
Retrofitting High Availability Mechanism to Tame 
Hybrid Transaction/Analytical Processing

Sijie Shen, Rong Chen, Haibo Chen, Binyu Zang
{ds_ssj, rongchen} @ sjtu.edu.cn

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
Shanghai Artificial Intelligence Laboratory

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

1



Typical workloads of databases

2

Short-term read-write transactions
Ø Online order processing
Ø Stock exchange
Ø E-commerce

Long-term read-only queries
Ø Business intelligence
Ø Financial reporting
Ø Data mining

OLTP
(OnLine Transaction Processing)

OLAP
(OnLine Analytical Processing)



HTAP: new type of workloads

3

Real-time queries on data generated by transactions
Ø IoT
Ø Healthcare
Ø Fraud detection
Ø Personalized recommendation

OLTP OLAPHTAP
(Hybrid Transaction/Analytical Processing)



Requirements
Performance
ØMinimizing performance degradation (e.g., < 10%)
ØMillions of transactions per second[1]

Freshness
ØReal-time time delay between TP and AP (e.g., < 20ms)

4[1] ALIBABA CLOUD. Double 11 Real-Time Monitoring System with Time Series Database.

Scenario Fraud
Detection

System
Monitor

Personalized 
Ad.

Stock
exchange

Time delay 20 ms 20 ms 100 ms 200 ms



Data analysis: TP+ETL+AP

5

OLTP
MySQL
RocksDB
……

Extract

Trans.

Load

OLAP

Clickhouse
MonetDB

Data generation, row store
(update, delete, insert)

Data analysis, column store
(SUM, AVG, GROUP)

Alternative#1：DUAL-SYSTEM
Good performance
Time delay: from seconds to minutes

ETL
(Kafka, IDAA, F1 lightening…)

index



HTAP alternatives
Alternative#1：DUAL-SYSTEM
ØGood performance
ØLarge time delay

Alternative#2：SINGLE-LAYOUT
ØShort time delay
ØHuge perf. degradation

Alternative#3：DUAL-LAYOUT
ØLightweight sync. (a tradeoff)

6

Freshness
1 110010 10

0%
10%
20%
30%
40%
50%
60%
70%
80%

100ms s

Human Reaction Time (100-250ms)

HyPer

VEGITO

BatchDB

MemSQL

IDAA

F1 Lightning

43

Hekaton

Pe
rf
. 

De
gr
ad

at
io

n

Fraud Detection
(~20ms)

Online Gaming 
(50-100ms)

Stock Price Monitor 
(~200ms)

1

3

5

4 Personalized Ad
(~100ms)

5

2
3

1

10M

1M

100K

10K IDAA

SyPer

MemSQL

BatchDB

HyPer

VEGITO
DrTM+H

Hekaton

SyPer

(SQLServer)

System Monitoring
(~20ms)

2

21

TiDB

TiDB

(community)

TPC-H

1K

FaRMv2

TPC-C
(NewOrder txns/s)

OLAP

OLTP
Δ

OLTP

OLAP

Δ
OLTP

OLAP

Goal

Goal



VEGITO
a distributed in-memory HTAP system
Opportunity of High Availability for fast in-memory OLTP
ØReplication-based HA mechanism is common
ØSynchronous log shipping during transaction committing

Reuse HA for HTAP
Ø For performance: OLTP on primary, OLAP on backup/AP
Ø For freshness: synchronous logs

7

cleaner

Primary

Backup/TP

Backup/TP

Backup/TP:
- Fresh
- Fault-tolerant

cleaner

Primary

Backup/TP

Backup/AP

Backup/AP:
- Fresh
- Fault-tolerant
- Columnar



Freshness
1 110010 10

0%
10%
20%
30%
40%
50%
60%
70%
80%

100ms s

Human Reaction Time (100-250ms)

HyPer

VEGITO

BatchDB

MemSQL

IDAA

F1 Lightning

43

Hekaton

Pe
rf
. 

De
gr
ad

at
io

n

Fraud Detection
(~20ms)

Online Gaming 
(50-100ms)

Stock Price Monitor 
(~200ms)

1

3

5

4 Personalized Ad
(~100ms)

5

2
3

1

10M

1M

100K

10K IDAA

SyPer

MemSQL

BatchDB

HyPer

VEGITO
DrTM+H

Hekaton

SyPer

(SQLServer)

System Monitoring
(~20ms)

2

21

TiDB

TiDB

(community)

TPC-H

1K

FaRMv2

TPC-C
(NewOrder txns/s)

Effects of VEGITO

8



CHALLENGES AND DESIGNS
Goal of Backup/AP: fresh, fault-tolerant, columnar

9



Challenge#1: Log cleaning
Log shipping
Ø TP threads append logs to queue
Ø Cleaners drain logs

For high availability
Ø Drain logs in parallel
Ø Without consistency until recovery

For AP queries
Ø Should be consistency
Ø Slow (70% ↓): global timestamp + sequential cleaning

10

C#1

Backup/AP needs consistent and parallel log cleaning.



Epoch-based design
Partition time into non-overlapping epochs

Time isolation between OLTP and OLAP, each machine has
Ø E/TX: epoch of TX logs (increase periodically)
Ø E/C: epoch of logs being drained
Ø E/Q: epoch of stable versions on backup/AP

Freshness: ms-level epoch with consistency of distributed TX

11
545 3

cleaner

Primary

Backup/TP

Backup/AP

E/TX=5

E/Q=3
TimeE/Q E/TX

Backup/AP
Stable

Backup/AP
Unstable

freshness

E/C

E/C=4



Consistent epoch assign

Gossip-style epoch assign
► Epoch oracle: update epoch periodically and broadcast
► Gossip epoch during commit if violate dependence

► Consistency: previous TX within an equal or smaller epoch

12

1

M1

2

M2
TX1

w

w

TX2

r

TX1 happen-before TX2

C

Epoch
Oracle

4

4

Gossip

5

5



Parallel log cleaning

Clean logs matching TX dependence
► Parallelism: Logs within an epoch drained in parallel
► Consistency: each machine update E/C when all logs of an

epoch drained individually

13

1

M1

2

M2
TX2

w

w

2

cleaner

5 5

1

cleaner

5

5

TX1

r

4 4

5 4

5 4

5

Q

3

3

3

4

45

5

TX1 happen-before TX2 E/C E/Q=3



Challenge#2: MVCS
Multi-version column store (MVCS)
Ø Isolation & OLAP performance 

Different locality for read & write
Ø column-wise vs. row-wise

Chain-based MVCS
Ø Update efficiently

Ø Scan performance drop 90%
Ø when read 0.5 more version on avg.

14

C#2

40 E=2
0 E=2

100 E=1
100 E=1
99 E=4
80 E=4

100 E=2
100 E=2

100 E=1
100 E=1

100 E=2
97 E=3 100 E=2



VEGITO: block-based MVCS
Exploit performance for OLAP
Ø Scan-efficient (locality)
Ø Update: CoW in the unit of blocks

Optimizations: Row-split & Col-merge
Ø temporal & spatial locality
Ø Split a column into several pages (unit of CoW)
Ø Merge high-related columns together

15

Multi-version column store

40
0

100
100
99
80

100
100

E=4

40
0

100
100
100
97

100
100

E=3

40
0

100
100
100
100
100
100

E=2

100
100
100
100

E=1

12.5x scan performance improved



Challenge#3: tree-based index
Interference from heavy inserts

Write-optimized tree index
Ø At the expense of read performance

Read-optimized tree index
Ø Write performance is limited

16

C#3



Two-phase concurrent updating
Tree insert = in-place insert + balance (costly)

Insert in buffer of each leaf, balance in batch
Ø Insert: 8.7x STX+HTM (read-opt), 1.4x Masstree (write-opt)
Ø Read: 9% overhead under insertion

17



Fault tolerance
VEGITO perseveres the same availability guarantees
Ø no need for extra replicas
Ø prefers to recover the primary from backup/TP

Special cases (rare)
Ø Both primary and backup/TP fail: rebuild primary from

backup/AP and migrate to another machine
Ø Backup/AP fail: rebuild to the next epoch

18



Evaluation Setup
16 machines, each has
Ø 2x12 Intel Xeon E5-2650 processors,128GB RAM
Ø 2x ConnectX-4 100Gbps InfiniBand NIC

Benchmark
Ø CH-BenCHmark ≈ TPC-C + TPC-H

Workload Settings
Ø OLTP-only
Ø OLAP-only
Ø HTAP (VEGITO: epoch interval = 15 ms)

19



Compare to specific systems
Compared with OLTP-specific systems
Ø Peak throughput: 3.7 M txns/s
Ø 1% lower than DrTM+H (OLTP-specific) 

Compared with OLAP-specific systems
Ø Geo-mean latency: 57.2 ms
Ø 2.8x faster than MonetDB (OLAP-specific) 

20



HTAP workloads
VEGITO: performance & freshness
Ø OLTP 1.9M txns/s (degradation: 5%)
Ø OLAP 24 qry/s (degradation: 1%)
Ø Freshness (max time delay) < 20 ms

21



Recovery
Kill one of the primary for twice

Recovery from Backup/AP
Ø 42 ms for rebuilding the primary

22



Conclusion
VEGITO : retrofitting high availability mechanism to 
tame hybrid transaction/analytical processing

OLTP on primary, OLAP on backup
Ø Backup/AP: fresh, columnar, and fault-tolerant

Please check VEGITO at
Ø https://github.com/SJTU-IPADS/vegito

23

Thanks & QA

https://github.com/SJTU-IPADS/vegito

