store in-memory
for performance and does not write to disk. Additionally,
note that while Redis ran inside an enclave, client network
socket connections were received by user-space code outside
the enclave, since enclaves cannot receive network packets
directly. This code then sent the packets to the Redis enclave.
In typical scenarios, client request in the packets would be
protected using TLS that terminates inside the enclave, but
redis-benchmark does not support TLS. Hence, requests were
unencrypted and we used this for benchmarking purposes.

In our experiments, eOPF+CM+BM reduced throughput by
4–21% (geometric mean was 11%) across these operations.
We only observed 27 enclave exits per-second during the
benchmark’s 119s execution. These exits were few due to
switchless optimizations (§8). Given a low number of enclave
exits and the fact that Redis is highly memory-intensive, the
major factor behind its throughput reduction was the program
executing on a restricted LLC partition.
Web server (Lighttpd). Webservers like Lighttpd [8], handle
sensitive queries to fetch webpages, and hence are a good fit
for SGX. We ran Lighttpd with 8 worker threads because
this setting maximized throughput. From a separate server
machine (average latency between machines was 0.09 ms), we
used ApacheBench to send 10,000 HTTP requests for a 10 KB
file from up to 256 concurrent clients. We sent HTTP requests
like prior research [76] for stress benchmarking. In real-world
cases, HTTPS ensures a request is end-to-end protected with
TLS connections terminating inside the enclave.

In our experiments, eOPF+CM+BM’s geometric mean
throughput reduction across the test was only 5%. Interest-
ingly, requests from a single client incurred a 65% throughput
reduction, while requests from 256 concurrent clients incurred
only 1% reduction. The reason is that the worker threads go

184 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xalancbmk

GEOMEAN
0

50

100

150

200
P

er
fo

rm
an

ce
 o

ve
rh

ea
d

(%
)

296% 311%

15% 17%

eOPF
eOPF+CM
eOPF+BM
eOPF+CM+BM

Figure 8: SPEC CPU 2006 performance with eOPF using the reference dataset on the server machine. The enclave partition was
1/12*LLC. For this test, the enclave exits per-second were: 3, 105, 4, 3, 3, 2, 2, 1, 11, 1, 8, from left to right.

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xalancbmk

GEOMEAN
0

50

100

150

200

P
er

fo
rm

an
ce

 o
ve

rh
ea

d
(%

)

1032% 1085% 970% 982%

31% 34%

eOPF
eOPF+CM
eOPF+BM
eOPF+BM+CM

Figure 9: SPEC CPU 2006 performance with eOPF using the test dataset on the desktop machine. The enclave partition was
1/8*LLC. For this test, the enclave exits per-second were 29, 2184, 3071, 965, 25, 3444, 417, 298, 60, 22, 91, from left to right.

to sleep when there are no requests and they are awakened
through inter-processor-interrupts, hence they incur additional
enclave exits. With greater concurrency, the workers are al-
ways busy handling requests, thus they do not go to sleep.

8.3 Key takeaways

T1. The base eOPF (which enables secure enclave orchestra-
tion) incurs a low performance overhead (<2%) on real-world
programs because (a) it leverages lightweight techniques and
(b) its overhead is incurred at infrequent enclave exits.
T2. While eOPF’s overhead expectedly increases with prin-
cipled side-channel defenses, especially for highly memory-
intensive programs (e.g., 311% for gcc on the server machine),
it remains modest for the vast majority of programs (e.g., 17%
geomean for SPEC programs on the server machine).
T3. eOPF’s side-channel defense overhead is comparable to
defenses that detect attacks using heuristics (e.g., Varys [66]
incurs 15% overhead). However, through invalidation and iso-
lation, eOPF provides strong protection akin to cryptographic
techniques that obfuscate all side-channel leakage with high
costs (e.g., Raccoon [70] incurs 21.8× overhead).
T4. Given the modest defense cost and the fact that eOPF
allows users to flexibly decide when defenses are applied,
eOPF can be practically adopted in today’s cloud machines.

9 Discussion

Virtual machine support. In addition to containers, eOPF
can orchestrate and protect enclaves running in different vir-

tual machines (VMs) without a design change. This is because
eOPF executes at the hypervisor layer, where it has the abil-
ity to distinguish between enclaves in different VMs [50, 52]
during enclave lifecycle interposition (§4.1). In particular,
when the hypervisor starts or resumes a VM, eOPF tracks
this using the virtual machine control structure (VMCS). Sub-
sequently, at any exit to the VMM during enclave creation
or asynchronous enclave exits, eOPF determines which VM
encountered this event by checking the VMCS again. Finally,
eOPF interposes on (a) enclave entries using the per-VM
EPT and (b) synchronous enclave exits using the single-step
interception bit, which is also set in the per-VM VMCS.

Co-attestation without premeasurement. While provi-
sioning an enclave with a secret identifier (eid) during co-
attestation, the requirement is that eid is not disclosed to an
attacker-controlled enclave (§4.2). In principle, this can be
achieved without premeasurement if eOPF (a) installs the
eid in any recently-created enclave and (b) restricts eid en-
clave page permissions using EPT to prevent the enclave
from accessing it, unless SGX measurement is called at which
time the user will verify. We leave the study of alternate co-
attestation primitives for eOPF to future work.

Supported enclave count. By default, eOPF is a thin orches-
tration layer that collects statistics and enforces properties for
cloud providers; hence, it supports as many enclaves as the
platform originally can. If all side-channel protections are en-
forced (§5.2), eOPF can support (a) as many enclaves as can
be kept resident in the EPC (i.e., within 512 GB in modern
systems [41]) and (b) as many distrusting containers (each
with unlimited enclaves) as CAT partitions allow (currently

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 185

15 partitions). The first limit can be removed using oblivious
page swapping mechanisms (discussed in the future eOPF
extensions paragraph in this section). The second limit can be
addressed if future hardware iterations increase the number
of isolated cache partitions (e.g., using recent proposals [37]).
eOPF can be easily extended to leverage new functionality
when it is made available by developers or hardware vendors.
Future eOPF extensions. eOPF is designed to be an exten-
sible framework that flexibly provides several guarantees to
cloud providers and enclave users. One possible extension
would be to support oblivious swapping of enclave pages at
page faults [67]. In particular, when a page fault happens
during enclave execution, eOPF can clear the CR2 register
to shield the faulting page from the OS. Instead, eOPF can
provide a list of candidate pages for the OS to bring into
the EPC. To create a secure candidate list, eOPF can rely
on a cryptographically-secure algorithm like the Oblivious
RAM (ORAM) [82]. eOPF can also enable the use of effi-
cient per-thread hardware memory protection (using MPK)
for enclaves and enable memory protection use-cases [49]. In
particular, currently enclaves cannot securely use MPK since
it requires setting protection keys in page tables [20], which
are controlled by the OS. Instead of relying on the OS, the
enclave can rely on eOPF to set correct protection keys.

10 Related Work

Privileged software monitors for TEEs. A lot of research
has been done to design software security monitors that are
more privileged than the OS and leverage them to create
protected process contexts with strong isolation guarantees.
Many systems [31, 47, 48, 62] rely on hardware memory pro-
tection capabilities (e.g., EPT) of virtualization layers (e.g.,
VMX) for such security monitors. Other systems [35,38] rely
on compiler instrumentation (e.g., software fault isolation) to
deprivilege the OS and execute a security monitor at ring-0.
On non-x86 systems, several designs [34, 41, 42, 59] leverage
architectural privileged layers like ARM TrustZone or RISC-
V machine mode and their protection features (e.g., physical
memory protection). While our design of eOPF takes inspira-
tion from all these systems, eOPF remains unique for several
reasons. First, eOPF only offers complementary protection
to enclaves, ensuring that even if its monitor is compromised,
user computations retain SGX protections. Second, by lever-
aging SGX and its extensive industry support, eOPF can be
readily-adopted by cloud providers without hardware changes
or designing extensive software development kits.
SGX digital side-channel defenses. Researchers have pro-
posed both software and hardware solutions to address digital
side-channels in enclaves. Software solutions implemented
inside enclaves cannot prevent memory access patterns from
being disclosed since that is a hardware limitation. There-
fore, many software protection schemes rely on cryptographic

protocols like ORAM [18, 70, 71] to obfuscate all memory
access patterns (i.e., make all access patterns indistinguish-
able). However, since ORAM is expensive, these defenses
incur significant slowdown (e.g., 21.8× [70]). Other software
solutions [45,66,78,79] leverage heuristics to detect certain at-
tack vectors. On the hardware front, Autarky [67] implements
strong and efficient protection against page table attacks. One
of Autarky’s ideas is to set all access and dirty bits for enclave
page table entries, which is also adopted by eOPF’s page
table defense. In contrast to these defenses, eOPF offers a
more comprehensive protection against several side-channels
with low performance impact and minimal user effort.
Running programs inside enclaves. Haven [25] runs Mi-
crosoft Windows programs in enclaves with minimal changes.
Graphene [83] and Panoply [80] implement library OSs to run
Linux applications inside enclaves, while VC3 [73] allows de-
velopers to protect data analytics. Ryoan [49] provides trusted
client-server application processing in SGX and Scone [22]
enables SGX-protected containers. Eleos [68] designs user-
level paging to reduce enclave exits and improve performance.
eOPF is orthogonal to this line of research and can improve
the security guarantees provided by these systems.
Enclave and platform attestation. Windows 11 machines
leverage the TPM [23] for secure boot and platform attes-
tation. SGX’s remote enclave attestation is also inspired by
the TPM. Recently, MAGE [30] demonstrated how to ex-
tend SGX enclave to attest mutually-trusted enclaves together
by leveraging a premeasurement of enclave memory regions.
eOPF’s use of premeasurement (pMe) is inspired by MAGE,
but eOPF uses it to enable platform-enclave co-attestation.

11 Conclusion

eOPF provides a trusted privileged environment for cloud
providers to enable protected services on their SGX-capable
confidential computing platform. In this paper, we overcome
several challenges to design eOPF, implement secure cloud
orchestration and complementary side-channel defense as ser-
vices enabled by eOPF, and provide a detailed security and
performance analysis of the framework. Our results indicate
that eOPF provides strong protection with very low perfor-
mance impact on average (<2% for the framework alone) and
it can be readily-adopted in today’s clouds.

12 Acknowledgment

We would like to thank the anonymous reviewers and our
shepherd, Bryan Parno, for their insightful reviews which sig-
nificantly improved the paper’s evaluation and presentation.
This work was partly supported by the National Science Foun-
dation (NSF) under grants CNS-2145888 and the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. RS-2023-00209093).

186 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AWS Lambda. https://aws.amazon.com/lambda/.

[2] AWS Nitro Enclaves. https://aws.amazon.com/ec2/
nitro/nitro-enclaves/.

[3] Bareflank/hypervisor. https://github.com/
Bareflank/hypervisor.

[4] Intel 3rd Gen Xeon Scalable Processors (Ice Lake).
https://www.storagereview.com/news/intel-
3rd-gen-xeon-scalable-processors-ice-lake.

[5] Intel(r) Software Guard Extensions. https:
//www.intel.com/content/www/us/en/
developer/tools/software-guard-extensions/
overview.html.

[6] Key concepts and Definitions for Burstable Perfor-
mance Instances. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/burstable-credits-
baseline-concepts.html.

[7] L1 Terminal Fault / CVE-2018-3615 , CVE-
2018-3620,CVE-2018-3646 / INTEL-SA-00161.
https://software.intel.com/security-
software-guidance/software-guidance/l1-
terminal-fault.

[8] Lighttpd - Fly Light. https://www.lighttpd.net/.

[9] Nginx. https://www.nginx.com/.

[10] OpenBSD: HyperThreading Disabled by Default on
Install. https://marc.info/?l=openbsd-cvs&m=
152943660103446.

[11] Qubole Announces Apache Spark on AWS Lambda.
https://www.qubole.com/blog/spark-on-aws-
lambda/.

[12] Redis. https://redis.io/.

[13] Standard Performance Evaluation Corporation. https:
//www.spec.org/cpu2006/.

[14] Switchless Enclave Example. https://github.com/
intel/linux-sgx/tree/master/SampleCode/
Switchless.

[15] Tickless Kernel. https://en.wikipedia.org/wiki/
Tickless_kernel.

[16] 23andme: DNA Genetic Testing and Analysis, 2017.

[17] 01org. Intel(r) software guard extensions for linux* os
(source code). https://github.com/01org/linux-
sgx, 2016.

[18] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang,
Insik Shin, and Byoungyoung Lee. Obfuscuro: A Com-
modity Obfuscation Engine for Intel SGX. In Proceed-
ings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February
2019.

[19] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pe-
dro Fonseca, and Byoungyoung Lee. Chancel: Effi-
cient Multi-client Isolation Under Adversarial Programs.
In Proceedings of the 2021 Annual Network and Dis-
tributed System Security Symposium (NDSS), 2021.

[20] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungy-
oung Lee. Kard: Lightweight Data Race Detection with
Per-thread Memory Protection. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Virtual Event, USA, April 2021.

[21] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida
García, and N. Tuveri. Port Contention for Fun and
Profit. In Proceedings of the 40th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA,
May 2019.

[22] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’Keeffe, Mark Stillwell,
et al. SCONE: Secure Linux Containers with Intel SGX.
In Proceedings of the 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Savannah, GA, November 2016.

[23] Will Arthur and David Challener. A Practical Guide
to TPM 2.0: Using the Trusted Platform Module in the
New Age of Security. Apress, 2015.

[24] Microsoft Azure. Azure confidential comput-
ing. https://azure.microsoft.com/en-us/blog/
azure-confidential-computing/, 2018.

[25] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding Applications from an Untrusted Cloud with
Haven. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Broomfield, Colorado, October 2014.

[26] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache At-
tacks Are Practical. In 11th USENIX Workshop on Of-
fensive Technologies (WOOT 17), Vancouver, BC, 2017.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 187

https://aws.amazon.com/lambda/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://github.com/Bareflank/hypervisor
https://github.com/Bareflank/hypervisor
https://www.storagereview.com/news/intel-3rd-gen-xeon-scalable-processors-ice-lake
https://www.storagereview.com/news/intel-3rd-gen-xeon-scalable-processors-ice-lake
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.lighttpd.net/
https://www.nginx.com/
https://marc.info/?l=openbsd-cvs&m=152943660103446
https://marc.info/?l=openbsd-cvs&m=152943660103446
https://www.qubole.com/blog/spark-on-aws-lambda/
https://www.qubole.com/blog/spark-on-aws-lambda/
https://redis.io/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://github.com/intel/linux-sgx/tree/master/SampleCode/Switchless
https://github.com/intel/linux-sgx/tree/master/SampleCode/Switchless
https://github.com/intel/linux-sgx/tree/master/SampleCode/Switchless
https://en.wikipedia.org/wiki/Tickless_kernel
https://en.wikipedia.org/wiki/Tickless_kernel
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/

[27] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In 27th
USENIX Security Symposium (USENIX Security 18),
Baltimore, MD.

[28] Ramaswamy Chandramouli, Ramaswamy Chan-
dramouli, Anoop Singhal, Duminda Wijesekera, and
Changwei Liu. Methodology for Enabling Forensic
Analysis Using Hypervisor Vulnerabilities Data.
US Department of Commerce, National Institute of
Standards and Technology, 2019.

[29] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten H Lai. Sgxpectre: Steal-
ing Intel Secrets from SGX Enclaves via Speculative
Execution. In Proceedings of IEEE European Sympo-
sium on Security and Privacy (EuroS&P), 2019.

[30] Guoxing Chen and Yinqian Zhang. MAGE: Mutual At-
testation for a Group of Enclaves without Trusted Third
Parties. In Proceedings of the 31st USENIX Security
Symposium (Security), August 2022.

[31] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R.K. Ports.
Overshadow: A Virtualization-based Approach to
Retrofitting Protection in Commodity Operating
Systems. In Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems.

[32] Yuan Chen, Jiaqi Li, Guorui Xu, Yajin Zhou, Zhi Wang,
Cong Wang, and Kui Ren. SGXLock: Towards Effi-
ciently Establishing Mutual Distrust Between Host Ap-
plication and Enclave for SGX. In Proceedings of the
31st USENIX Security Symposium (Security), August
2022.

[33] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. IACR Cryptology ePrint Archive, 2016:86,
2016.

[34] Victor Costan, Ilia A Lebedev, and Srinivas Devadas.
Sanctum: Minimal Hardware Extensions for Strong Soft-
ware Isolation. In Proceedings of the 25th USENIX
Security Symposium (Security), 2016.

[35] John Criswell, Nathan Dautenhahn, and Vikram Adve.
Virtual ghost: Protecting applications from Hostile Oper-
ating Systems. ACM SIGARCH Computer Architecture
News, 2014.

[36] Jeff Dean. Latency numbers every programmer should
know. https://gist.github.com/jboner/2841832.

[37] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. Chunked-
cache: On-demand and Scalable Cache Isolation for Se-
curity Architectures. In Proceedings of the 2021 Annual
Network and Distributed System Security Symposium
(NDSS), Virtual Event, USA, February 2021.

[38] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L
Cox, and Sandhya Dwarkadas. Shielding Software from
Privileged Side-Channel Attacks. In Proceedings of the
27th USENIX Security Symposium (Security), Baltimore,
MD, Aug 2018.

[39] Alan M Dunn, Owen S Hofmann, Brent Waters, and
Emmett Witchel. Cloaking Malware with the Trusted
Platform Module. In Proceedings of the 20th USENIX
Security Symposium (Security), San Francisco, CA, Au-
gust 2011.

[40] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. BranchScope: A New Side-
Channel Attack on Directional Branch Predictor. In Pro-
ceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2018.

[41] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scal-
able Memory Protection in the PENGLAI Enclave. In
Proceedings of the 15th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), Virtual
Event, USA, July 2021.

[42] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using Verification to
Disentangle Secure-Enclave Hardware from Software.
In Proceedings of the 26th ACM Symposium on Op-
erating Systems Principles (SOSP), Shanghai, China,
October 2017.

[43] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache Attacks on Intel SGX. In EU-
ROSEC, pages 2–1, 2017.

[44] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: Defeating
cache side-channel protections with {TLB} attacks. In
Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, Aug 2018.

[45] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohri-
menko, Istvan Haller, and Manuel Costa. Strong and
Efficient Cache Side-Channel Protection using Hard-
ware Transactional Memory. In Proceedings of the 26th
USENIX Security Symposium (Security), 2017.

188 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gist.github.com/jboner/2841832

[46] Shay Gueron. A Memory Encryption Engine Suit-
able for General Purpose Processors. Cryptology
ePrint Archive, Report 2016/204, 2016. https://
eprint.iacr.org/2016/204.

[47] Alexander Van’t Hof and Jason Nieh. BlackBox: A
Container Security Monitor for Protecting Containers
on Untrusted Operating Systems. In Proceedings of the
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Carlsbad, CA, July 2022.

[48] Owen S. Hofmann, Sangman Kim, Alan M. Dunn,
Michael Z. Lee, and Emmett Witchel. InkTag: Secure
Applications on an Untrusted Operating System. In Pro-
ceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems.

[49] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter,
and Emmett Witchel. Ryoan: A Distributed Sandbox
for Untrusted Computation on Secret Data. In Pro-
ceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Savannah,
GA, November 2016.

[50] Intel. Intel Trusted eXecution Technology–Software
Development Guide. Document number 315168-005.

[51] Intel. Intel® processors voltage settings modification
advisory. https://www.intel.com/content/www/
us/en/security-center/advisory/intel-sa-
00289.html.

[52] Intel. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual. Volume 3A: System Programming
Guide, 2016.

[53] Intel. Intel 64 and ia-32 architectures software devel-
oper’s manual. Volume 3D: System Programming Guide,
2022.

[54] Intel Jason Chen. Supporting TEE on x86 Client
Platforms with pKVM. https://www.youtube.com/
watch?v=EP9ps_h-WeI.

[55] Pratheek Karnati. Data-in-use Protection on IBM Cloud
using Intel SGX. https://www.ibm.com/cloud/
blog/data-use-protection-ibm-cloud-using-
intel-sgx.

[56] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2019.

[57] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnau-
tov, Bohdan Trach, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. Sgxbounds: Memory safety for shielded
execution. In Proceedings of the 12th European Confer-
ence on Computer Systems (EuroSys).

[58] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai,
and Raluca Ada Popa. An off-chip attack on hardware
enclaves via the memory bus. In Proceedings of the
29th USENIX Security Symposium (Security), Boston,
MA, Aug 2020.

[59] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments.
In Proceedings of the 15th European Conference on
Computer Systems (EuroSys), 2020.

[60] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, Aug 2017.

[61] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Car-
los Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating Last-Level Cache Side Channel Attacks in
Cloud Computing. In IEEE international symposium on
high performance computer architecture (HPCA), 2016.

[62] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB Reduction and
Attestation. In Proceedings of the 31th IEEE Symposium
on Security and Privacy (Oakland), May 2010.

[63] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig,
Michael K. Reiter, and Hiroshi Isozaki. Flicker: An
Execution Infrastructure for TCB Minimization. In Pro-
ceedings of the 3rd European Conference on Computer
Systems (EuroSys), Glasgow, Scotland, March 2008.

[64] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. In Proceedings of
the 2nd International Workshop on HASP, 2013.

[65] Shintarou Okada. a header-file-only, sha256 hash
generator in c++. https://github.com/okdshin/
PicoSHA2.

[66] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark
Silberstein, and Christof Fetzer. Varys: Protecting SGX
Enclaves from Practical Side-Channel Attacks. In Pro-
ceedings of the 2018 USENIX Annual Technical Confer-
ence (ATC), Boston, MA, June 2018.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 189

https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.youtube.com/watch?v=EP9ps_h-WeI
https://www.youtube.com/watch?v=EP9ps_h-WeI
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://github.com/okdshin/PicoSHA2
https://github.com/okdshin/PicoSHA2

[67] Meni Orenbach, Andrew Baumann, and Mark Silber-
stein. Autarky: Closing Controlled Channels with Self-
Paging Enclaves. In Proceedings of the 15th European
Conference on Computer Systems (EuroSys), 2020.

[68] Meni Orenbach, Pavel Lifshits, Marina Minkin, and
Mark Silberstein. Eleos: ExitLess OS Services for SGX
Enclaves. In Proceedings of the 12th European Confer-
ence on Computer Systems (EuroSys), Belgrade, Serbia,
April 2016.

[69] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhar-
gavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cédric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph M. Wintersteiger, and Santiago Zanella-
Béguelin. EverCrypt: A Fast, Verified, Cross-Platform
Cryptographic Provider. In Proceedings of the 41st
IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2020.

[70] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon:
Closing Digital Side-Channels through Obfuscated Ex-
ecution. In Proceedings of the 24th USENIX Security
Symposium (Security), Washington, DC, August 2015.

[71] Sajin Sasy, Sergey Gorbunov, and Christopher
W. Fletcher. ZeroTrace: Oblivious Memory Primitives
from Intel SGX. In Proceedings of the 2018 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2018.

[72] Sarah Schlothauer. Serverless platform Apache
OpenWhisk graduates to Top Level Project.
https://jaxenter.com/serverless-openwhisk-
top-level-160417.html, 2019.

[73] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy Data Analytics
in the Cloud using SGX. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2015.

[74] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
eXtension: Using SGX to Conceal Cache Attacks. In
Proceedings of the 14th Conference on Detection of
Intrusions and Malware and Vulnerability Assessment
(DIMVA), July 2017.

[75] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-
Wei Shih, Insik Shin, Dongsu Han, and Taesoo Kim.
SGX-Shield: Enabling Address Space Layout Random-
ization for SGX Programs. In Proceedings of the 2017
Annual Network and Distributed System Security Sym-
posium (NDSS), San Diego, CA, February 2017.

[76] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Oc-
clum: Secure and Efficient Multitasking Inside a Single
Enclave of Intel SGX. In Proceedings of the 25th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2020.

[77] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn,
Haibo Chen, Binyu Zang, and Jinming Li. Deconstruct-
ing Xen. In Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2017.

[78] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-SGX: Eradicating Controlled-Channel At-
tacks Against Enclave Programs. In Proceedings of the
2017 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2017.

[79] S Shinde, ZL Chua, V Narayanan, and P Saxena. Pre-
venting your Faults from Telling your Secrets. In Pro-
ceedings of the 11th ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
Xi’an, China, May–June 2016.

[80] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek
Saxena. PANOPLY: Low-TCB Linux Applications With
SGX Enclaves. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2017.

[81] Splunk. How Good is ClamAV at Detecting Commodity
Malware? https://www.splunk.com/en_us/blog/
security/how-good-is-clamav-at-detecting-
commodity-malware.html.

[82] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path ORAM: An Extremely Simple Oblivious RAM Pro-
tocol. In Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), Berlin,
Germany, October 2013.

[83] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-SGX: A Practical Library OS for Unmodi-
fied Applications on SGX. In Proceedings of the 2017
USENIX Annual Technical Conference (ATC), Santa
Clara, CA, June 2017.

[84] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling Your Secrets With-
out Page Faults: Stealthy Page Table-based Attacks on
Enclaved Execution. In Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, BC, Aug
2017.

190 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://jaxenter.com/serverless-openwhisk-top-level-160417.html
https://jaxenter.com/serverless-openwhisk-top-level-160417.html
https://www.splunk.com/en_us/blog/security/how-good-is-clamav-at-detecting-commodity-malware.html
https://www.splunk.com/en_us/blog/security/how-good-is-clamav-at-detecting-commodity-malware.html
https://www.splunk.com/en_us/blog/security/how-good-is-clamav-at-detecting-commodity-malware.html

[85] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
In-flight Data Load. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), 2019.

[86] Zhi Wang and Xuxian Jiang. Hypersafe: A Lightweight
Approach to Provide Lifetime Hypervisor Control-Flow
Integrity. In Proceedings of the 31th IEEE Symposium
on Security and Privacy (Oakland), May 2010.

[87] Richard Wilkins and Brian Richardson. UEFI Secure
Boot in Modern Computer Security Solutions, 2013.

[88] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In Proceedings
of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2015.

[89] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune.
Building Verifiable Trusted Path on Commodity x86
Computers. In 2012 IEEE Symposium on Security and
Privacy (S&P)).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 191

	Introduction
	Confidential Cloud Computing
	System Model
	Threat Model and Assumptions
	Research Goal

	Background on Intel SGX
	eOPF Design
	Enclave Life-Cycle Interposition
	Platform-Enclave Co-Attestation

	eOPF Protected Services
	Secure Enclave Orchestration
	Complementary Side-Channel Defense
	Cross-Core Resource Isolation
	Per-Core Resource Invalidation and Deactivation

	Implementation
	Security Analysis
	Analyzing Framework Security
	Analyzing Services Security
	Analyzing eOPF's TCB

	Performance Evaluation
	Microbenchmarks
	Real-world Enclave Programs
	Key takeaways

	Discussion
	Related Work
	Conclusion
	Acknowledgment

