Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning

Aurick Qiao1,2, Sang Keun Choe2, Suhas Jayaram Subramanya2, Willie Neiswanger1,2, Qirong Ho1, Hao Zhang1,3, Gregory R. Ganger2, Eric P. Xing4,1,2

1Petuum Inc., 2Carnegie Mellon University, 3UC Berkeley, 4MBZUAI
Deep Learning Training in Shared Clusters

Many users and training jobs \hspace{1cm} \textbf{Scheduler} \hspace{1cm} Shared compute cluster

Time/compute-intensive \hspace{1cm} \textbf{Expensive hardware (e.g., GPUs)}

\textbf{Cluster scheduler} decides how to allocate resources to jobs in order to minimize \textit{training time}, maximize \textit{cluster utilization}, or ensure \textit{fairness}.
Example Shared-Cluster DL Training Workflow

Train my model using X GPUs

Submit to Scheduler

OK, I will allocate X GPUs for your job

How to determine number of GPUs X?
Depends on:
- **Cluster contention**: changes dynamically
- **Job scalability**: needs expert knowledge

How to configure training parameters to utilize the allocated GPUs efficiently?
- Tune **batch size** and **learning rate**.

Inter-dependent, dynamic decisions

Not managed by existing cluster schedulers for DL training!
Pollux: Co-adaptive Cluster Scheduler for DL

Automatically and dynamically:
A. Allocates resources considering cluster-wide performance and fairness.
B. Tunes the batch size and learning rate for each individual training job.

Co-adaptive:
• Cluster-wide scheduling decisions account for the tuning happening at the per-job level.
• Individual jobs are tuned adaptively to the resources allocated by the cluster scheduler.

Results: reduces manual job configuration, improves average training time by 37-50%.
Outline

1. Motivation
2. Background on DL Training
3. Design of Pollux
4. Evaluation Results
Background: Distributed DL (Data Parallelism)

(1) Partition mini-batch
(2) Calculate gradients (compute-heavy)
(3) Average gradients (network-heavy)
(4) Update parameters
System Throughput and Impact of Batch Size

DL training scales sub-linearly: too many GPUs doesn’t help to increase system throughput!

Hard to know how many GPUs to use, depends on:
- Model architecture
- Cluster hardware
- Training batch size
- …

Common strategy: Use a larger batch size to improve system throughput/scalability
Statistical Efficiency and Impact of Batch Size

Why not keep increasing the batch size?

1. Need to carefully tune learning rate to keep the model quality consistent.

2. Increasing the batch size decreases the statistical efficiency of DL training.

3. Even further increasing the batch size results in worse model generalization.

(Shallue et al. 2018)
Illustration of Overall Training Performance

Training performance
System throughput
Statistical efficiency

Find this batch size

Batch Size
Statistical efficiency increases during training.
→ Optimal batch size changes dynamically!
(by 10x or more, McCandlish et al. 2018)
Implications for Cluster Scheduling

1. The preferred GPU allocation for a DL training job depends on its batch size, while the preferred batch size of the job depends on its allocated GPUs (inter-dependency).
2. GPU allocation also depends on cluster-wide factors such as fairness and contention.
3. Batch size also depends on per-job factors such as scalability and statistical efficiency.

Hard for users to account for these inter-dependent factors when submitting jobs.

A cluster scheduler that jointly controls these factors can better optimize for DL training.
Pollux Cluster Scheduler

(Re-) Configure Cluster/Jobs

Co-adaptively allocates cluster-wide resources and tunes per-job batch sizes and learning rates

Optimize resource allocations, batch sizes, and learning rates

Model Training Performance
Key Idea: Goodput, not Throughput

Pollux optimizes for a new measure of DL training performance called the *goodput*.

$$\text{GOODPUT}_t(a, m, s) = \text{THROUGHPUT}(a, m, s) \times \text{EFFICIENCY}_t(M)$$

System throughput
(training examples / second)

Statistical efficiency
(progress / training example)

Automatically determined by Pollux for each job during training

- a: Allocation vector, $a_n = \#\text{GPUs on node } n$
- m: Per-GPU batch size
- s: Gradient accumulation steps (enables total batch sizes larger than GPU memory limit)
- M: Total batch size, $M = |a| \times m \times s$
Modeling System Throughput

\[T_{iter}(a, m, s) = s \times T_{grad}(a, m) + (T_{grad}(a, m)^\gamma + T_{sync}(a)^{1/\gamma}) \]

- Time per training iteration
- Gradient accumulation steps
- Time to compute gradients
- Time for network communication
- Overlap between computation and communication
Modeling System Throughput

\[T_{iter}(a,m,s) = s \times T_{grad}(a,m) + \left(T_{grad}(a,m)\gamma + T_{sync}(a)\gamma \right)^{1/\gamma} \]

Enables Pollux to automatically:

1. Determine the right # GPUs and batch size.
2. Use gradient accumulation to increase the batch size beyond the limits of GPU memory.
3. Try to pack a job’s GPUs onto fewer nodes to minimize network overhead.
Modeling Statistical Efficiency

Pollux also models the statistical efficiency for each DL training job:

\[\text{EFFICIENCY}_t(M) = \frac{\varphi_t + M_0}{\varphi_t + M} \]

User provides a static baseline batch size \(M_0 \)

EFFICIENCY of batch size \(M \) is measured relative to \(M_0 \)

User can simply pick a small \(M_0 \) and not worry about system throughput or scalability.

Rely on Pollux to pick different \(M \) that balances system throughput and statistical efficiency.

\[\varphi_t = \text{(Pre-conditioned) Gradient Noise Scale} \]

(McCandlish et al. 2018)

Gradient noise scale intuition:

- Higher gradient noise \(\rightarrow \) larger mini-batch is helpful \(\rightarrow \) higher statistical efficiency.
- Lower signal-to-noise near convergence \(\rightarrow \) better statistical efficiency later in training.
Modeling Statistical Efficiency

Lower observed EFFICIENCY for larger batch sizes, improves later in training.

Accurately predict what EFFICIENCY would be if using a different batch size.

\[\text{EFFICIENCY}_t(M) = \frac{\phi_t + M_0}{\phi_t + M} \]

Putting it all together:

\[\text{GOODPUT}_t(a, m, s) = \text{THROUGHPUT}(a, m, s) \times \text{EFFICIENCY}_t(M) \]

Pollux quickly predicts what the GOODPUT of a training job would be using \((a, m, s)\) without needing to run the training job using \((a, m, s)\).
Pollux Optimizes Goodput for Each DL Job

Given an allocation of GPUs a, solve:

$$m^*, s^* = \arg\max_{m, s} \text{GOODPUT}_t(a, m, s)$$

Changing the batch size means the learning rate must be re-tuned.

Pollux lets user select a suitable learning rate scaling rule established in the DL community:

- Linear scaling
- Square-root scaling
- AdaScale (Johnson et al. 2020)
- …
Optimizing Cluster-Wide Allocations

Pollux finds an allocation matrix A, where $A_{jn} = \#$GPUs on node n allocated to job j.

Optimization objective:

$$\text{FITNESS}_p(A) = \left(\frac{1}{J} \sum_{j=1}^{J} \text{SPEEDUP}_j(A_j)^p \right)^{1/p}$$

where

- $\text{SPEEDUP}_j(A_j) = \frac{\max_m, s \text{GOODPUT}_j(A_j, m, s)}{\max_m, s \text{GOODPUT}(a_j, m, s)}$
- $\text{GOODPUT}(A_j, m, s)$ is the goodput of job j with m GPUs and s

p is a tunable parameter that controls fairness between jobs.

Search for A with a metaheuristic algorithm.

- Pollux uses a Genetic Algorithm.

Additional scheduling considerations:

- Avoid frequent re-allocations (high overhead).
- Avoid distributed jobs sharing a node (interference).
Evaluation of Pollux

A primary benefit of Pollux is automatically configuring jobs in shared clusters.

Important evaluation objective: demonstrate that even if jobs are given ideal static configurations, Pollux still outperforms alternative DL cluster schedulers.

- Real-world job distributions from Microsoft’s DL cluster traces (Jeon et al. 2019).
- Mix of training tasks: image classification, object detection, speech recognition, question answering, and recommendation.
- Manually tuned #GPUs, batch size, learning rate, and gradient accumulation ahead of time
 - For setting up strong baselines, does not benefit Pollux!
Scheduling Expert-Configured Jobs

16 nodes w/ 4 GPUs each (Nvidia T4)
160 DL jobs submitted over 8 hours

Uses expert-configured jobs.
Can elastically adapt resources,
but not batch size/learning rate.
(Peng et al. 2018)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Job Completion Time</th>
<th>MakeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>99% tile</td>
</tr>
<tr>
<td>Pollux ($p = -1$)</td>
<td>0.76h</td>
<td>11h</td>
</tr>
<tr>
<td>Optimus+Oracle+TunedJobs</td>
<td>1.5h</td>
<td>15h</td>
</tr>
<tr>
<td>Tiresias+TunedJobs</td>
<td>1.2h</td>
<td>15h</td>
</tr>
</tbody>
</table>

37-50% faster average training time

Uses expert-configured jobs.
Can pause/resume jobs based on their GPU-time metrics.
(Gu et al. 2019)

More realistic job configs:
>70% faster average training time
Cluster-wide Statistical Efficiency

Period of **high** cluster contention:
Pollux reduces #GPUs and batch size and trains with higher statistical efficiency.

Period of **low** cluster contention:
Pollux accepts lower statistical efficiency to train with higher system throughput.

Key trade-off made by Pollux
More Experiments in our Paper!

• Scheduling fairness
• Sensitivity studies
• Hyper-parameter tuning workloads
• Improving auto-scaling in the cloud
• ...

23
Conclusion

• Pollux co-optimizes both cluster-wide and per-job parameters for DL training.
• Pollux introduces goodput, a measure of training performance that combines system throughput and statistical efficiency.
• Pollux improves average training time in shared clusters by 37-50%, even against unrealistically strong baselines.

aqiao@andrew.cmu.edu