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~ 2.5 million terabytes
estimate of data generated 
per day in 2020
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… much of this data is personal 
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data-driven world ...

… data breaches, data misuse

… privacy laws, 
user awareness



Data Privacy Landscape   

Compliance 
”notice and consent”

Privacy-Enhancing Technologies 
”ad-hoc solutions”
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Zeph: Cryptographic Enforcement of 
End-to-End Data Privacy

User-centric Model
for Privacy

Cryptographically
Enforces Privacy 
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One of Many Scenarios

?

Privacy Transformation

Day 6

“Daily popular running tracks” “Raw Location Data” 
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Privacy Transformations
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Date Shifting
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Data Masking

k - Anonymity

Additive Noise Mechanism

Others (e.g., ME, SVT)

Differential Privacy DP

Data Generalization

Bucketing

Time Resolution

Population

Supported in Zeph 
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Existing End-to-End Encrypted Streaming Pipeline

Data
Producer
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Encrypted Data Storage / Processing
Data



Data
Producer

Encrypted Data Storage / Processing

A B

C

2. Data with Heterogeneous Privacy Policies

1. Compatibility with Existing Systems

Privacy
Preferences

Privacy
Value

3. Allow Transformations on Encrypted Data

A B C
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Policy
Enforcement

Integrate Privacy Controls into Existing Pipelines

Data
Producer
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Encrypted Data Storage / Processing
DataPolicy

Privacy Protocol

Public

Complex and ad hoc solutions  

Examples
- RAPPOR [1]
- PRIO [2]
   ...



Zeph’s End-to-End Approach to Privacy
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Zeph’s Threat Model and Assumptions
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How Zeph augments existing System Designs
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From Privacy Policies to End-to-End Privacy
Challenges
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Challenge #1: Keep End-User Control Simple

Policy
ChoiceMapping

Expert

Privacy Preferences
do not share data 
share data without restrictions
share generalized views of aggregated data  

End-User

Stream Schema
Policy
Options

Fields,
Data Types
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Challenge #2: Organize Privacy Transformations

Policy
Choice

Stream 1

Policy
Choice

Stream 2

Policy
Choice
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Privacy 
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Matching

Stream
View

Stream
View

Query 1 Query 2
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1) Confidentiality of data

2) Transformation Authorization   
     by Privacy Controller 

3) Compute transformation on
    confidential data

4) Privacy Controller is efficient
    and independent of data

Challenge #3: Meeting Privacy Transformation Requirements
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1) Confidentiality of data

2) Transformation Authorization   
     by Privacy Controller 

3) Compute transformation on
    confidential data

Additive Homomorphic Secret Sharing
Challenge #3: Meeting Privacy Transformation Requirements
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T’( · )
4) Privacy Controller is efficient
    and independent of data

= T’(     …)

 T’(     …)

(    ⊖    )  T(     …)
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- A
- B

- C
- D

Keys

A + C

    +     +

Data
Producer

Data
Producer

D
C

B
A

Data Masking
Redaction

Data Masking
Perturbation

Generalization
Population

- A  +       - C    

B
A

D
C

A + C +

operate on data

Privacy Controller -  operates on keys

T’( · )

T’( · )

Privacy Compliant 
“Public” View

T’( · ) =Additive Homomorphic Privacy Transformations
Challenge #3: Meeting Privacy Transformation Requirements



1) Confidentiality of data

2) Transformation Authorization   
     by Privacy Controller 

3) Compute transformation on
    confidential data

⊖

Data
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= T’(     …)
T’( · )
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 T(     …)

4) Privacy Controller is efficient
    and independent of data

Additive Homomorphic Secret Sharing
Challenge #3: Meeting Privacy Transformation Requirements

= T’(     …)

 T(     …)

21

 T’(     …)

(    ⊖    )



Independent and Efficient Privacy Controller
Challenge #3: Meeting Privacy Transformation Requirements

⊖
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Key Cancelling O(n) to O(1) 
TimeCrypt [3]

Timestamp-Encoded KDF
TimeCrypt [3]

1) Confidentiality of data

2) Transformation Authorization   
     by Privacy Controller 

3) Compute transformation on
    confidential data

4) Privacy Controller is efficient
    and independent of data

 T(     …)
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Challenge #4: Enable Federated Privacy Control
“multiple Data Producers - one Privacy Controller”
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Challenge #4: Enable Federated Privacy Control
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“multiple Data Producers - multiple Privacy Controllers”

Privacy
Controller

Privacy
Controller

Secure Aggregation Protocol
Only reveal the aggregation of the 
keys to the server
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Zeph Implementation and Evaluation

Data Producer & 
Privacy Controller

Privacy Transformation

streams
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Web Analytics: End-to-End Benchmark

Modest Overhead
1 sec compared to 0.46 sec
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pps-lab.com/research/e2e-privacy

github.com/pps-lab/zeph-artifact

https://pps-lab.com/research/e2e-privacy/
https://github.com/pps-lab/zeph-artifact
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