Application-Informed
Kernel Synchronization Primitives

SujinPark DiyuZhou Irina Calciu YuchenQian Taesoo Kim Sanidhya Kashyap

EPFL ©Q©gaft

Locks are critical for application performance
®Lock A +lock B

45

Ops/usec
S

RN
Ul

1 2 4 8 16 28 56 84 112140168196 224
of threads

One lock cannot rule all scenarios
@Lock A | ock B

Read-intensive workload Write-intensive workload

Ops/usec
G & &
Ops/usec

O K N W N U

—H N < 00 O 0 O X N O 0 O < H Nt 00 O 0 O F N O 0 O <
— NN OO «H <+ O O N I N LN 0O H <+ O OV N
— N — N

of threads

Depending on scenarios, different lock perform best

Locks considering hardware

NUMA (non-uniform memory access) AMP (Asymmetric multicore processors)

Socket 1 ‘) Socket 2

Remote
Access

Memory Memory

[HH
RN

Accessing local socket data is faster Faster performance cores and slower

than remote socket data efficiency cores in one processor

Locks considering software requirements
* Read / write ratio?
* Length of critical section?

* Any specific threads need to be prioritized?

Kernel locks also affect application performance

Application
User space

Kernel space

N

— o —

Kernel lock

Kernel locks also affect application performance

Application
User space

Kernel space

N

— o —

Kernel lock

* Application-agnostic
 Invisible to application developers

* Generic design to support common cases

...But difficult to change

Application
User space

Kernel space

N

— o —

Kernel lock

* Application-agnostic
 Invisible to application developers

* Generic design to support common cases

Issue with current kernel locks

Lock implementations are application agnostic

Only a few locks contend for given application

Difficult to implement a new lock design

The solution - SynCord

Lock implementations are application agnostic

— Let application developers safely change locks in the kernel on the fly

Only a few locks contend for given application

— Modify set of locks at various granularities

Difficult to implement a new lock design

— Expose set of APIs to easily write various lock policies

Key behavior of queue-based lock

Thread

Resource

To access shared resource, thread needs to acquire lock

Key behavior of queue-based lock

Lock acquired

Thread

Resource

If lock is free, thread directly acquires lock

Key behavior of queue-based lock

Lock acquired

Lock

Waiter)| Waiter == Waiter
holder

Resource

Since lock is already held, other threads join waiting queue

Key behavior of queue-based lock

Lock acquired
Reorder waiting queue

Lock

Waiter)| Waiter == Waiter
holder

Resource

Reorder waiters in the queue to group waiters from same socket (ShflLock?, CNA?)

1. Scalable and Practical Locking With Shuffling. SOSP 19
2. Compact NUMA-aware Locks. EuroSys ‘19

Key behavior of queue-based lock

Lock acquired
Reorder waiting queue

Waiter = Waiter == Waiter

Resource

Lock released

Release lock when thread finishes using resource

Key behavior of queue-based lock

Lock acquired
Reorder waiting queue

Lock

Waiter m=——)| Waiter
holder

Resource

Lock released

Next waiter acquire lock

SynCord exposes kernel locks’ key behaviors as APIs

/v move if true

lock acquired (lock)
bool should reorder (lock, anchor node, curr node)

Lock

Waiter m=——)| Waiter
holder

Resource

lock released (lock)

And 7 more APIs!

SynCord overview with NUMA-aware example

* NUMA (non-uniform memory access)

Socket 1 Socket 2
Memory Remote Memory
Access
Cach Cache El llllllllllllll :
Locpl i Lock Waiter m==P| Waiter =P Waiter
Accgss M wow | 000 | s soom : | holder
! fesoce

Accessing local socket memory is faster than

remote socket memaory

SynCord overview with NUMA-aware example

* NUMA (non-uniform memory access)

Socket 1 ‘ , Socket 2
Memory Remote Memory
Access
Cach Cache El llllllllllllll : r \
Locpl i Lock Waiter F==P| Waiter =9 Waiter
Accgss M wow | 000 | s soom : | holder

Minimize cache line bouncing

Accessing local socket memory is faster than

remote socket memaory

SynCord overview with NUMA-aware example

€ User writes custom lock policy @
and specify target point (R

bool should reorder(lock *lock, node *anchor, node *curr)

{
}

return (anchor->socket_id curr->socket_id);

Target point: [rename_lock }

SynCord overview with NUMA-aware example

€ User writes custom lock policy @
and specify target point (R

bool should_reorder(lock *lock, node *anchor, node *curr)

{
}

return (anchor->socket_id curr->socket_id);

rename_lock

ll

: SynCord

@:Compile © Load

: program and verify

II

SynCord overview with NUMA-aware example

€ User writes custom lock policy @

and specify target point (il v memory access
bool should_reorder(lock *lock, node *anchor, node *curr) .
{ — No arbitrary memory update
return (anchor->socket_id curr->socket_id);
}
rename_lock v helper functions

.. = Only allowlisted functions
SynCord can be called

Bytecode v’ code termination
9§Comp|le 9 Load — Lock policy must not hang

: program and verify

ll

SynCord overview with NUMA-aware example

€ User writes custom lock policy @
and specify target point IR

bool should_reorder(lock *lock, node *anchor, node *curr)

{

return (anchor->socket_id curr->socket_id);

! O If failed, notify users

rename_lock

“IIIIIIIII EE NN EEEEENEEEE,

: SynCord

5 Lock E
compite. [N ’@ f
@:Compile © Load O Passed

: program and verify

II

SynCord overview with NUMA-aware example

Notif h |
€ User writes custom lock policy @ < © Notify user on patch complete

and specify target point IR

bool should_reorder(lock *lock, node *anchor, node *curr)

{

return (anchor->socket_id curr->socket_id);

! O If failed, notify users

rename_lock

“IIIIIIIII EE NN EEEEENEEEE,

: SynCord

5 Lock
. @ Patcher
@:Compile © Load O Passed

: program and verify

II

SynCord overview with NUMA-aware example

Rename files in a directory _
Performance similar to

2 —
" its static implementation
. 1.6 - :.;.q‘:--!-;.-_-'!-;.. -7-‘,ﬁ
3 1.2 - m
<
2 08 L 5 2.5x Throughput
O
0.4 _I'l stock
OE‘ I B B T R B B B syncord-NUMA -
- N S 00 VO O VO ¥ N O © O .
- N 1" o0 : 2 2 ‘O_‘\ g Stat|C'NUMA III.III

of threads

1 socket >1 socket

What if a user provide wrong code?

* Verifier + APl design = sandboxed impact

e Mechanism remains intact

* Only provide hint for reordering

* Runtime check to prevent starvation
Llock acquired(lock)
bool should reorder (lock, anchor node, curr node)

hlc_)?:j:l((er a—b Waiter =P Waiter \A Read-only
Resource \

lock released(lock)

Never break mutual exclusion

What user can do & can’t do with SynCord

Can do Can’t do
Prioritize/penalize specific threads Break mutual exclusion
Run additional code blocks in Change underlying mechanism

hooking points
Change lock type
Affect performance

Affect fairness

Usecases

Customized for

1. NUMA-aware lock HW: NUMA
2. Asymmetric multicore lock HW: AMP+NUMA

3. Scheduler-cooperative lock SW: Length of CS §§ HW: NUMA
4. Biased per-CPU readers-writer lock BYVBLEELSTIETHE BB

5. Dynamic lock profiling

Dynamic lock profiling
~ lockstat vs Dynamiclockprofiling

* In-kernel lock statistic tool * Implemented with SynCord APls
* System-wide tracing * (Can trace single lock instance
 Enabled in compile time * Dynamically enabled
 More memory usage from booting * No memory overhead once disabled
3° 30
c 60
2 40
'g 20
S 0
i

4 8 16 28 56 84 112140168 196224
threads 30

Dynamic lock profiling: avg critical section length

Resource

Dynamic lock profiling: avg critical section length

lock acquired(lock)

Lock
holder

Resource void lock_acquired(lock *lock)
{

lock->acquisitions++;
lock->hold_start = get_time();

Waiter M=) Waiter

void lock_released(lock *lock)

{
|

lock->holdtime (lock->hold_start - get_time());

Dynamic lock profiling: avg critical section length

lock acquired(lock)

Lock
holder

Resource

Waiter M=) Waiter

void lock_acquired(lock *lock)

{
Llock" -acquisitions+ §
lock: -hold_start = et _time();
}

void lock_released(lock "

{ Auxiliary data structures
Llocl - ~holdtime -7 -

}

33

Conclusion

= Kernel locks are basic building of concurrent OSes
 Affect performance and scalability of applications
e Out of reach of application developers

= SYNCORD Framework
* Allow users to fine-tune locking primitives dynamically
« Exposes a set of user implementable APIs
* No need to reinstall the kernel or reboot the system

= Application can now address pathological locking cases

