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Abstract
To break the bottlenecks of mainstream cloud-based machine
learning (ML) paradigm, we adopt device-cloud collabora-
tive ML and build the first end-to-end and general-purpose
system, called Walle, as the foundation. Walle consists of a
deployment platform, distributing ML tasks to billion-scale
devices in time; a data pipeline, efficiently preparing task
input; and a compute container, providing a cross-platform
and high-performance execution environment, while facilitat-
ing daily task iteration. Specifically, the compute container is
based on Mobile Neural Network (MNN), a tensor compute
engine along with the data processing and model execution
libraries, which are exposed through a refined Python thread-
level virtual machine (VM) to support diverse ML tasks and
concurrent task execution. The core of MNN is the novel
mechanisms of operator decomposition and semi-auto search,
sharply reducing the workload in manually optimizing hun-
dreds of operators for tens of hardware backends and further
quickly identifying the best backend with runtime optimiza-
tion for a computation graph. The data pipeline introduces
an on-device stream processing framework to enable process-
ing user behavior data at source. The deployment platform
releases ML tasks with an efficient push-then-pull method
and supports multi-granularity deployment policies. We eval-
uate Walle in practical e-commerce application scenarios to
demonstrate its effectiveness, efficiency, and scalability. Ex-
tensive micro-benchmarks also highlight the superior perfor-
mance of MNN and the Python thread-level VM. Walle has
been in large-scale production use in Alibaba, while MNN
has been open source with a broad impact in the community.

1 Introduction

To provide intelligent services for millions or even billions
of smartphone users in industry, the mainstream paradigm
lets mobile devices send requests with raw data and lets the
cloud return results after data processing and model execution.
However, this paradigm encounters three major bottlenecks:

∗Chaoyue Niu is the corresponding author (rvince@sjtu.edu.cn).

(1) High Latency: The network latency between each mobile
device and the cloud plus the request processing latency of the
cloud is in seconds, which is unacceptable for some real-time
interactive applications. For example, the practical latency
requirements of computer vision (CV), natural language pro-
cessing (NLP), and recommendation tasks are in hundreds
or even tens of milliseconds; (2) High Cost and Heavy Load:
On the device side, uploading raw data will incur high cel-
lular data usage, if Wi-Fi is not available. On the cloud side,
receiving and storing enormous amounts of raw data from
a massive number of mobile devices, processing data with
diverse and sophisticated ML algorithms, and returning re-
sults in time, inevitably cause high overhead. For example, the
size of 60s-long video or audio is in tens of MB, and the size
of raw data for recommendation per user per day is in MB.
Further multiplied by the scale of mobile devices, the total
size of raw data is huge; and (3) Data Security and Privacy:
Uploading the raw data with sensitive contents (e.g., personal
information and user behaviors) may raise serious security
and privacy concerns of users. Storing and processing raw
data on the cloud may suffer from the risk of data breach.

By deconstructing the cloud-based ML paradigm, we can
find that it simply regards mobile devices as interactive inter-
faces, but ignores the fact that mobile devices after 10 years of
development can now undertake an appropriate load of data
processing and model execution. Therefore, it does not lever-
age the natural device-side advantages of being close to users
and data sources, thereby reducing latency and communica-
tion cost, mitigating the cloud-side load, and keeping private
data on local devices. To overcome the bottlenecks of the
mainstream cloud-based ML paradigm, the device-cloud col-
laborative ML paradigm emerged, which advocates offloading
part of ML tasks to mobile devices and letting the cloud and
the mobile devices collaboratively accomplish the ML tasks.
Existing work tends to focus on the algorithmic decisions
(e.g., device-cloud task splitting strategy [29] and collabora-
tion/interaction paradigm [34]) in either inference or training
phase and normally for a specific application (e.g., video ana-
lytics [6,11,31], text processing [5], recommendation [17,44]).
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Figure 1: Walle from the perspective of an ML task developer.

However, practical industrial scenarios tend to involve the full
cycle of diverse CV, NLP, and recommendation applications
to serve millions or even billions of mobile devices, building
a general-purpose system to put device-cloud collaborative
ML in large-scale production becomes a new requirement.

We build an end-to-end system, called Walle, the overall
goal of which is to support general device-cloud collaboration
(e.g., single device-cloud and multiple devices-cloud) in each
phase of diverse ML tasks through exchanging any necessary
content (e.g., data, feature, sample, model, model update, and
intermediate result). As shown in Figure 1, Walle supports the
whole cycle of ML tasks (i.e., pre-processing, model training
and model inference, and post-processing) on both mobile
devices and cloud servers in both development (e.g., the prac-
tical need of frequent experimentation and deployment for
daily ML task iteration) and runtime (i.e., ML task execu-
tion and device-cloud data transfer) stages. By following the
philosophy of building a general-purpose system rather than
integrating massive application-specific or platform-specific
solutions, Walle functions as a fundamental ML infrastructure
with standard APIs and keeps the light-weight limit of mo-
bile APPs, having supported 1,000+ kinds of CV, NLP, and
recommendation tasks in large-scale production.

During building Walle, we encounter several practical re-
quirements and challenges that motivate our design decisions.
Walle is oriented by ML tasks and consists of a deployment
platform, a data pipeline, and a compute container, catering to
ML task deployment, input preparation, and execution, respec-
tively. (1) For the compute container, one major requirement
is to decouple ML task iteration from the monthly/weekly
update of mobile APPs, making the classical method of in-
tegrating new functionalities into APPs infeasible. Another
key requirement is to support diverse ML tasks with high
performance across different operating systems (OS) and het-
erogeneous hardware of mobile devices and cloud servers.
This requires to build a tensor compute engine in C/C++ and
do operator-level and computation graph-level optimizations
for each hardware backend. Two dominant strategies are man-
ual optimization (e.g., in almost all ML engines), the work-
load of which is quite heavy that only some common cases
can be covered; and auto tuning (e.g., in TVM [9]), which
cannot support runtime optimization and is infeasible in in-
dustrial scenarios that involve massive heterogeneous devices
or require frequent/quick ML task iteration. Based on the
tensor compute engine, the libraries should be implemented

to cover pre-processing, model training and inference, and
post-processing as well as mobile devices and cloud servers
in a unified way, rather than in a separate and incomplete
way, like NumPy, OpenCV, TensorFlow (Lite), and PyTorch
(Mobile). Without integrated design, the high performance
of the tensor compute engine cannot be exposed to different
libraries, the workload of optimizing each library on hetero-
geneous backends is heavy, and the package is large; (2) for
the data pipeline, the overarching goal is to prepare raw data,
which can come from different sources and are structured in
various formats, as device-side or cloud-side ML model input.
The mainstream paradigm of uploading all the device-side
raw data to the cloud for aggregate processing is inefficient
and error-prone; and (3) for the deployment platform, its key
requirement is to manage, release, and deploy ML tasks for
numerous mobile devices in a fine-grained, timely, and ro-
bust way, given massive ML task deployment requirements,
intermittent device availability, and potential task failure.

We overcome the key challenges above and build Walle.
(1) We choose dynamically-typed, widely-used Python as the
script language for developing ML tasks in Walle and imple-
ment a Python VM as the core of the compute container by
refining CPython in two aspects: one is to abandon the global
interpreter lock (GIL) and support task-level multi-threading
with VM isolation and data isolation; and the other is to per-
form tailoring for practical device-side need. Such design
enables daily ML task iteration. At the bottom of the compute
container, we implement a tensor compute engine along with
standard data processing and model execution libraries, called
MNN [2]. MNN first introduces a novel geometric computing
mechanism to decompose the transform and composite op-
erators into atomic operators, thereby dramatically reducing
the workload of manually optimizing hundreds of operators
for tens of backends; and then introduces a novel semi-auto
search mechanism to quickly identify the best backend with
runtime optimization for a series of operators. At the top of
the compute container, we expose MNN to Python thread-
level VM as standard APIs, supporting the whole cycle of
diverse ML tasks with standard data input. (2) For the data
pipeline in Walle, we mainly build a new on-device stream
processing framework to enable processing user behavior
data at source. The key novelty is managing the trigger condi-
tions of multiple stream processing tasks to generate different
features with a trie structure for concurrent triggering. We
also establish a real-time tunnel to transfer device-side fresh
features to the cloud for use. (3) Regarding the deployment
platform of Walle, we propose to manage task entity with git,
categorize task-related files into shared and exclusive ones
to facilitate multi-granularity deployments, and release tasks
with an efficient push-then-pull method and in steps.

Walle is now part of Alibaba’s ML backbone infrastructure,
being invoked more than 153 billion times per day and sup-
porting more than 0.3 billion daily active users, 30+ mobile
APPs, and 300+ kinds of ML tasks. MNN is open source now
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with 6,600+ stars and 1,300+ forks on GitHub, and also is in
production use in 10+ other companies. Evaluation of Walle
in example real applications (i.e., livestreaming and recom-
mendation) and platform statistics demonstrate effectiveness,
efficiency, and scalability. Micro-benchmarks of MNN and
Python thread-level VM show superiority.

We summarize the key contributions as follows: (1) Walle
is the first end-to-end, general-purpose, and large-scale pro-
duction system for device-cloud collaborative ML, masking
hardware and software heterogeneity at the bottom, and sup-
porting diverse ML tasks with daily iteration cycle and high
performance at the top; (2) the compute container in Walle
comprises MNN, which introduces geometric computing to
sharply reduce the workload of manual operator-level opti-
mization, and semi-auto search to identify the best backend
with runtime optimization; and a Python VM, which is the
first to abandon GIL and support task-level multi-threading,
and also is the first to be ported to mobile devices; (3) the data
pipeline in Walle introduces on-device stream processing with
trie-based concurrent task triggering to enable processing user
behavior data at source; and (4) the deployment platform in
Walle supports fine-grained task release and deployment to
billion-scale devices with strong timeliness and robustness.

2 Preliminaries

In this section, we first expound the background and motiva-
tion of building a general-purpose system for device-cloud
collaborative ML. We then elaborate on the major design
challenges. We finally draw the system requirements.

2.1 Background and Motivation
Machine Learning Task. From a developer’s perspective, an
ML task comprises scripts (e.g., codes in Python), resources
(e.g., data, models, and dependent libraries), and configura-
tions (e.g., trigger conditions mainly for specifying where
and when to trigger the ML task). The whole workflow of
an ML task can be divided into three phases or sub-tasks1:
pre-processing, model execution, and post-processing. In the
pre-processing phase, raw data from multiple sources are
cleaned, integrated, and processed to extract features and gen-
erate samples, which are then fed into models. In the model
execution phase, a model is loaded to do training or inference.
In the post-processing phase, the results of model inference
are processed (e.g., by applying some ranking policies or
business rules) to finally serve users.

Motivating Industrial Applications for Walle. In Alibaba,
there are now at least hundreds of online ML tasks to serve
billion-scale daily active users with mobile devices in tens of
business scenario, where CV, NLP, and recommendation tasks
roughly account for 30%, 10%, and 60% of the total tasks and
run billion, one hundred billion, and billion times every day,

1We call ML sub-tasks also as ML tasks for convenience.

respectively. In particular, (1) typical CV-type application sce-
narios include livestreaming, visual image search, short video
analysis, augmented reality, and security checkup, where the
major tasks include key frame detection, image segmentation
and classification, item recognition, facial recognition and ef-
fects, human keypoint and pose detection, and porn detection;
(2) typical NLP-type application scenarios include livestream-
ing and voice navigation, where the major tasks include auto-
matic speech recognition, text to speech, text analysis, and text
generation; and (3) typical recommendation-type application
scenarios include item re-ranking, intelligent refresh, mes-
sage popping, and page rearrangement, where the key tasks
include click-through-rate prediction, click-conversion-rate
prediction, user state recognition, and user intent detection.

Need for Device-Cloud Collaborative System. The ap-
plications raise strict latency requirements on ML tasks. In
general, (1) CV tasks need to process each image in 30ms;
(2) NLP tasks require to process a 5s-long audio segment
in 500ms or process an audio stream with latency less than
100ms; and (3) recommendation tasks need to generate out-
puts in 300ms. In addition, the raw data from massive users
input to ML tasks are huge. For example, (1) for CV tasks, the
size of a 60s-long, 1080p, and 8Mbps video is roughly 60MB;
(2) for NLP tasks, the size of a 60s-long WAV/PCM audio is
around 10MB; and (3) for recommendation tasks, one user
normally generates thousands of pieces of raw data per day,
each piece in the size of KB. Furthermore, raw user data are
more or less sensitive, raising security and privacy concerns.

The practical requirements above make the mainstream
cloud-based ML paradigm infeasible and motivate us to adopt
device-cloud collaborative ML. The key principle is that an
ML task can be executed not only on the cloud but also on
mobile devices, rather than purely on the cloud. During the
execution of an ML task, mobile devices can work as a relay
of the cloud, and vice versa. The choice of which side to
execute which phase is flexible and should incorporate the
practical need of the ML task and the characteristics of the
cloud and mobile devices. For example, choosing which side
for pre-processing should consider whether the side is near
data source. Further observing the industrial need to support
diverse ML tasks and massive devices, we are motivated to
build an end-to-end and general-purpose system that can put
device-cloud collaborative ML in large-scale production.

2.2 Practical Challenges
A device-cloud collaborative ML system faces some practical
challenges that span the execution, input preparation, and
deployment stages of ML tasks as follows.

Execution Challenges. (1) Long Iteration Cycle: The com-
mon update cycle of a mobile APP includes development,
testing, and integration of new functionalities (e.g., ML tasks
to be deployed in our context), as well as APP store review and
release to massive mobile devices in batches. As a result, most
APPs is updated weekly, while some super APPs (e.g., Mobile
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Taobao, a shopping APP owned by Alibaba with 0.3 billion
daily active users) are updated monthly. However, ML tasks
require frequent experiments/deployments in nature, such
that the effectiveness of different ML algorithms and models
can be quickly verified, and the optimal feature combination
and hyper-parameters can be identified; (2) Heterogeneous
Backends: The cloud servers and mobile devices significantly
differ in hardware (e.g., CPU, GPU, NPU, instruction set ar-
chitecture (ISA), and memory) and OS (e.g., Android, iOS,
Windows, and Linux). Among mobile devices, the ecosystem
is even more fragmented; (3) Diverse ML Tasks: Industrial ap-
plications involve many kinds of ML tasks, requiring diverse
model structures (e.g., convolutional neural network (CNN),
recurrent neural network (RNN), transformer, generative ad-
versarial network (GAN), and deep interest network (DIN)).
Meanwhile, pre-processing and post-processing also involve
lots of image, text, and numerical processing methods; and
(4) Limited Device Resources: Each mobile APP has only
one process. For Mobile Taobao, the maximum RAM is only
200MB, and the package size cannot exceed 300MB.

Input Preparation Challenges. (1) Atypical User Behav-
ior Data: For CV and NLP tasks, most raw data (e.g., im-
age, video, text, and audio) are in standard formats, the pre-
processing of which can be supported by standard libraries.
Another major data source, the pre-processing of which can-
not be directly supported, is each user’s diverse behaviors in
time and page series during interacting with a mobile APP and
is essential to many ML (especially, recommendation) tasks.
Conventionally, all the users’ behavior data are uploaded to
the cloud, far away from source, for stream processing with
Flink. To enable pre-processing at source, there, however,
does not exist an on-device stream processing framework;
(2) Diverse Trigger Conditions: ML tasks tend to need many
features. Each feature corresponds to a stream processing task
and its trigger condition. How to efficiently manage multiple
trigger conditions for concurrent task triggering is non-trivial.

Deployment Challenges. (1) Massive Task Deployment
Requirements: In Alibaba, the size of active ML tasks is at
least in hundreds, and the mobile devices to be covered can
reach the scale of billion. The release of each ML task also
needs to incorporate APP versions, device-side and user-side
differentiation; (2) Intermittent Device Availability: Mobile
devices are with unstable wireless connections and allow only
one APP to run on the foreground, while users tend to switch
APPs frequently. Therefore, from the perspective of a certain
APP, each device’s availability is dynamic. Conventional push
(e.g., based on persistent connection) or pull (e.g., based on
polling) deployment method cannot guarantee timeliness and
incurs high load on the cloud; (3) Potential Task Failure: A
mobile APP runs as a single process. The failure of any task
will lead to the crash of the whole APP, seriously impacting
user experience. Further, due to the massive task deployment
requirements, it is impractical to test each pre-release task on
all relevant types of real devices.

Deployment Platform

Task Release & Deployment
Task Management

Standard APIs
Compute Container

Tensor Compute Engine
Backends (Device & Cloud)

Device-Cloud Tunnel
Data Pipeline

On-Device Stream 
Processing Framework

User Behavior Data 

Python Thread-Level VM
Data & Model Related Libraries

CV NLP Recommendation

Figure 2: Architecture of Walle.

2.3 System Requirements
Given the challenges above, the design of an device-cloud
collaborative ML system should meet some requirements.

The ML task execution environment needs to satisfy: (1)
Quick Task iteration: ML tasks can be iterated daily on a
mobile APP, reliving the dependence on the APP’s original
update cycle; (2) Cross Platform: OS-level and hardware-
level heterogeneity should be masked; (3) High Performance:
Optimization need to be specific to heterogeneous hardware
backends of mobile devices and cloud servers; (4) Univer-
sality: Diverse CV, NLP, and recommendation tasks should
be supported. The pre-processing, model execution, and post-
processing phases of each ML task should be supported in an
end-to-end way; and (5) Light Weight: The whole package
size needs to be small, especially for mobile devices.

The ML task input preparation pipeline needs to first in-
troduce a new on-device stream processing framework with
concurrent task triggering ability to enable processing user
behavior data at source. To enable the cloud to consume the
generated features (e.g., for feature fusion or model inference)
far away from source with low latency, a real-time tunnel
between mobile devices and the cloud also needs to be built.

The ML task deployment platform should guarantee: (1)
Multi-Granularity: Task release needs to support uniform,
device-level grouping, user-level grouping, or even extremely
device-specific policy; (2) Timeliness: A large number of mo-
bile devices can be covered in short time; and (3) Robustness:
Task deployment must put stability in the first place.

3 Walle: Architecture and Design Rationale

Guided by the system requirements, we build Walle. We first
introduce the whole architecture and then design rationale.

3.1 Architecture Overview
As shown in Figure 2, the compute container in Walle com-
prises: (1) a cross-platform and high-performance tensor com-
pute engine at the bottom; (2) data processing and model
execution libraries based on the tensor compute engine; (3) a
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Figure 3: Architecture of compute container.

Python thread-level VM; and (4) standard APIs at the top. The
data pipeline introduces: (1) an on-device stream processing
framework; and (2) a real-time device-cloud tunnel. The de-
ployment platform in Walle comprises: (1) a task management
module; and (2) a task release and deployment module.

3.2 Design Rationale
Rationale of Compute Container. As shown in Figure 3,
on the top, we choose Python as the script language, because
Python is widely used in developing ML algorithms and also
is a dynamically-typed and interpreted language. To support
executing the Python scripts of ML tasks on different plat-
forms, especially on resource-constraint mobile devices, we
implement a Python VM by refining CPython and perform
tailoring for the practical need of a mobile APP. Further con-
sidering the characteristics of ML task execution, including
concurrent triggering of many tasks, independence across dif-
ferent tasks, and sequential execution of different phases in
each individual ML task, we abandon GIL in Python VM and
support task-level multi-threading by first binding each ML
task with a thread and then conducting thread isolation. Such
Python VM-based design endows the compute container with
the capability of dynamic task delivery, decoupling daily ML
task iteration from monthly/weekly mobile APP update.

At the bottom, we implement a tensor compute engine in
C/C++ for cross-platform and high-performance consider-
ations. The cores are the novel mechanisms of geometric
computing and semi-auto search, as shown in Figure 5. In par-
ticular, geometric computing extracts a new atomic operator
from transform operators, by leveraging the nature of coor-
dinate transformation as well as the linear mapping between
an element’s coordinate and its memory address. As a result,
all the transform and composite operators, accounting for
roughly 49% of all the operators, can be decomposed to the
atomic operators, reducing 46% of the workload of manually
implementing and optimizing 124 operators for 16 kinds of
backends from algorithm, ISA, memory, and assembly. Then,
to quickly identify the backend available on a mobile device
or a cloud server to execute a computation graph with a series
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Figure 4: Architecture of data pipeline.

of operators at the minimum cost, semi-auto search is applied
in runtime to find the optimal implementation algorithm with
the optimal parameters for each operator on each available
backend. The parameter search is converted to solving a con-
strained optimization problem, by incorporating the hardware
properties of the backend and the sizes of the implementa-
tion algorithm’s inputs. Based on the tensor compute engine,
we implement the libraries of scientific computing, image
processing, model inference, and model training, and expose
them to Python VM as standard APIs, supporting the whole
cycle of diverse ML tasks with standard data input.

Rationale of Data Pipeline. The architecture is depicted
in Figure 4. First, a user’s behaviors are naturally recorded as
a time-level event sequence, based on which the page-level
event sequence can be created by aggregating the events in the
same pages. Then, the trigger condition of a stream process-
ing task can be specified by a sequence of event/page ids. To
support concurrent triggering, we model matching multiple
trigger conditions with the event sequence as a string match-
ing problem with multiple wildcard patterns and propose to
organize trigger conditions with a trie, such that if a new event
comes, all the triggered tasks can be picked out for execution.
Given a stream processing task can be triggered frequently
over the continuously generated event sequence, while the
size of one-time output is small, we design a collective stor-
age mechanism to reduce the frequency of write. Finally, to
upload the output of on-device stream processing with low
latency, we leverage persistent connection to implement a
real-time tunnel, transferring up to 30KB data within 500ms.

Rationale of Deployment Platform. We first manage the
task entity with git and categorize task-related files into shared
and exclusive ones, according to how many devices can use
the files in common. The file categorization further facilitates
the uniform and customized policies of task deployment. To
guarantee the timeliness of task deployment, we propose a
novel push-then-pull method based on transient connection,
where the push functionality reuses the existing client-side
http request for business services, while the pull functionality
is via content delivery network (CDN) and Alibaba cloud
enterprise network (CEN). For the robustness of task deploy-
ment, we introduce task simulation test with the cloud-side
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compute container before release and enforce releasing task
in steps, while allowing rollback in the case of task failure.

In what follows, we present the design and implementation
details of the compute container in Section 4, the data pipeline
in Section 5, and the deployment platform in Section 6.

4 Compute Container in Walle

We introduce the compute container in a bottom-up way:
MNN, a tensor compute engine along with the data processing
and model execution libraries; Python thread-level VM; and
standard APIs of MNN.

4.1 Tensor Compute Engine
Tensor computation can be viewed as the basis of data process-
ing and ML, and the operators of underlying tensor computa-
tion can be divided into four categories: (1) Atomic Operators,
which function as the basic unit of backend optimization, such
as some common unary operators (e.g., taking square) and
binary operators (e.g., addition, subtraction, multiplication,
and division); (2) Transform Operators, which change the
shape and/or reorder the elements, such as transpose, slicing,
concatenation, and permutation; (3) Composite Operators,
which can be decomposed into the atomic and transform op-
erators, such as 3D convolution and pooling, normalization,
exponential linear unit, and long short-term memory cell; and
(4) Control-Flow Operators, including if and while.

Geometric Computing. Currently, MNN can support
Naop = 61 atomic operators, Ntop = 45 transform operators,
Ncop = 16 composite operators, and N f op = 2 control-flow
operators. The workload of implementing and optimizing the
operators for all Nba = 16 backends in MNN is O((Naop +
Ntop +Ncop)×Nba +N f op = 1954). Further considering the
workload involving the atomic and control-flow operators is
unavoidable, we turn to reducing the workload involving the
transform and composite operators, which roughly accounts
for half of the whole load and will grow in the future (e.g., as
more composite operators are required to support more kinds
of deep neural network (DNN)). Our key idea is to extract a

new atomic operator, called “raster”, from the transform oper-
ators. Then, both the transform operators and the composite
operators can be decomposed into the raster operator and the
atomic operators. Since only the atomic and raster operators
need to be optimized for each backend, the whole workload
becomes O((Naop +1)×Nba +Ntop +Ncop +N f op = 1055),
reducing roughly 46% of the workload. Now, the problems
become what is the raster operator and how to implement it.
We propose a geometric computing mechanism as follows.

In essence, the basic functionality of the transform opera-
tors is to move an element from a memory address to another
memory address, or from geometry, is to transform the co-
ordinate of the element to another coordinate. In addition,
the memory address is a deterministic linear function of the
coordinate. Moreover, given a certain transform operator, the
formula of coordinate transformation can be determined. As
a result, with the coordinate of an element in the input or
output tensor, typically the element’s index in the input or
output tensor, the original memory address and the memory
address after movement can also be determined. The raster
operator is introduced to move the elements between the input
and output tensors according to the memory addresses and
by traversing the coordinates. We take slicing for example.
A is a 2×4 matrix, placed in contiguous memory addresses
with a unique identifier/pointer. The slicing of A by leaving
only the second row is denoted as B, which is a 1×4 matrix.
For an element Bi, j with the row index i and the column in-
dex j (i.e., the coordinate (i, j)) in B, its memory identifier
relative to B’s unique identifier is i× 4+ j, which is linear
with the coordinate, where the coefficients (4,1) are called
the strides. According to the definition/rule of slicing (i.e.,
Bi, j = Ai+1, j), the coordinate of the corresponding element
Ai+1, j in A is (i+1, j), and the relative memory identifier is
(i+1)×4+ j = 4i+ j+4, where the coefficients (4,1) are
the strides, and the intercept 4 is called offset. The raster op-
erator can realize the functionality of slicing by iterating the
coordinates {(i, j)|0 ≤ i < 1,0 ≤ j < 4, i, j ∈ Z} and moving
each Ai+1, j to Bi, j using their memory addresses.

In practical implementation of the raster operator, we intro-
duce a supporting concept, called “region”, which contains
an input tensor, the range of coordinate, as well as the linear
mappings between an element’s coordinate and its memory
addresses in the input and output tensors, which are called
“views” and can be specified by the strides and offsets. In ad-
dition, after operator decomposition, some raster operations
can be merged for optimization. One policy is called verti-
cal merging, which mainly deals with two successive raster
operations, skips indirect references, and operates on the orig-
inal tensor; and the other policy is called horizontal merging,
which handles two parallel raster operations with the same
region and keeps only one raster operation.

Atomic Operator Optimization. Specific to the atomic
operators, including the raster operator, we incorporate hard-
ware heterogeneity and optimize the implementation from the
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perspectives of algorithm, ISA, memory, and assembly. (1)
The algorithm-level optimization is specific to some compute-
intensive operators, typically convolution and matrix multipli-
cation. We take more efficient algorithms, including Winograd
and Strassen algorithms, to sharply reduce the number of mul-
tiplications; (2) the ISA-level optimization leverages single
instruction multiple data (SIMD), such as ARM Neon and
x86 AVX512, for speedup. To adequately exploit data-level
parallelism in SIMD, we carefully design data layout and data
packing. Specifically, we take a new NC/4HW4 layout [35]
and a channel-major packing for convolution; (3) the memory-
level optimization focuses mainly on reducing the number of
read and write as well as improving the contiguity of memory
allocation. In particular, for matrix multiplication, we apply
tiling and memory reordering; and (4) the assembly-based
optimization can achieve instruction-level speedup. We im-
plement core operators with hand-written assembly codes and
carefully apply some optimizations, such as loop unrolling,
software pipelining, and instruction reordering.

Semi-Auto Search. Data processing and model execution
normally involve a series of operators (i.e., the atomic, raster,
and control-flow operators after decomposition). Meanwhile,
different backends have different implementations and opti-
mizations for the operators, and a mobile device or a cloud
server tends to have several backends available. The global
goal of semi-auto search is to identify the backend with the
minimum cost. The cost of each backend is the sum of all the
operators with the optimal implementations. To identify the
optimal implementation algorithm for a certain operator on
a certain backend, the optimal parameters of each possible
algorithm need to be found. This is converted to a constrained
optimization problem that can be quickly solved, where the
objective is computation or memory cost, and the constraints
incorporate the hardware constraints of the backend and the
sizes of the algorithm’s inputs. We formulate the whole pro-
cess of semi-auto search and introduce the details as follows.

We let BA denote the set of all available backends and let
op1 → op2 → . . .→ opn denote the series of n operators for
execution. The cost of a backend ba ∈ BA is defined as

Cba =
n

∑
i=1

Copi,ba, (1)

where Copi,ba denotes the cost of the operator opi with the
optimal implementation on the backend ba. The goal of semi-
auto search is to find the backend with the minimum cost,
which can be expressed as

argminba∈BACba. (2)

Then, the problem is how to compute each Copi,ba. For each
operator opi and the backend ba, we let algs(opi,ba) denote
all feasible implementation algorithms with the optimal pa-
rameters. Then, Copi,ba is defined as

Copi,ba = min
alg∈algs(opi,ba)

Qalg

Pba
+Salg,ba, (3)

where (1) Qalg denotes the number of elementary calculations
in the algorithm alg, which can be obtained given the (“op-
timal” here) parameters and the sizes of the inputs; (2) Pba
represents the performance of the backend Ba. In MNN, for
a CPU-type backend, if the backend ba supports ARMv8.2-
FP16, Pba empirically takes 16 times the frequency; otherwise,
Pba takes 8 times the frequency. For a GPU-type backend, Pba
is empirically set to the number of floating point operations
per second (FLOPS) by manual testing; and (3) Salg,ba denotes
the scheduling cost of the algorithm alg on the backend ba.
In MNN, for a CPU-type backend, Salg,ba is set to 0; and for a
GPU-type backend, Salg,ba is empirically set and mainly con-
siders the time of data transfer. Now, the remaining problem
is for an operator opi, a backend ba, an implement algorithm
alg, and the sizes of the inputs, how to determine the optimal
parameters of the algorithm. In practice, we formulate it into
a constrained optimization problem, where the objective is
to minimize the computation or memory cost, and the con-
straints mainly include the width of SIMD unit, the number
of registers, the number of threads, and the sizes of the inputs.
In addition, we focus mainly on optimizing the following
parameters: the packing size in SIMD, the tile size in ma-
trix multiplication, the block unit in the Winograd algorithm,
and the reduction of the elementary calculations using the
Strassen algorithm. We take the optimization of the title size
in matrix multiplication for example. We let A denote an a×e
matrix, let B denote an e×b matrix, let te denote the tile size
along the axis with the equal size, let tb denote the tile size
along the axis of B’s columns, and let Nr denote the number of
registers. The optimization objective is minimizing the times
of memory read and write. The formula of the optimization
problem is given as follows:

min
te,tb

e
te
× b

tb
× (a× te +a× tb + te × tb) ,

s.t. te × tb + te + tb ≤ Nr,

(4)

which can be solved efficiently in runtime.
Compared with manual search, which optimizes the imple-

mentation algorithms with some common parameters for each
operator case by case, semi-auto search not only can sharply
reduce the workload but also can find the optimal parameters
with higher probabilities. Regarding why not adopt auto tun-
ing in TVM, it does not exploit manual experience in operator
optimization, consumes long time of static compilation due
to the large search space at the operator and graph levels for
a certain backend, and cannot support runtime optimization.
Most importantly, given the restriction on executable files and
just-in-time (JIT) compilation on iOS devices for security [4],
the compiled models generated by TVM must be linked into
mobile APPs with monthly/weekly update and cannot be daily
iterated as desired. Therefore, TVM is infeasible in industrial
applications that involve a large number of heterogeneous
devices or require frequent/quick task iteration (e.g., updating
the deployed ML models). In contrast, our design of the tensor
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compute engine essentially leverages manual operator-level
optimization for heterogeneous backends to narrow down the
space of semi-auto search, thereby supporting deploying mod-
els as regular resource files and further facilitating runtime
optimization and daily ML task iteration in Python VM. An-
other benefit is that the package size of mobile APPs will not
increase in the long term for more and more ML tasks.

4.2 Data and Model Related Libraries
With the tensor compute engine, we implement the libraries
of scientific computing and image processing for the pre-
processing and post-processing phases of an ML task, as well
as the libraries of model inference and model training. In
particular, the scientific computing and image processing li-
braries can be regarded as the optimized implementations of
NumPy [21] and OpenCV [28] in terms of light weight and
high performance. The light weight means that the sizes of
libraries can be reduced without manual tailoring. The origi-
nal sizes of NumPy 1.9.3 and OpenCV 3.4.3 are 2.1MB and
1.2MB, and decrease to 51KB and 129KB in MNN, respec-
tively. The high performance indicates that the performance
optimization of the underlying tensor compute engine can be
inherited to the libraries, avoiding the extra workload. We
introduce the implementations of the libraries as follows.

Scientific Computing & Image Processing. We use the
atomic, raster, and control-flow operators to support array
creation and manipulation routines, binary operations, linear
algebra, logic functions, padding arrays, random sampling,
mathematical functions, etc, in the scientific computing li-
brary; and to support image filtering, geometric and miscella-
neous image transformations, drawing functions, color space
conversions, etc, in the image processing library.

Model Inference & Model Training. We currently provide
two modes of model inference in MNN, called session and
module. The module mode can support the control-flow oper-
ators, which are required by transformer, dynamic RNN, etc,
whereas the session mode cannot. The session-based model
inference can be divided into four steps: (1) load a model,
create a session, arrange all the operators in the computation
graph according to the topological ordering, and apply for
the tensors that all the operators need; (2) given the shape of
each input tensor and the definition of each operator, compute
the shapes of all the tensors; (3) perform geometric comput-
ing, particularly, first decompose the transform and composite
operators into the atomic and raster operators, and then do
vertical and horizontal merging for raster operators; and (4)
identify the optimal backend with semi-auto search, request
memory for each operator and execute in sequence, and re-
turn the inference result. In the second step, the control-flow
operators require the intermediate result to determine the fol-
lowing execution order and thus cannot be supported in the
session mode. To solve this problem, when loading the model
in the first step, the module mode splits the computation graph
into modules (i.e., sub-graphs) iteratively, according to the
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Figure 6: Python thread-level virtual machine.

positions of the control-flow operators. Then, the execution
of each module is the same as that of the session.

We implement model training by adding two common op-
timizers: stochastic gradient descent (SGD) and adaptive mo-
ment estimation (ADAM). At the bottom, we add the gradient
operators of all the atomic operators and one raster operator.

4.3 Python Thread-Level Virtual Machine
Most ML tasks are implemented in Python and require a
Python VM to execute the Python scripts. We choose the
official and the most widely-used Python compiler and in-
terpreter, called CPython [43]. However, there exist two key
problems in the porting process of CPython, especially for
resource-constraint mobile devices. The first problem is that
the size of the package is large. For example, CPython 2.7.15
contains 500+ scripts in C and 1,600+ libraries, including
many redundant functionalities for mobile APPs. The second
problem is that CPython cannot support multi-threading to
improve efficiency. CPython originally cannot support concur-
rent programming and introduces GIL for multi-processing.
GIL allows only one thread to be processed at one time within
a process. However, each mobile APP has only one process
and does not allow multi-processing. How to support task-
level multi-threading in Python VM becomes a problem.

To reduce the package size, we tailor the functionalities, li-
braries, and modules for the practical need of Mobile Taobao.
(1) Functionality Tailoring: CPython first compiles Python
code into bytecode with the file suffix “.pyc” and then in-
terprets the bytecode for execution. By leaving the compile
phase on the cloud and sending only the bytecode to mobile
devices for execution, we can delete all the compile modules,
saving 17 scripts in C. (2) Library and Module Tailoring:
We keep 36 necessary libraries (e.g., abc, type, re, and func-
tools) and 32 modules (e.g., zipimport, sys, exceptions, and
gc). After package tailoring, we implement a light-weight
Python interpreter for mobile devices, which is the first in
industry. For example, on ARM64-based iOS, the package
size decreases from 10MB+ to only 1.3MB.

Regarding multi-threading, we abandon GIL and further de-
sign and implement the first Python thread-level interpreter in
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industry, supporting the concurrent execution of many tasks.
As shown in Figure 6, each task is scheduled to a certain
thread, which creates an independent VM and contains the
VM runtime and task-related data. For thread safety, the key
is to perform thread-level VM isolation and data isolation,
which pin a VM to its thread and further pin the context of
VM runtime to the thread. (1) VM Isolation: The lifecycle of
the original Python VM is pinned to the process, each pro-
cess having one VM. We need to modify the creation of VM
instances such that a process can hold multiple thread-level
VMs, each VM having its independent lifecycle. In CPython,
VM is defined as a struct in C, called PyInterpreterState. When
CPython starts, one PyInterpreterState instance will be ini-
tialized. We modify the initialization of CPython, particularly
creating and initializing a PyInterpreterState instance for each
thread. (2) Data Isolation: Besides VM itself, the context
of VM runtime (e.g., type system, module, and task-related
data) should also be isolated on the level of thread, avoid-
ing the concurrency problem of multi-threading without the
protection of GIL. We adopt the thread-specific data (TSD)
technique for data isolation, such that each thread has its own
data space, and different threads cannot access the same data
simultaneously. We mainly apply TSD to type system, buffer
pool, object allocation, and garbage collection.

4.4 Standard APIs
We expose the cross-platform libraries of data processing and
model execution through Python VM to support ML tasks. For
pre-processing and post-processing, the scientific computing
and image processing APIs are consistent with the original
APIs of NumPy and OpenCV to be developer-friendly, such
as matmul, swapaxes, concatenate, split, resize, warpAffine,
warpPerspective, cvtColor, GaussianBlur, etc. For model in-
ference and model training, the APIs of common model-level
and data-level operations are exposed, such as data loading,
model loading and saving, session creation and execution,
optimizers, hyper-parameter setting, loss computing, etc.

5 Data Pipeline in Walle

We detail the on-device stream processing framework and the
real-time device-cloud tunnel in the data pipeline.

5.1 On-Device Stream Processing Framework
The key design goal is to support stateful computation over
unbounded data stream on single device. A user’s behav-
ior data in a mobile APP tracked with accurate timestamps
form stream. The processing of user behavior data is state-
ful, where the intermediate results are buffered in memory
or stored locally for later usage. The resources of single de-
vice are limited, which implies that the trigger conditions of
many stream processing tasks should be well managed. We
introduce on-device stream processing from event sequence
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Figure 7: Workflow of on-device stream processing.

creation, trigger management, task triggering, task execution,
and collective storage. The workflow is depicted in Figure 7.

Event Sequence Creation. When a user interacts with a
mobile APP, the user’s behaviors will be tracked as events.
There are five major kinds of basic events: page enter, page
scroll, exposure, click, and page exit. Each kind of event is
recorded with a unique event id, a page id, a timestamp, and
event contents (e.g., the item id for exposure-type event and
the graphical widget id for click-type event). Since a user’s
behaviors are naturally in time series, the time-level event
sequence can be directly created. To further benefit processing
the events within a certain page or cross pages, the page-level
event sequence is created by aggregating the events between
the enter and exit events of the same pages.

Trigger Management. A stream processing task over the
event sequence contains scripts and configurations, where the
scripts implement the data processing algorithm, and the con-
figurations mainly include a trigger condition. In particular,
the trigger condition can be specified by a sequence of trigger
ids, where a trigger id can be an event id or a page id.

For a certain mobile device, it needs to efficiently maintain
multiple pre-processing tasks to generate different features
for diverse ML tasks, such that as an event comes, all relevant
tasks can be triggered immediately. The key is to organize
trigger conditions for quick matching. The trivial method of
storing trigger conditions in a list is inefficient, because of the
need to traverse the entire list each time. In fact, the matching
of multiple trigger id sequences with the event sequence (with
both event and page ids) can be modeled as a string match-
ing problem with multiple wildcard patterns. Therefore, we
leverage the data structure of prefix tree, called a trie, for effi-
cient trigger management. More specifically, the trie has three
kinds of nodes: start, middle, and end nodes. The trie’s root is
the unique start node. A trigger id is a middle node. An end
node, which stores the stream processing tasks, is a leaf node
of the trie, and vice versa. When a new stream processing task
comes, the trigger id sequence will be extracted as a sequence
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of middle nodes, and a pair of start and end nodes will be
added to the first and the last places of the node sequence,
respectively. Then, the depth-first search is performed over
the current trie from the root. If a path is completely matched
with the node sequence, then the stream processing task will
be added to the leaf node; otherwise, the mismatched nodes
will be added to the trie as a new sub-tree, the root of which
is the last matched node in the depth-first search process. We
note that each path of the trie corresponds to a unique trigger
condition, and the leaf node stores the stream processing tasks
with the same trigger condition. If two trigger id sequences
have common prefixes, then they will be put in the same sub-
tree, and the middle nodes in the path from the trie’s root to
the sub-tree’s root correspond to the common trigger ids.

Task Triggering. When a new event (with an event id and
a page id) comes, the set of triggered tasks will be returned.
First, two lists of trie nodes are introduced to record the con-
current matching states of multiple trigger conditions and to
avoid being blocked by wildcard pattern matching. The static
pending list stores all the children of the trie’s root, which
correspond to the first trigger ids in all the trigger conditions
and always keep active for matching. The dynamic pending
list stores the desired next nodes of the trigger conditions
in the ongoing matching. For an event in the stream, if its
event/page id matches the trigger id of any node in the static
or dynamic list, then each child of the node will be checked
for whether it is an end node. If the child is an end node, then
the stream processing tasks in the end node will be returned;
otherwise, the child, as a new desired next node, will be added
to a buffer of the dynamic list. At the end of task triggering
for the event, the dynamic list will be replaced by the buffer,
and the buffer will be refreshed.

Task Execution. When a task is triggered, the scripts will
be run in the compute container to process relevant events.
Besides standard data processing and mode execution APIs of
the compute container, to facilitate the extraction of relevant
events from the event sequence and the processing of event
contents, the stream processing framework also provides some
basic functions as follows: (1) KeyBy, which returns the events
matched with a given key; (2) TimeWindow, which returns the
events in a given time window; (3) Filter, which returns the
events filtered by a defined rule; and (4) Map, which processes
the event contents with a defined function.

Collective Storage. For each stream processing task, its
outputs, typically features, are saved as a table using SQLite.
Considering the fact that a stream processing task can be
triggered for several times, while the size of one-time output
is small, a collective data storage API is encapsulated over
SQLite to reduce the number of write, thereby improving
performance. In particular, a buffering table will be created
in memory, and the output of a stream processing task is first
written to the buffering table. If the number of write reaches a
certain threshold or a read operation is invoked, the buffering
table will be written into the database once.
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Figure 8: Workflow of deployment platform.

5.2 Real-Time Device-Cloud Tunnel
Besides for local use, the output of on-device stream process-
ing can also be uploaded to the cloud for real-time use. We
implement a device-cloud tunnel based on the persistent con-
nection. The secure sockets layer (SSL) protocol is optimized
to reduce the time of connection establishment, encryption,
and decryption. The data are compressed before transfer and
are decompressed after transfer. To deal with high throughput,
a fully asynchronous service framework is built on the cloud.

6 Deployment Platform

We introduce the details of ML task management, release, and
deployment. The whole workflow is shown in Figure 8.

Task Management. Git [41] is adopted to achieve the
isolation of different tasks and the version control of a certain
task, while supporting collaborative development with access
control. In particular, the entire task management is regarded
as a git group; each business scenario corresponds to a git repo
(repository); each task in a business scenario corresponds to a
branch; and each version of a task corresponds to a tag.

Besides the management of task entity, the task-related
files, especially the resources (e.g., data and model) which
can be large in size, are also managed in a fine-grained way to
support uniform and customized deployments. The files are
divided into two categories: one is the shared files, which can
be used by a large number of mobile devices (e.g., the devices
with a certain version of APP); and the other is the exclusive
files, which can be used only by a small number of devices or
even a specific device. The shared and exclusive files can be
requested efficiently via CDN and CEN, respectively.

Task Release & Deployment. A uniform or customized
policy can be taken to deploy tasks on targeted devices. The
uniform policy supports task release grouped by the APP ver-
sion, while the customized policy can further support group-
ing by device-side information (e.g., OS and its version or
device performance) and user-side information (e.g., age or
habit). According to the number of devices in a group, the
coarse-grained uniform deployment normally involves only
shared files, whereas the fine-grained customized task deploy-
ment not only can involve shared files but also can involve
exclusive files. In the extremely personalized scenarios, the
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customized policy supports deploying a certain kind of task
but with user-specific/exclusive files to each individual device.

Regarding task release, we take a novel push-then-pull
method. We reuse the existing client-side business request to
implement push, by adding a mobile device’s local task profile
into the http header and letting the cloud compare it with the
latest task profile. If a new task needs to be released and takes
the uniform deployment policy, then the cloud responds with
the CDN address of the shared task files. If the new task takes
the customized deployment policy, the cloud first determines
which group the mobile device belongs to by rule matching
and then responds with the CDN address of the shared files
or the CEN address of the exclusive files. After receiving
the response from the cloud, the mobile device can pull the
task files using the CDN or CEN address from the nearest
node. Considering the fact that the client-side business request
is frequent, while the speeds of CDN and CEN are fast in
practice, the timeliness of task deployment can be guaranteed.

To guarantee the stability of task release and deployment,
the simulators of the mobile APP with different versions for
different OS can be created with the compute container on the
cloud for testing a pre-release task extensively. Upon passing
the simulation testing, a beta release is conducted to deploy
the task only on a few targeted devices. After passing the
beta release, the gray release is forced to be performed in
steps, covering all the targeted devices incrementally. The
deployment platform is also equipped with an exception han-
dling module, which can monitor the failure rate of the task
in real time and also can rollback immediately if the failure
rate exceeds a certain threshold.

7 Evaluation of Walle

We evaluate Walle in two major application scenarios of Al-
ibaba. We also extensively conduct benchmark testing for
MNN, Python thread-level VM, and real-time tunnel. We
finally report the statistics of the deployment platform.

7.1 Performance in E-Commerce Scenarios
Compute Container in Livestreaming. E-commerce live-
streaming has brought a brand new form of online shopping
to billion-scale users. In 2020, the gross merchandise value
(GMV) of livestreaming in Mobile Taobao exceeded 400
billion RMB. One key ML task in this scenario is highlight
recognition, which is to locate the time points of a streamer
in introducing attractive information about items.

Under the conventional cloud-based ML paradigm, a video
stream is uploaded from each streamer’s mobile device to the
cloud for highlight recognition, which mainly includes the
detection and recognition of items as well as the facial detec-
tion and the voice detection of streamers. Due to the large
number of online streamers, the long length of their video
streams, and the stringent latency requirement of highlight
recognition, the load of the cloud is so heavy that only part of
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Figure 9: Workflow of device-cloud collaborative highlight
recognition in e-commerce livestreaming.

Table 1: Model information and inference latency in device-
side highlight recognition.

Item
Detection

Item
Recognition

Facial
Detection

Voice
Detection

Model FCOS [40] MobileNet [25] MobileNet [25] RNN
Parameter Size 8.15M 10.87M 2.06M 8K

Huawei P50 Pro 56.92ms 25.68ms 41.42ms 0.07ms
iPhone 11 33.71ms 29.74ms 22.58ms 0.01ms

video streams and only a few sampled frames can be analyzed,
which becomes a key bottleneck in practice.

With Walle, we can offload the highlight recognition task
with light-weight models to a streamer’s mobile device and
implement a device-cloud collaborative workflow, as shown
in Figure 9. If the device-side models can recognize the high-
lights in a video stream with high confidences, then these
highlights can be directly shown to users after post-processing.
Only those highlights, which are recognized with low confi-
dences on the mobile device and account for roughly 12% in
practice, need to be processed by cloud-side large models. Af-
ter passing cloud-side recognition, the rate of which is around
15%, the highlights will be delivered to the mobile device.

Through device-cloud collaboration, the numbers of stream-
ers and video streams covered with highlight recognition dra-
matically increase, while the load of the cloud is also sharply
relived. In particular, business statistics show that compared
with the cloud-based paradigm, the new device-cloud col-
laborative workflow increases the number of streamers with
highlight recognition by 123%; reduces the computing load
of the cloud per highlight recognition by 87%; and increases
the size of daily recognized highlights per unit of cloud cost
by 74%. We also evaluate the performance of the compute
container in Walle, when supporting highlight recognition on
Huawei P50 Pro and iPhone 11. The total latency is 130.97ms
and 90.42ms, respectively. In particular, the network archi-
tectures, the parameter sizes, and the inference latency of
the adopted models are listed in Table 1. The results above
demonstrate the high performance of our compute container
and the practical effectiveness of device-cloud collaboration.
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Figure 10: MNN vs. TensorFlow (Lite), PyTorch (Mobile), and TVM on different backends of mobile devices and cloud servers.

Data Pipeline in Recommendation. In Alibaba’s cloud-
side and device-side recommendation models, item page-view
(IPV) feature, which records a user’s behaviors (e.g., add-
favorite, add-cart, and purchase) in the detailed page of an
item, is of significant importance. To generate IPV feature,
under the conventional cloud-based paradigm, all the users’
raw event data are uploaded to the cloud for stream processing
and mixed with user ids for explicit identification. The time-
level event sequence from each mobile device is split into
multiple homogeneous sequences, one sequence containing
a certain kind of event. To obtain the IPV feature of each
individual user, the cloud performs join operations with user
id and page id as keys over all the users’ events, which is quite
time-consuming, resource-consuming, and error-prone.

With the on-device stream processing framework in the
data pipeline, each mobile device needs to process only a
small size of the corresponding user’s local events, which is
more efficient and more natural. In fact, the IPV feature in-
vokes the generation process of the page-level event sequence.
The input is the time-level event sequence. The trigger condi-
tion is the page exit event. The triggered stream processing
task is to aggregate all the events (i.e., to cluster the same
kind of events and gather statistics between the enter event
and the exit event of the page). Since the raw contents in each
event contain redundant fields (e.g., device status), a filtering
is applied to the event contents. Further considering the fact
that the IPV feature is first encoded (e.g., through RNN) in
recommendation models, by using the model inference API
of the compute container, the encoding process can also be
offloaded to mobile devices.

We first show the size reductions from raw event data, to
IPV feature, and to IPV encoding. On average, one IPV fea-
ture is around 1.3KB in size, involving 19.3 raw events in
the size of 21.2KB, and one IPV encoding is only 128 bytes.
This indicates that compared with the conventional paradigm
of transferring raw event data to the cloud for stream pro-
cessing, our new IPV data pipeline can save more than 90%
of communication cost. Besides communication efficiency,
we also compare the latency of on-device and cloud-based
stream processing. By analyzing over 10,000 practical cases
(randomly sampled from the case pool of 2 million online
mobile clients) of processing raw events into IPV features, the
average on-device latency is only 44.16ms. In contrast, using
Alibaba’s internal version of Flink, called Blink, the average
latency of producing one IPV feature is 33.73s. In particular,
the cloud-based stream processing is over 2 million online
users’ raw events and consumes 253.25 compute units (CU),
where 1 CU denotes 1 CPU Core plus 4GB memory; the
error rate of IPV feature generation is 0.7%; and the average
latency is analyzed over 10,000 randomly sampled normal
cases. These results reveal that compared the mainstream
cloud-based data pipeline, Walle’s new data pipeline can in-
deed reduce device-cloud communication cost and cloud-side
load, while improving the timeliness and validity of feature.

7.2 Benchmark Testing
We first compare MNN with TensorFlow (Lite) and PyTorch
(Mobile) on Android and iOS devices as well as Linux servers.
For device-side testing, we use Huawei P50 Pro and iPhone
11, covering the backends of ARMv7, ARMv8, and ARMv8.2
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with single thread as well as OpenCL and Metal. For server-
side testing, we use AMD Ryzen 9 3900X (x86), Alibaba
Cloud’s ecs.g6e.4xlarge (Intel Xeon (Cascade Lake) Platinum
8269CY, 16 vCPU, 64GiB memory), and NVIDIA GeForce
RTX 2080 Ti, covering the backends of AVX256 and AVX512
with 4 threads, and CUDA, respectively. We take ResNet
18 [22], ResNet 50 [22], MobileNet V2 [38], SqueezeNet
V1.1 [27], ShuffleNet V2 [33], BERT-SQuAD 10 [10], and
DIN [46], as the testing models, which are commonly used in
CV, NLP, and recommendation applications. The input size of
CV models is set to 1×3×224×224, the input size of BERT-
SQuAD 10 is set to (1×256,1×256,1×256,1), while the
input size of DIN is set to 1×100×32. We show the inference
time of the CV and NLP models in the left part of Figure
10, and omit the results of DIN, which are quite low (e.g.,
less than 0.2ms on iPhone 11 using MNN). We can observe
that MNN significantly outperforms TensorFlow (Lite) and
PyTorch (Mobile) in almost all the test cases. Besides higher
performance, MNN is also more full-featured on the side of
mobile devices, given that MNN can support all the models
on each device-side backend, whereas TensorFlow Lite and
PyTorch Mobile fail to support some backends and/or models.

We continue to compare MNN with TVM. We take Mac-
Book Pro 2019 and NVIDIA GeForce RTX 2080 Ti as the
host machines of TVM to do auto-tuning and compiling for
the mobile devices and the GPU server, respectively. The
number of trials in TVM auto-tuning is set to 30. Since TVM
auto-tuning for BERT-SQuAD 10 on two mobile devices in-
curs timeout crash, we take the default parameter settings for
model inference. From the evaluation results depicted in the
right part of Figure 10, one key observation is that the auto-
tuning and the compiling of TVM roughly cost thousands of
seconds. In contrast, the semi-auto search of MNN for runtime
optimization costs roughly hundreds of milliseconds. Further
incorporating the comparative analysis in Section 4.1, we can
draw that MNN can support the industrial scenarios that in-
volve numerous heterogeneous devices and require frequent
and quick task iteration, whereas TVM cannot. The second
key observation is that the inference time of MNN is lower
than TVM for each model on each backend, especially on the
GPU server. Such superiority is mainly due to the manual
operator-level, backend-level optimization in MNN.

We next compare Walle’s Python thread-level VM with the
original Python VM (i.e., CPython with GIL) using roughly
30 million online ML task executions. We define performance
as the reciprocal of task execution time and show the average
performance improvement in Figure 11. For the light-weight,
middle-weight, and heavy-weight tasks, Python thread-level
VM gains 52.11%, 144.36%, and 25.70% of performance
improvement, respectively. We can draw that task-level multi-
threading without GIL is the key of performance boosting.

We finally evaluate the latency of the real-time tunnel over
roughly 364 million uploads. Figure 12 shows the latency and
the number of uploads for varying data sizes. We can observe
that more than 90% uploads are under 3KB with less than
250ms on average. Even when the sizes of 0.1% uploads grow
to 30KB, the average delay increases only to around 450ms.

7.3 Deployment Platform Statistics
The deployment platform in Walle has supported 30+ mo-
bile APPs (e.g., Mobile Taobao, AliExpress, Xianyu, Youku,
Cainiao Guoguo) in Alibaba since the end of 2017, running
for roughly 1,500 days. It has deployed 1,000+ kinds of ML
tasks in total, each with 7.2 versions on average. Currently, the
deployment platform is maintaining and monitoring 348 kinds
of active tasks on more than 0.3 billion mobile devices. To
demonstrate the timeliness of task deployment, we randomly
select an ML task, monitor its release process, and depict in
Figure 13 how the number of covered devices changes as the
elapsed time grows. The first segment of the curve shows the
gray release stage, which takes 7 minutes to cover all the 6
million online devices. In particular, roughly 4 million de-
vices are incrementally covered within the last minute. Then,
the number of covered devices increases as more mobile de-
vices become online. Until 19 minutes later, almost 22 million
devices have been covered. The statistics show the scalability
and timeliness of the deployment platform in Walle.

8 Related Work
In this section, we briefly review some related work in both
academia and industry.

Cloud-Based ML System. Many companies have built
their ML systems on the cloud, which are backed by their
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cloud computing platforms, such as Amazon Web Services,
Microsoft Azure, Alibaba Cloud, and Google Cloud. The
architecture is clear and comprises the standard modules of
data storage (e.g., HBase [14] and HDFS [13]), batch and
stream processing (e.g., Storm [42], Spark [45], and Flink [7]),
ML engines (e.g., TensorFlow [1], PyTorch [36], and MXNet
[8]), virtualization and containerization (e.g., KVM [37] and
docker [26]), and elastic orchestration (e.g., Kubernetes [15]).

On-Device ML System. Some modules are open source
with rapid development in terms of well balancing light
weight, necessary functionality, and high performance, in-
cluding on-device inference engines (e.g., TensorFlow Lite
[16], PyTorch Mobile [12], Core ML [3], and NCNN [39]);
and SQLite [24], which is a small and self-contained SQL
database engine. However, the whole architecture is still in
the dark, and several core capabilities are absent, such as an
on-device execution environment that supports quick devel-
opment and concurrent execution of multiple ML tasks, and
light-weight data processing and model training libraries for
diverse CV, NLP, and recommendation tasks.

Device-Cloud Collaborative ML. The concept can stretch
back to edge/mobile computing, but focuses on the collabo-
ration of the cloud and mobile devices in executing complex
ML tasks, rather than offloading simple data analysis tasks
from the cloud to edge servers or mobile devices. Previous
work focused on the algorithmic framework or solution and
was normally specific to a certain kind of application. In
contrast and in parallel, Walle targets at the general-purpose
and large-scale production system support. We review some
representative work as follows.

An initial paradigm is to keep model training on the cloud
but offload model inference (e.g., facial recognition, photo
beautification, and question answering) to mobile devices, val-
idating the on-device advantages in reducing latency and pro-
tecting privacy. The key of this paradigm’s proliferation is the
advances of model compression algorithms to reduce model
size and optimize model structure, such as quantization [19],
pruning and sparification [20], knowledge distillation [23],
and neural architecture search [47]. Later, Mistify [18] auto-
mated the cloud-to-device model porting process given the
customized requirements of heterogeneous mobile devices,
while some work designed more reasonable task splitting
strategies rather than offloading the full inference task. For
example, Neurosurgeon [29] was proposed to automatically
partition DNN computation between a mobile device and the
cloud at the granularity of DNN layers.

Besides inference, the popular cross-device federated learn-
ing (FL) framework [34] elegantly generalizes the conven-
tional parameter server framework [30] and enables multiple
mobile devices to collaboratively train a global model under
the coordination of a cloud server. The tenet of FL is to keep
user data on local devices, thereby protecting data security
and privacy. The device-cloud collaboration in FL is purely
through exchanging model and its update periodically. The

task splitting strategy is that mobile devices conduct model
training, and the cloud aggregates model updates. Google has
experimentally deployed FL on its Android keyboard, called
Gboard, to polish language models [5].

Finally, many application-specific solutions were proposed
under the principle of device-cloud collaboration. FilterFor-
ward [6] and Reducto [31] considered how to effectively and
efficiently do camera-side frame filtering with ML techniques
to facilitate cloud-side video analytics. DDS [11] adopted
an interactive workflow, where a camera first uploads a low-
quality video stream and re-sends a few key regions with
higher quality according to the cloud’s feedback to improve
inference accuracy. COLLA [32] studied the user behavior
prediction task with RNN and leveraged knowledge distil-
lation to mutually and continuously transfer the knowledge
between the device-side small models and the cloud-side large
model, thereby mitigating data heterogeneity and data drift
over time. DDCL [44] and CoDA [17] focused on recommen-
dation. DDCL relied on patch learning for on-device model
personalization and adopted model distillation to integrate the
patches from mobile devices into the cloud-side global model.
CoDA, instead, was proposed to retrieve similar samples from
the cloud’s global pool to augment each mobile device’s lo-
cal dataset for training personalized recommendation models.
Backed by Walle, CoDA was deployed in Mobile Taobao.

9 Conclusion

In this work, we have built the first end-to-end, general-
purpose, and large-scale production system, called Walle, for
device-cloud collaborative ML. Walle is oriented by the life-
cycle of ML tasks and consists of a cross-platform, high-
performance, and quickly iterative compute container; a more
reasonable and efficient data pipeline; and a scalable, timely,
and robust deployment platform. Evaluation of Walle in prac-
tical e-commerce scenarios and extensive micro-benchmarks
have demonstrated the necessity of device-cloud collabora-
tion and the superiority of each ingredient. Walle has been
deployed in Alibaba for wide scale production use, serving
billion-scale users with mobile devices every day.
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