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Abstract
Metadata from voice calls, such as the knowledge of who is
communicating with whom, contains rich information about
people’s lives. Indeed, it is a prime target for powerful ad-
versaries such as nation states. Existing systems that hide
voice call metadata either require trusted intermediaries in the
network or scale to only tens of users. This paper describes
the design, implementation, and evaluation of Addra, the first
system for voice communication that hides metadata over
fully untrusted infrastructure and scales to tens of thousands
of users. At a high level, Addra follows a template in which
callers and callees deposit and retrieve messages from private
mailboxes hosted at an untrusted server. However, Addra im-
proves message latency in this architecture, which is a key
performance metric for voice calls. First, it enables a caller to
push a message to a callee in two hops, using a new way of
assigning mailboxes to users that resembles how a post office
assigns PO boxes to its customers. Second, it innovates on
the underlying cryptographic machinery and constructs a new
private information retrieval scheme, FastPIR, that reduces
the time to process oblivious access requests for mailboxes.
An evaluation of Addra on a cluster of 80 machines on AWS
demonstrates that it can serve 32K users with a 99-th per-
centile message latency of 726 ms—a 7× improvement over
a prior system for text messaging in the same threat model.

1 Introduction
Voice call metadata—the parties involved in the call, the
duration of the call, and the time of the call—can be incredi-
bly revealing. The former General Counsel of NSA, Stewart
Baker, has said, “metadata absolutely tells you everything
about somebody’s life. If you have enough metadata, you
don’t really need content” [21, 22, 66]. Several academic
studies [27, 54, 55] have confirmed the power of metadata.
As an example, Mayer et al. [54] used telephone metadata
to infer that a study participant “received a long phone call
from the cardiology group at a regional medical center, talked
briefly with a medical laboratory, . . . and made brief calls
to a self-reporting hotline for a cardiac arrhythmia monitor-
ing device.” The authors confirmed that the participant had a
cardiac arrhythmia. A study of whistle-blowers also revealed
that metadata can identify a journalist’s sources [39].

Given the information contained in metadata, a signif-
icant question is: how can one make a voice call with-
out revealing to anyone the metadata associated with the
call? Fortunately, several systems have tackled this prob-
lem [13, 34, 49, 51, 70, 72] (§7). Although these systems

hide metadata and keep message latency low, they either
restrict scalability to only tens of users [34, 70], or are vul-
nerable to attacks by requiring trusted intermediaries in the
communication infrastructure [13, 49, 51, 72]. An example of
a trust assumption is that the system guarantees security only
if the adversary can compromise at most a fraction (20%) of
the servers that route user calls [49]. Trusting intermediaries
can be risky as powerful adversaries like nation states are the
ones that try to collect metadata. Such adversaries have been
known to wield their vast political, technical, and financial
power to gain access to metadata [12, 53, 59, 67].

A system that can withstand strong adversaries while serv-
ing more than tens of users is Pung [7, 10]. Pung makes no
assumptions about the communication infrastructure—the
adversary may compromise a part or all of the infrastructure.
However, Pung targets applications such as email and chat
with long-lived messages that are retrieved asynchronously.
Indeed, a Pung client makes dlog2(n + 1)e round trips to a
remote server to obliviously search and retrieve a message (n
is the number of users), thereby incurring several seconds of
message latency (§6.1). In contrast, voice calls have a strict
time budget. If a user sends a packet every few hundred mil-
liseconds, then each hop in the communication infrastructure
must not spend longer than this time period to process and
forward the packet, to avoid an unbounded packet build up.

We present Addra, the first system that provably hides
metadata for voice calls, makes no assumptions about the
underlying infrastructure, and scales to tens of thousands of
users. In terms of privacy guarantees, Addra provides relation-
ship unobservability—an adversary cannot detect whether a
relationship (voice call) exists between any two users of the
system [63] (§2.1). These privacy guarantees are achieved
with practical latency performance of under 750 ms, and for
low-bandwidth voice synthesis at a rate of 1.6 Kbit/s as in the
Mozilla LPCNet voice codec [57, 74, 75].

Addra, like Pung, relies on a set of mailboxes hosted at an
untrusted server. Callers deposit messages and callees retrieve
messages from these mailboxes using a private information
retrieval (PIR) cryptographic protocol [19, 20, 43] (§3.2).
This protocol ensures that the untrusted server does not learn
which mailbox a callee is accessing, thereby unlinking the
callee from the caller. However, Addra must address two
challenges in this architecture to support low-latency voice
calls (§2.3). First, it must reduce the number of round trips
a caller or callee makes to the server to transfer or retrieve a
voice packet. Second, Addra must reduce the time the server
takes to process caller and callee requests, particularly, the
PIR requests.
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Addra addresses the first challenge through a new, and
remarkably simple, use of mailboxes (§3). When someone
rents a conventional post office box, or PO box, at a post
office, they get a mailbox with a unique and fixed address into
which the mailman deposits incoming mail. Addra inverts
this architecture. In Addra, a caller (rather than a recipient
or callee) gets a dedicated mailbox with a fixed address or
“phone number”. The caller deposits its outgoing messages
into this mailbox—independent of who the caller is calling.
(Thus, an adversary cannot tell whom the caller is calling.)
Meanwhile, a callee retrieves a message from the mailbox tied
to the caller’s phone number using a PIR protocol. Crucially,
to transmit a message, a caller makes one push request to the
server, and the server makes one push request to the callee—a
hop count of two. In contrast, prior work requires multiple
round trips between the server and the callees.

Addra addresses the second challenge mentioned above, of
reducing server-side processing time for PIR, by two means.
First, it parallelizes PIR processing across multiple server
machines and multiple CPU cores on a machine. The fact
that PIR is parallelizable is known and studied [29, 37]. Sec-
ond, and more saliently, Addra constructs a new PIR scheme,
FastPIR, that fundamentally reduces the server-side PIR pro-
cessing time relative to prior state-of-the-art schemes [4, 7]
(§4). Even though FastPIR was motivated by Addra, it can be
used for other applications of PIR [14, 30, 36, 56].

FastPIR builds on the homomorphic encryption scheme of
Brakerski/Fan-Vercauteren (BFV) [15, 33] (§4.1) and lever-
ages two of its features. First, it uses the single instruc-
tion, multiple data (SIMD) capability of BFV ciphertexts
to compute on compressed PIR requests. Prior state-of-the-
art schemes [4, 7] also exploit SIMD capabilities but not
in a way that keeps PIR requests compressed in memory.
Meanwhile, such compression improves memory utilization,
reduces CPU time, and eliminates the time to uncompress
requests (§4.2). However, working over compressed requests
naively increases PIR response size. So, second, FastPIR uses
homomorphic rotation operations in BFV to pack multiple
pieces of a PIR response, thereby reducing response size. Fur-
ther, FastPIR reduces both the CPU time per rotation and the
number of calls to this operation (§4.3, §4.4).

For completeness, Addra includes a dialing protocol that
allows a callee to detect that a caller is calling and learn the
caller’s phone number (mailbox address). For this purpose,
Addra uses the dialing protocol from Pung (§5).

We have implemented (§5) and evaluated (§6) a prototype
of Addra. Our prototype runs on Amazon EC2 where the
server runs in the US East region, and the clients (callers and
callees) run geographically apart in the US West region. When
the server uses 80 machines, Addra supports 32K clients com-
municating with each other with a 99-th percentile message la-
tency of 726 ms. In contrast, Pung (the only other system that
works at scale over completely untrusted infrastructure) trans-
mits messages for the same number of users with a message

latency of 5.2 seconds. Besides, Addra requires a network
download bandwidth of 1.46 Mbps and an upload bandwidth
of 30 Kbps for every client.

Although Addra achieves low message latency for a few
tens of thousands of users, it does not currently scale to hun-
dreds of thousands or a few million users due to the overhead
of PIR which grows quadratically with the number of users.
Furthermore, although its instantaneous bandwidth require-
ments are modest, the total network transfers are high as a
client must remain online even if it is not participating in
a call to hide call initiation patterns. Thus, Addra assumes
clients with unlimited data plans. Nevertheless, Addra demon-
strates, for the first time, that even over completely untrusted
infrastructure, metadata for voice calls can be hidden at scale
for tens of thousands of users.

2 Goals, threat model, and challenges
Addra’s goal, at a high level, is to enable its users to make peer-
to-peer voice calls while hiding metadata from a powerful
adversary that may compromise the entire communication
infrastructure.

2.1 Goals

Performance and scalability. Voice calls require the com-
munication infrastructure to transmit messages with low la-
tency. Addra targets a sub-second message latency due to the
feasibility of voice calls under such a setting [49]. Thus, if
Alice sends a voice packet to Bob, then Bob should receive
it within one second. Additionally, the infrastructure must
not queue up voice packets indefinitely. For instance, if Alice
generates a voice packet every 500 ms, then every hop in
the infrastructure must spend no more than 500 ms to pro-
cess the packet before sending it forward towards Bob. Addra
must also provide sufficient throughput so that the transmit-
ted voice is understandable. For this purpose, Addra targets
the LPCNet voice codec [74, 75], which specializes in low-
bandwidth voice synthesis at a rate of 1.6 Kbit/s. Finally, we
want Addra to scale to a large number of users (for example,
tens of thousands on a cluster of hundred machines).

Content privacy. Addra must ensure that only the caller and
callee of a voice call can comprehend the content of the voice
packets they send to each other.

Metadata privacy. Addra, similar to Pung [10], targets the
guarantee of relationship unobservability as defined by Pfitz-
mann and Hansen [63]. Relationship unobservability states
that it is undetectable whether a relationship (voice call) exists
between a sender (caller) and a recipient (callee), unless the
sender or the recipient are compromised. If either the caller or
the callee is compromised, then offering privacy guarantees
has little value, as the compromised party can trivially reveal
the existence of communication (or lack thereof).
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2.2 Threat model and assumptions

As motivated in the introduction (§1), Addra assumes an
adversary who can compromise the entire communication
infrastructure, including routers, switches, and middleboxes.
The adversary can observe network traffic, perform traffic
analysis, and manipulate traffic: reorder, replay, change, and
inject network packets.

Callers and callees trust their own devices. More generally,
the adversary can compromise a subset of end user devices. In
this case, Addra must provide content and metadata privacy
to the users of non-compromised devices.

The adversary may not break standard cryptographic prim-
itives such as public-key and symmetric-key encryption.

The adversary may mount a denial-of-service attack: bring
down the entire communication infrastructure or selectively
drop traffic. In such cases, Addra cannot guarantee voice
communication but must continue to guarantee privacy.

2.3 Challenges

Meeting the performance and privacy goals stated above un-
der the threat model just described is challenging. Indeed,
prior work either relaxes the threat model or does not meet
the performance goals. For instance, Yodel [49] is a metadata-
private voice communication system that scales to several
million users but assumes that a server in the communica-
tion infrastructure is compromised with only a 20% chance.
On the other hand, Pung [7, 10] works in the stronger threat
model. However, it cannot push frequent messages from a
caller to a callee. As mentioned earlier (§2.1), if a caller sam-
ples voice every 500 ms, then each hop of the communication
infrastructure must process a voice packet within 500 ms be-
fore the arrival of the next packet to avoid packet build up.
This time budget entails that a caller or a callee cannot make
multiple round trips to a server in the communication infras-
tructure to send or receive a single packet. But Pung requires
message recipients to make multiple such trips to its server.
Addra addresses these challenges and meets the performance
requirements for tens of thousands of users without making
any trust assumptions, as described next.

3 Architecture and overview of design
3.1 Architecture

Figure 1 shows Addra’s architecture. Addra consists of a
server and user (participant) devices. The server runs over
untrusted infrastructure. It is logically centralized but phys-
ically distributed over multiple machines. The server’s role
is to facilitate communication among the user devices in a
privacy-preserving manner.

The server exposes mailboxes. Specifically, it exposes n
mailboxes, where n is the number of user devices using the
system. Each mailbox can store one message and it has an ID,
which is a number between (and inclusive of) 0 and n − 1.
As we will describe later (§4), it is helpful to view the n
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server (on AWS)

(owns mailbox Mi )
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1
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Figure 1—High-level architecture of Addra. The server runs over
untrusted infrastructure and exposes mailboxes that user devices
read from or write into. The mailbox identifiers (integers 0 to n− 1)
play the role of “phone numbers”. A device stores phone numbers
of the device owner’s contacts in a local phone book. CPIR refers to
the private information retrieval cryptographic primitive (§3.2).

mailboxes as a matrix with n rows and m columns, where
each row is an individual mailbox, and the m pieces of a
message are m elements of a matrix row.

The user devices run logic to enable users to initiate, pick
up, and participate in calls. Each device gets assigned a mail-
box ID, which acts as its phone number. Each device also
contains a phone book, which stores information on device
owner’s contacts. Each phone book entry is a tuple of a phone
number of the contact, a cryptographic public key belong-
ing to the contact, and other standard information such as
the contact’s name, work place, and photograph. We assume
that a device owner either knows this information or can ob-
tain it privately through out-of-band means such as in-person
meetings or personal websites.

3.2 Protocol

Addra relies on a cryptographic protocol called private in-
formation retrieval or PIR [19, 43]. We begin with a short
background on PIR; Section 4 describes a new PIR scheme.

A primer on PIR. A PIR protocol [19, 43] runs between
a user device and the server in Addra, where the device is
interested in retrieving the message in the idx-th mailbox at
the server without revealing the value of idx.

A PIR protocol has three procedures: QUERY, ANSWER, and
DECODE. QUERY is run by a device. It takes as input the index
idx between 0 and n − 1 and returns a query, q. Typically,
q is an encryption of a suitable encoding of idx. ANSWER is
run by the server; it takes as input the query q and the set of
n mailboxes, and returns an encoding of the message in the
idx-th mailbox (without learning the value of idx). Finally,
DECODE is run by the device; it takes the output of ANSWER

and returns the idx-th mailbox message.

Addra’s protocol. User devices in Addra participate in a
round-based protocol consisting of a one-time registration
step followed by synchronous rounds, each consisting of a
dialing phase followed by a communication phase consisting
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1: function RECV(key key, resp resp)
2: // resp is the output of ANSWER PIR procedure
3: c← DECODE(resp) // DECODE is a PIR procedure
4: msg← AES.DEC(key, c)
5: play msg to user

6: function SEND(mailbox M, token t, message msg, key key)
7: c← AES.ENC(key, msg)
8: send (M, t, c) to server

9: function MAIN( )
10: // Register device and obtain a mailbox ID and unique token
11: (Mself , tkn, n)← REGISTERDEVICE()
12: while True do
13: // Run dialing phase. kenc is for encrypting content
14: (Mpeer, kenc)← DIAL/PICKUP()
15: q← QUERY(Mpeer, n) // QUERY is a PIR procedure
16: send q to server
17: // Asynchronously listen for server responses
18: register callback RECV(kenc, . . .) for server responses
19: // Run communication phase consisting of t subrounds
20: for r = 0 to t − 1 do
21: wait for message generation interval
22: call SEND(Mself , tkn, msgr, kenc)

Figure 2—Pseudocode for a user device in Addra. n is the number of
mailboxes at the server. QUERY, ANSWER, DECODE are procedures
of a PIR scheme (§3.2, §4).

of multiple subrounds of communication. In more detail, ini-
tially a device performs a one-time registration step to register
itself with the server and obtain its phone number (mailbox
ID). This is followed by a sequence of rounds. Each round
starts with a dialing phase, where the device initiates a call to
another device or picks an incoming call. The dialing phase is
followed by the communication phase, consisting of multiple
subrounds, where each device sends exactly one message to
the server and receives one message from the server. Notably,
a device always writes a message to its assigned mailbox,
while it receives a message from its peer’s mailbox.

We now describe Addra’s protocol in more detail. Figure 2
shows the pseudocode for a user device. A device starts exe-
cuting the MAIN function (line 9 in Figure 2).

One-time registration step. When a user device joins Ad-
dra, it registers itself with the server and obtains three pieces
of information: a mailbox ID, a unique authentication token
tkn, and the number n of mailboxes (line 11 in Figure 2). As
mentioned above, the mailbox ID acts as the phone number
assigned to the device. Meanwhile, the authentication token
is a 128-bit uniformly generated string shared between the
server and the device that enables the server to verify that
a device is writing messages to its assigned mailbox (and
not to a mailbox assigned to another device). One may use
digital signatures instead of authentication tokens, but Addra
prefers the symmetric tokens due to their better efficiency. The
number of mailboxes n may increase if new devices join the
system; when this happens, the server broadcasts an updated
value of n.

Addra’s server is untrusted and may assign mailbox IDs or
authentication tokens incorrectly; for instance, it may reas-
sign a previously assigned mailbox ID. Besides, it may dis-
tribute different values of n to different devices. The privacy
guarantees of Addra’s protocol do not depend on the server
assigning correct values for these items. However, a mali-
cious server can deny service to system participants, which is
not prevented by our threat model (§2.2). A service provider
who runs the server will likely be incentivized to provide a
continuous service to keep its customer base.

Dialing phase. Once registered, a user device, who we refer
to using its phone number, Mself , executes the round-based
protocol. At the beginning of each round, Mself initiates a
call or picks up an incoming call (line 14 in Figure 2). If
the device initiates a call, it selects the phone number of the
peer device it is calling, Mpeer, and an encryption key, kenc,
to hide the content of the messages it will send. On the other
hand, if the device picks up an incoming call then it learns
the phone number of the caller and its content encryption
key. For now, we leave out the details of how a device picks
up a call till later (§5). After initiating or picking up a call,
Mself generates a PIR query q ← QUERY(Mpeer, n) for the
peer’s mailbox, and sends q to the server (lines 15 and 16
in Figure 2). The PIR query indicates, without revealing the
value of Mpeer, that Mself is interested in receiving messages
deposited into Mpeer’s mailbox. The device Mself then registers
an asynchronous callback to process PIR responses from the
server (line 18 in Figure 2). Meanwhile, the server stores
the PIR queries from all devices and uses them across all
subrounds of the round’s communication phase.

Communication phase. In each subround of the communi-
cation phase, (1) a device deposits an encrypted message into
its assigned mailbox at the server, (2) the server processes PIR
queries from all devices and pushes the results to devices who
registered these queries, and (3) each device decodes its PIR
response from the server. In more detail, at the beginning of a
subround, a device encrypts the message it wants to send to
its peer with the key kenc to create a ciphertext c. It sends the
tuple (Mself , tkn, c) to the server (line 22 in Figure 2), where
tkn is the device’s assigned authentication token obtained dur-
ing the registration step. The server uses the token to validate
that the messages being written to mailboxes indeed come
from devices that own the mailboxes. After performing these
checks, the server runs the ANSWER PIR procedure for all
PIR queries. That is, for a query q sent by a device during the
dialing phase, the server runs resp← ANSWER(mailboxes, q)
and pushes the PIR response resp to the device. Finally, on re-
ceiving a response, a device invokes the callback it registered
during the dialing phase (line 1 in Figure 2). This callback
decodes the PIR response using the DECODE PIR procedure,
decrypts the underlying message sent by the device’s peer
Mpeer, and delivers the message to the user.
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Dummy participation and messages. The protocol de-
scribed so far does not address the case when a device owner
does not participate in a call. During such idle periods, like
prior systems for strong metadata privacy (e.g., [10, 49]), a
device adds cover traffic (also called chaff). In particular, if a
device does not initiate or pick up a call in a round’s dialing
phase, it calls itself: inputs Mself into QUERY (line 15 in Fig-
ure 2). Besides, if a device does not have a message to send
during a subround, it writes an encryption of a random mes-
sage into its mailbox. Sending cover traffic is necessary, as
otherwise an adversary can learn connections between users
by monitoring if they join and leave at similar times.

Security analysis. Addra’s protocol satisfies relationship un-
observability, meaning that an adversary cannot detect the
existence of relationships between system users (§2.1). We
provide a rigorous proof in an extended version of this pa-
per [5]. Briefly, Addra’s protocol meets the property because
the protocol a user device executes is independent of whom
the user is communicating with or the behavior of the (ma-
licious) server. First, a user device encrypts messages using
a content encryption key known only to its peer. Further, it
always writes outgoing messages at fixed intervals to its own
mailbox—independent of whether the device is engaged in a
call, or the identity of its peer, or the behavior of the server
who may or may not deliver incoming messages to the device,
or who may replay messages. Second, the security property
of PIR ensures that an adversary cannot tell the IDs of the
mailboxes from which devices are retrieving messages. Again,
the server may process PIR queries incorrectly, or broadcast
an incorrect value n for the number of mailboxes, but a user
device always registers a PIR query for one of the n mail-
boxes, no matter the value of n. Thus, the adversary cannot
detect whether a user Alice is communicating with Bob or
Charlie or someone else, or even communicating at all (i.e.,
retrieving messages from its own mailbox).

Performance characteristics. Addra’s protocol exhibits
two key characteristics that set it on the path to meeting
its performance goals (§2.1). First, the protocol pushes mes-
sages from senders to recipients in two hops—independent
of the number of users in the system. Specifically, in each
subround, a sender pushes a message to the server, who then
processes the PIR query provided beforehand by the recipient,
and pushes the PIR response to the recipient. This two-hop
communication pattern is crucial for voice calls which re-
quire low latency. Second, the protocol amortizes the cost
of generating and transferring a PIR query across subrounds
of a round (our prototype runs a round every five minutes,
and a subround every 480 ms; §6). Thus, the server does
not have to deal with PIR query management (and certain
preprocessing of query) during the time-sensitive subrounds.
Nevertheless, the server must complete computing ANSWER

for all PIR queries in a time smaller than the voice packet
generation interval (that is, the duration of a subround) to

avoid packet build up. Besides, the network transfers from
the server to the devices are dictated by the size of the output
of ANSWER. Thus, a low cost of the ANSWER PIR procedure
is key for Addra’s performance.

4 FastPIR: A new CPIR scheme
As described above (§3.2), a critical component of Addra’s
protocol is the ANSWER PIR procedure. It not only dictates
Addra’s message latency but also the resource consumption
(both CPU and network) imposed by Addra.

PIR schemes are of two types: computational PIR
(CPIR) [43] and information-theoretic PIR (IT-PIR) [19, 20].
CPIR schemes assume a single (untrusted) server and rely
only on cryptographic assumptions; in contrast, IT-PIR
schemes are more efficient but require two or more non-
colluding servers. In Addra, we use a CPIR scheme as its
trust assumptions are in line with Addra’s goal of not trusting
the communication infrastructure (§2.2).

One can plug in an existing CPIR scheme, either XPIR [4]
or SealPIR [7], which are the state-of-the-art CPIR schemes,
into Addra’s protocol (§3.2). However, these schemes exhibit
a tension between the CPU time to run ANSWER (and thus the
wall-clock time for ANSWER) and the output size of ANSWER

(and thus the network overhead).
Suppose a CPIR client wants to privately retrieve the idx-th

message from a library L of n messages (mailboxes) held at a
server. In prior work, a typical way to construct a CPIR query
is to treat the library as a matrix with n rows and generate a
ciphertext for every row of L.1 The ciphertext for the idx-th
row encrypts the value 1, and the ciphertexts for the other
rows encrypt 0. However, this strategy creates large queries
with a number of ciphertexts that is proportional to the value
of n (e.g., XPIR’s query size is ≈33 MiB for n=215, and
≈1 GiB for n=220; §6.5). When the server processes larger
queries, it consumes more memory and CPU cycles to read
them into CPU caches, which slows down query processing.
(SealPIR compresses the query while transferring it on the
network, but expands it to the larger query at the server).

A popular technique due to Stern [71] to address the query-
size issue is called recursion. This technique is parameterized
by a depth parameter d. A value of d = 2 or higher shrinks
the query—it contains d · d

√
n ciphertexts instead of n—by

rearranging the library as a d-dimensional hypercube. How-
ever, this rearrangement increases the CPIR ANSWER output
size exponentially with d. Thus, if we plug in existing CPIR
schemes (XPIR or SealPIR), then Addra would compromise
on either server CPU time or network bandwidth.

Our CPIR scheme, FastPIR, works without recursion and
thus keeps the smaller CPIR answer size. However, it opti-
mizes the computation time for ANSWER. In fact, FastPIR

1A technique called aggregation [4, 11] further combines multiple rows
(messages) into wider rows, resulting in a matrix with n/a rows, where the
value a depends on the size of each message.
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takes less time than both XPIR and SealPIR (with or without
recursion) to run ANSWER, particularly when the number of
messages n in the library is greater than a threshold (≈20K;
§6.5), thereby improving the scalability and message latency
of Addra. FastPIR may be a good fit for other applications
of CPIR where costs are dominated by those of the CPIR
ANSWER procedure.

FastPIR, like SealPIR [7], builds on the lattice-based ho-
momorphic encryption scheme of Brakerski/Fan-Vercauteren
(BFV) [15, 33]. BFV offers superior efficiency than a tra-
ditional number-theoretic homomorphic encryption scheme
such as Paillier [61], resists attacks by quantum comput-
ers, is implemented in mature and actively maintained code-
bases [2, 69], and is in the preliminary stages of being stan-
dardized (e.g., with ISO/IEC) [6]. We start with a necessary
background on BFV (§4.1), and then delve into the details of
FastPIR (§4.2–§4.4).

4.1 Background: The BFV cryptosystem

We focus here on describing the more efficient vectorized
variant of BFV in which a single homomorphic operation
operates over multiple plaintext inputs (single instruction,
multiple data or SIMD; also called batching in the literature).

In this BFV variant, a plaintext is a vector of dimension N,
where the parameter N equals a power of two and is at least
210 for the security of the BFV scheme [6]. Each component
of the plaintext is an integer in Zp = {0, . . . , p−1}, the set of
integers modulo p. Sometimes, we will view a BFV plaintext
as a matrix with two rows and N/2 columns rather than a
vector with dimension N.

A BFV ciphertext is also a vector but of dimension 2 · N.
Each of its component is an element of Zq, where q� p.

The BFV encryption procedure, BFV.ENC, adds noise when
it converts a plaintext vector into a ciphertext vector. This
noise grows as homomorphic operations are performed on
the ciphertext. If the noise grows beyond a threshold, then the
ciphertext decryption procedure BFV.DEC does not produce
the correct plaintext. Hence, q� p for enough noise budget.

The size of the plaintext vector, N, the size of the domain
of each component of the plaintext, p, and the size of the
domain of each component of the ciphertext, q, are all tunable
parameters. Typically, one picks a combination of p, q, N
depending on the application, the required noise budget, and
the desired security level; we discuss concrete values for these
parameters for Addra in §5.

BFV supports the following homomorphic operations that
are used in FastPIR:
• BFV.ADD(c0, c1) takes as input encryptions c0 and c1 of

plaintext vectors v0 and v1, and outputs an encryption of
v0 + v1 (component-wise vector addition).

• BFV.SCMULT(v0, c1) takes as input a plaintext vector v0
and an encryption c1 of a plaintext vector v1, and produces
an encryption of the product v0 � v1, where the operator �
denotes component-wise multiplication.

• BFV.ROWROTATE(c0, i) takes as input an encryption c0
of a plaintext v0 and an integer 0 < i < N/2 − 1, and
produces an encryption of v0 rotated right by i positions
cyclically row-wise. For instance, if plaintext dimension
is N = 8 and v0 is ((a, b, c, d), (e, f , g, h)) in its matrix
representation, then a right rotation by i = 1 produces an
encryption of ((d, a, b, c), (h, e, f , g)).

• BFV.COLROTATE(c0) takes as input an encryption c0 of a
plaintext v0 and returns an encryption of a plaintext pro-
duced by swapping the two rows of v0. For the example
above, the result is an encryption of ((e, f , g, h), (a, b, c, d)).

The BFV homomorphic operations require public keys gen-
erated by a key generation procedure. In particular, the
rotation procedures require a set of rotation keys. While
BFV.COLROTATE requires one key, the size of the set of keys
for BFV.ROWROTATE can vary. On the one extreme, this set
can be configured to contain one key that rotates the plaintext
vector by one position. Thus, to perform a rotation by i > 1
positions, BFV.ROWROTATE calls itself i times, incurring i
times the cost of one BFV.ROWROTATE operation. On the
other extreme, the set can contain N/2− 1 keys for all possi-
ble values of i between 0 and N/2. This extreme reduces CPU
time for BFV.ROWROTATE as it does not call itself recursively,
but this configuration increases the key size. For the BFV pa-
rameters we choose (§5), each rotation key is 128 KiB, and the
set of all possible rotation keys is 256 MiB. Thus, in practice,
one generates log2(N/2) keys for all powers-of-two between
0 and N/2− 1, and each invocation of BFV.ROWROTATE calls
itself recursively up to log2(N/2) times.

4.2 The FastPIR scheme

Recall the CPIR scenario (§4): a server holds a library L of
n messages where each message has m components, while a
client holds an integer 0 ≤ idx ≤ n− 1 and wants to retrieve
the idx-th library message without revealing idx to the server.

To build intuition for FastPIR, suppose that L is an N × 1
matrix consisting of N unit length messages, where N is the
plaintext vector dimension in BFV. Then, the client constructs
the CPIR query q for the idx-th message by encrypting a
BFV plaintext whose idx-th entry is one and the rest are
zeros (this is called one-hot encoding of idx). For instance,
if N = 4 and idx = 1, the client encrypts the BFV plaintext
(0, 1, 0, 0). The server multiplies this encryption q with L by
computing BFV.SCMULT(L, q) to obtain an encryption of the
idx-th entry of L. For the example above, if L is (a0, a1, a2, a3),
BFV.SCMULT produces an encryption of (0, a1, 0, 0) as the
multiplication is component-wise. The client receives the
output and decrypts it to get a1.

The advantage of this strategy is that a query consumes
only a component of a ciphertext for each of the n rows of
L (instead of a ciphertext per row). However, a challenge is
that this strategy generates one output ciphertext for each
of the m columns of L. FastPIR addresses this challenge by
combining ciphertexts for m columns into a single cipher-
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1: function QUERY(index idx, n)
2: // Create a one-hot encoding of idx
3: for i = 0 to n− 1 do
4: fi ← (i == idx) ? 1 : 0
5: // Split and encrypt the one-hot vector
6: for i = 0 to (n/N)− 1 do // N is BFV plaintext dimension
7: qi = BFV.ENC(pk, (fi·N , . . . , f(i+1)·N−1))

8: return q = (q0, . . . , q(n/N)−1)

9: function ANSWER(library L, query q = (q0, . . . , q(n/N)−1))
10: // Represent L as a matrix of elements in Zp: L ∈ Zn×m

p

11: // q is an output of QUERY

12: for j = 0 to m− 1 do
13: sumj = BFV.ENC(pk, 0)
14: for i = 0 to (n/N)− 1 do
15: pi,j ← SUBMAT(L, i · N, (i + 1) · N − 1, j, j)
16: ti,j = BFV.SCMULT(pi,j, qi)
17: sumj = BFV.ADD(sumj, ti,j)

18: // Combine outputs from all columns
19: Initialize stop, sbot to encryptions of zero vectors
20: for j = 0 to m− 1 do
21: if j < N/2 then
22: sumj ← BFV.ROWROTATE(sumj, j)
23: stop ← BFV.ADD(stop, sumj)
24: else
25: sumj ← BFV.ROWROTATE(sumj, j− N/2)
26: sbot ← BFV.ADD(sbot, sumj)

27: return BFV.ADD(stop, BFV.COLROTATE(sbot))

28: function DECODE(answer ans, index idx)
29: // ans is an output of ANSWER

30: anspt ← BFV.DEC(sk, ans)
31: if idx mod N > N/2 then
32: anspt ← PTCOLROTATE(anspt)

33: return anspt ← PTROWROT(anspt, N/2− (idx mod N/2))

Figure 3—QUERY, ANSWER, and DECODE procedures for a ba-
sic version of FastPIR. (pk, sk) are a (public, private) key pair for
the BFV scheme (§4.1). SUBMAT extracts a sub-matrix of a ma-
trix. PTROWROT and PTCOLROTATE are like BFV.ROWROTATE

and BFV.COLROTATE, respectively except they operate on BFV
plaintexts rather than BFV ciphertexts.

text using the BFV rotation operations (BFV.ROWROTATE and
BFV.COLROTATE), thereby reducing CPIR answer sizes.

Before describing the details of rotation, we remark that
the use of vectorized operations (SIMD capabilities of BFV)
is common. In fact, both XPIR and SealPIR use vectorized
operations. The difference is that these prior CPIR schemes
apply vectorization across columns of the matrix while Fast-
PIR applies it across rows of the matrix, which is a more
efficient use of vectorization in the PIR context (§6.5).

Details. Figure 3 shows the FastPIR scheme. It assumes that
n is a multiple of N, i.e., n = k ·N for some k ≥ 1, and m ≤ N.
If these constraints do not hold, then the server pads L with
empty rows and splits L into sets of N columns.

The QUERY procedure and the top half of ANSWER (until
line 17) follow the intuition described above. That is, QUERY

creates a one-hot encoding of idx (line 4 in Figure 3), splits
the encoding into multiple BFV plaintexts, and encrypts each
plaintext separately (line 7 in Figure 3). The top half of
ANSWER multiplies the k = n/N plaintext column vectors
of each column of L with the corresponding ciphertexts in the
query (line 16 in Figure 3), and adds the k output ciphertexts
to get one ciphertext per column of L (line 17 in Figure 3).
For instance, if n = 8, N = 4, idx = 1, and a column of
L is (a0, a1, . . . , a7), then ANSWER computes encryptions of
(0, a1, 0, 0) and (0, 0, 0, 0) in line 16 of Figure 3, and adds
them to get an encryption of (0, a1, 0, 0) in line 17 of Figure 3.

The bottom half of ANSWER packs together outputs from
each column into a single ciphertext (lines 19–27 in Fig-
ure 3). Suppose the number of columns is m = 4 and the
outputs corresponding to them are encryptions of (0, a1, 0, 0),
(0, b1, 0, 0), (0, c1, 0, 0), and (0, d1, 0, 0), or equivalently en-
cryptions of ((0, a1), (0, 0)), ((0, b1), (0, 0)), ((0, c1), (0, 0)),
and ((0, d1), (0, 0)), when the underlying plaintexts are
viewed in their matrix form. Then, ANSWER uses the
BFV.ROWROTATE and BFV.ADD operations to produce en-
cryptions of ((b1, a1), (0, 0)) and ((d1, c1), 0, 0)) (lines 20–
26 in Figure 3), before column rotating the second ciphertext,
and adding the result to the first ciphertext to obtain an en-
cryption of ((b1, a1), (d1, c1)) (line 27 in Figure 3). Using
rotations to pack outputs from multiple columns into a single
ciphertext is crucial as otherwise a CPIR answer size can
contain multiple ciphertexts (instead of one).

DECODE is straightforward; it decrypts the output of
ANSWER and then rotates the plaintext depending on the
value of the requested index. For the example above, DECODE

first obtains the plaintext matrix ((b1, a1), (d1, c1)), and then
performs a rotation on this matrix by idx = 1 to obtain
((a1, b1), (c1, d1)).

4.3 Reducing the CPU cost of rotations

Recall that one goal of FastPIR is to optimize the CPU time of
ANSWER procedure (§3.2). A source of inefficiency in what
is described above is the cost of BFV.ROWROTATE (lines 22
and 25 in Figure 3), as the CPU time taken by it depends on the
value of i—the positions by which the underlying plaintext is
rotated. When i is a power of two, then BFV.ROWROTATE is
fast, whereas when i is a not a power of two, BFV.ROWROTATE

calls itself up to log2(i + 1) times (§4.1). For example, a call
to BFV.ROWROTATE with an input i = 7 translates into three
rotations by amounts one, two, and four—powers of two that
add to seven.

FastPIR eliminates the calls to expensive rotations whose
input rotation amount is not a power of two. As intuition,
suppose that the ANSWER procedure (Figure 3) needs to make
two calls to BFV.ROWROTATE—one for rotating a vector by
two positions and the other for rotating a vector for another
matrix column by three positions. Then, the straw man de-
sign presented in the previous subsection treats each rotation
separately. Particularly, it breaks down the rotation by three
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0|0|a|0
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0|0|a|0

0|0|b|0 0|0|c|0 0|0|d|0
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c|d|a|b

0|0|a|0 0|0|b|0 0|0|c|0 0|0|d|0

0|0|a|b 0|0|c|d

c|d|a|b

Figure 4—Illustration of optimized rotations in FastPIR. The straw
man (left) performs a mix of slow rotations (with rotations amounts
that are not powers of two) and fast rotations (with rotation amounts
that are powers of two) to combine multiple vectors. FastPIR’s
optimized scheme combines vectors using fast rotations only.

positions into a rotation by one position followed by a rota-
tion by two positions. Instead, FastPIR first rotates the second
vector by one position and adds the result to the first vector.
Then, it rotates the combined vector once by two positions,
thereby rotating only by powers-of-two amounts.

Figure 4 illustrates the idea for our running example with
m = 4 matrix columns, where the FastPIR processing for each
column produces a ciphertext. FastPIR arranges the vectors
to be combined as leaf nodes of a tree; it then builds up to the
root of the tree. When producing a parent at a given height h
of the tree, FastPIR rotates the right child by 2h−1 positions
and adds the rotated vector to the left child. The effect is that
FastPIR combines m ciphertexts in lines 22 and 25 in Figure 3
using m fast rotations.

4.4 Reducing the number of rotations

This optimization reduces the number of calls to
BFV.ROWROTATE by a factor of two, and eliminates the call
to BFV.COLROTATE, thereby further reducing the CPU cost of
ANSWER. The trade-off is a 2× increase in CPIR query size.

The key idea is to exploit the matrix representation of a
BFV plaintext (§4.1) and retrieve two elements of a matrix
row (instead of one) at a time.

As motivation, suppose that the matrix L is of dimension
N/2× 2, and the client wants the idx-th row. Then, the client
sends an encryption of a vector whose idx-th and idx + N/2-
th entries are one (and the rest are zeros). For instance, if
N = 4 and idx = 1, then the client sends an encryption of
(0, 1, 0, 1), or equivalently, ((0, 1), (0, 1)). The server multi-
plies this query with L to get an encryption of a vector whose
idx-th and idx + N/2-th entries are the desired elements from
the two columns of L. As an example with idx = 1, say L is
((a0, a1), (b0, b1)), then the multiplication operation produces
an encryption of ((0, a1), (0, b1)).

Figure 5 shows the procedures of FastPIR with this opti-
mization. The procedures assume that n is a multiple of N/2,
i.e., n = k · (N/2) for some k ≥ 1, and m is even and≤ N. As
before (§4.2), if these constraints do not hold, then the server
appropriately pads and splits L.

The QUERY procedure encrypts a set of vectors that in total
contain two non-zero entries (line 6 in Figure 5). The ANSWER

procedure multiplies k parts of every pair of columns of L
with the k ciphertexts in the query, and adds the results to

1: function QUERY(index idx, n)
2: for i = 0 to n− 1 do
3: fi ← (i == idx) ? 1 : 0 // one-hot encoding
4: for i = 0 to n/(N/2)− 1 do
5: v← (fi·N/2, . . . , f(i+1)·N/2−1)
6: qi = BFV.ENC(pk, v||v) // || denotes concatenation
7: return q = (q0, . . . , qn/(N/2)−1)

8: function ANSWER(library L, query q = (q0, . . . , qn/(N/2)−1))
9: // Represent L as a matrix of elements in Zp: L ∈ Zn×m

p

10: // q is an output of QUERY

11: for j = 0 to (m/2)− 1 do
12: sumj = BFV.ENC(pk, 0)
13: for i = 0 to n/(N/2)− 1 do
14: pi,j ← SUBMAT(L, i·N/2, (i+1)·N/2−1, 2j, 2j+1)
15: ti,j = BFV.SCMULT(pi,j, qi)
16: sumj = BFV.ADD(sumj, ti,j)

17: // Combine outputs from all pairs of columns
18: return ROTATEANDCOMBINE(sum0, . . . , summ/2−1)

19: function DECODE(answer ans, index idx)
20: // ans is an output of ANSWER

21: anspt ← BFV.DEC(sk, ans)
22: return PTROWROT(anspt, N/2− (idx mod N/2))

Figure 5—QUERY, ANSWER, and DECODE procedures for FastPIR.
(pk, sk) is a (public, private) key pair for the BFV scheme (§4.1).
SUBMAT extracts a sub-matrix of a matrix. ROTATEANDCOMBINE

refers to the optimized procedure to combine ciphertexts (§4.3).
PTROWROT is like BFV.ROWROTATE except that it operates on
BFV plaintexts rather than BFV ciphertexts.

get one ciphertext for every pair of columns. Then, ANSWER

packs these outputs using the optimized scheme to combine
ciphertexts described previously (§4.3). The DECODE proce-
dure decrypts the output of ANSWER and performs a rotation
on the plaintext output.

Security analysis. The security of a CPIR scheme requires
the output of QUERY to not reveal any information about the
requested index [20, 43]. FastPIR meets this property because
its QUERY procedure (i) produces semantically-secure BFV
ciphertexts, and (ii) outputs n/(N/2) ciphertexts independent
of the value of the desired index idx.

5 Implementation details
FastPIR. Our prototype of FastPIR is ≈1000 lines of C++
and is available at https://github.com/ishtiyaque/
FastPIR. We used the Microsoft SEAL library v3.5 [69]
for the underlying cryptographic operations of the BFV
scheme. Recall that FastPIR configures BFV so that it sup-
ports vectorized operations (§4.1). For vectorization, the
plaintext modulus p has to be a prime number congruent
to 1 (mod 2N), where N is the vector dimension of a BFV
plaintext and equals 210 or a higher power of two (§4.1).
Moreover, one needs to choose p � q to ensure correct de-
cryption. For Addra, we choose N = 212, p a 19-bit prime
270337, and q a 109-bit composite that is the product of
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a 54-bit prime (18014398509309953) and a 55-bit prime
(36028797018652673). These parameters provide a 128-bit
security level as guided by the homomorphic encryption stan-
dard [6]. (One may choose different parameters for FastPIR
based on application requirements.)

Master-worker architecture for Addra. We implemented
Addra server using a master-worker architecture with many
worker machines to distribute the PIR workload. Specifically,
during the dialing phase of a round in Addra’s protocol (§3.2),
the master receives CPIR queries from all devices and shards
them across the workers, where a worker gets a subset of the
queries. Then, during the communication phase, the master
initiates each subround at a fixed schedule. During each sub-
round, it waits to receive messages from the clients, compiles
them into a message library, and broadcasts the entire mes-
sage library to the workers. In case a laggard client fails to get
its message to the master during the time period the master
waits for incoming messages, the master buffers the laggard’s
message for the next subround. If more than one message
arrives at the master from a client for the same subround,
the master retains the latest message. Meanwhile, to process
CPIR queries, each worker computes the output of ANSWER

on its assigned subset of the queries and pushes the outputs
to the client devices who registered the queries.

Dialing protocol. Addra uses Pung’s protocol to initiate
calls [11, Chapter 4.5.3] (which in turn is based on Alpen-
horn [50]). Briefly, a caller sends “hello” messages encrypted
with the callee’s public key to the server, who then broad-
casts the set of “hello” messages from all callers to all user
devices. A callee decrypts the ciphertexts using its private key
and learns the content encryption key and the caller’s phone
number (which are inside the hello message). This protocol
is not efficient as the server broadcasts the ciphertexts to the
participants (although the server could use a CDN or mul-
ticast protocols), and a callee decrypts ciphertexts from all
users. Thus, Addra runs this protocol infrequently (every five
minutes; §6.3). A more efficient dialing protocol in Addra’s
threat model is still an open problem.

Options for which call to pick. A device may receive mul-
tiple incoming calls, or may make an outgoing call at the
same time a call comes in. In such scenarios, Addra exposes
all options to the device owner and lets them pick the call
they want to participate in. However, depending on which
option a user chooses, they could leak some information to
the users who are on the other end in the non-chosen options.
For instance, if Alice receives a call from both Bob and Char-
lie, and decides to pick Bob’s call, then Charlie may infer
that Alice is busy. This leakage is not specific to Addra but
applies to any metadata-private system [8, 9]. As efficient so-
lutions to this problem become available, one could enhance
the options-based approach currently implemented in Addra.

Other libraries and lines of code. Our prototype of Addra
(https://github.com/ishtiyaque/Addra) is ≈2,000
lines of C++ on top of existing libraries, including Fast-
PIR. Our implementation of the dialing protocol uses the lib-
scapi [1] library for public-key encryption using the Cramer-
Shoup scheme [26] with a key size of 3072 bits which pro-
vides 128 bits of security. It also uses AES-CBC implementa-
tion from OpenSSL with a 128-bit key for end-to-end content
encryption with 128 bits of security. It implements the mes-
sage library broadcasting mechanism from master to workers
using rpclib [3]. Finally, we use the open source implementa-
tion of LPCNet [57] for speech encoding/decoding.

6 Evaluation
Our evaluation answers the following questions:
1. What is Addra’s message latency, and how does it vary

with the number of users and server machines?
2. How much resource overhead (CPU, network upload and

download) does Addra impose on its server and users?
3. How does Addra compare to Pung [7, 10, 11], which

is the state-of-the-art prior system for metadata-private
communication over completely untrusted infrastructure?

4. How does FastPIR compare to the state-of-the-art CPIR
schemes, XPIR [4] and SealPIR [7]?

A highlight of our evaluation results is as follows:
• Addra’s 99-th percentile message latency is 726 ms for

32,768 users and 80 server machines. For the same config-
uration, Pung’s message latency is 5.2 seconds.

• Addra’s server consumes 22.3 minutes of CPU time for a
subround with 32,768 users, where a subround corresponds
to 480 ms of voice call. Translated to provisioning burden,
each user requires the server to provision 0.085 CPU for its
call. In contrast, Pung consumes 77.1 minutes of CPU time
(3.45× higher) per subround.

• An Addra user downloads and uploads 55.1 and 1.08 MiB
of data for each round when 32,768 users use Addra, where
a round corresponds to five minutes of voice call. Thus,
translated into bandwidth, Addra requires a download and
upload bandwidth of 1.46 Mbps and 30 Kbps, respectively.
In contrast, a Pung client downloads and uploads 250 MiB
(4.6× higher) and 313 MiB (289× higher) for five minutes
of voice call data.

• FastPIR has a smaller server-side CPU time and a smaller
response size relative to XPIR and SealPIR, particularly
when the number of messages in the PIR library is greater
than a threshold (≈ 20K).

Setup and method. We compare Addra to two variants of
Pung: Pung-XPIR (P-XPIR) and Pung-SealPIR (P-SPIR).
The former is the original Pung system from OSDI 2016 [10]
that instantiates CPIR with the XPIR scheme [4]. The second
variant replaces the XPIR scheme with the SealPIR CPIR
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Figure 6—(Left) Message latency with a varying number of users for eighty server worker machines. (Right) Message latency with a varying
number of server worker machines for 32,768 users. Messages are 96 bytes in size. The y-axis is log-scaled. d denotes CPIR recursion depth,
where d = 1 denotes no recursion and d = 2 enables recursion. Addra does not use recursion (§4).

scheme [7]. We include both variants as there is no clear
winner between them across all performance metrics. Further,
we evaluate these variants without (d = 1) and with CPIR
recursion (d = 2). We do not experiment with a recursion
depth d > 2 as the server CPU time and the network transfers
from the server to the clients, which are the two key overhead
metrics, grow significantly with depth greater than two [7].

We configure Addra and Pung to provide a security level
of 128-bits. Also, we configure Pung to use its BST retrieval
scheme in which a message recipient obliviously searches
through a tree while retrieving one message from the Pung
server. This scheme is the most scalable retrieval scheme for
Pung especially as the number of system users increase; we
discuss other retrieval schemes Pung supports in the related
work section (§7). For all of the systems, we deploy the server
on a cluster of machines in AWS EC2 US East region (Ohio).
Addra requires a master machine and a set of worker machines
(§5). For the master, we use a machine of type c5.24xlarge
(96 vCPU, 192 GiB of RAM and 25 Gbps of network band-
width) which provides a high network bandwidth to enable
the master to broadcast the message library (the mailboxes) to
the workers. For the workers, we use the compute-optimized
machines of type c5.12xlarge (48 vCPU, 96 GiB of RAM,
and 12 Gbps of network bandwidth). Pung does not have a
master and therefore we use machines of type c5.12xlarge
as its workers. To compensate for the extra master machine
assigned to Addra (relative to Pung), we assign two additional
worker machines of type c5.12xlarge to Pung.

Addra is required to process queries from all clients in
every subround to meet its security goals. Since we cannot
run tens of thousands of clients in our infrastructure, we em-
ploy a combination of real and simulated clients. We deploy
256 geographically distant real clients in a machine of type
c5.24xlarge in AWS US West (N. California). The mean
network RTT, as measured by Ping, between the server and
these clients is 51 ms. During each round and subround, real
clients send their queries and messages to the server, and
the server inserts the queries and messages of the remaining
simulated clients.

We configure Addra to run a round every five minutes
and a subround every 480 ms. This configuration results in
a fixed message size of 96 bytes at each subround as the
LPCNet voice codec encodes a 40 ms audio frame into 8
bytes (§2.1) [74, 75]. We vary the number of users (from
4,096 to 65,536) and the number of worker machines (from
20 to 100). We repeat experiments for 10 trials. To account
for tail latency, we process the queries from real clients only
after processing the queries from all simulated clients. Then,
we measure the 99-th percentile latency observed by the real
clients over the 10 trials, the CPU time consumed by the
server and the real clients, and the amount of data uploaded
and downloaded by the real clients.

6.1 Message latency

Variation with the number of users. Figure 6 (left) shows
the 99-th percentile message latency with a varying number
of users when the server has 80 worker machines.

Addra’s message latency is 254 ms for 4,096 users and
increases to 1678 ms for 65,536 users. This increase is due
to three reasons. First, as the number of users increases, so
does the number of mailboxes and the time to broadcast their
content from the master to the workers (§5). Second, the
number of CPIR queries the server processes every subround
equals the number of users (§3.2). Third, the time to process a
CPIR query increases with the number of mailboxes, so each
worker takes longer to generate CPIR responses. For 32,768
users, the latency is 726 ms, of which 398 ms is for CPIR
query processing at the workers, 186 ms is for broadcast of
mailbox content from the master to the workers, and the rest
is for network transfers between the client and the server.
However, for 65,536 users, the latency increases to 1,678 ms,
of which 1,186 ms is for CPIR query processing alone. This
processing time is higher than the 480 ms subround time
budget and thus voice packets start queuing up at the server
for these many users.

Addra’s message latency is lower than Pung’s, specifically,
that of Pung-XPIR by a factor of 7.2× for 32,768 users, due
to two reasons. First, a sender in Addra pushes a message
to the server, who performs CPIR processing and pushes the
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Figure 7—Server-side CPU time per subround with a varying number
of users. A subround corresponds to 480 ms of voice call; in a
subround, each user sends and receives one 96 byte message.

response to the recipient—in total, the message traverses two
hops (§3.2). In contrast, while the sender in Pung pushes a
message to the server in one hop, a recipient has to make
dlog2(n + 1)e sequential round-trips to the server to fetch a
message, where n is the number of users. Second, Addra uses
FastPIR, which has lower server-side CPIR answer generation
time than XPIR or SealPIR used in Pung; we will expand on
this difference shortly (§6.2, §6.5).

Variation with the number of worker machines. Figure 6
(right) shows the 99-th percentile message latency as a func-
tion of the number of worker machines when the number of
users is fixed to 32,768. Latency decreases for all systems
with an increase in the number of worker machines due to in-
creased parallelization for CPIR answer generation, but only
up to an inflection point. Beyond this inflection point, adding
workers does not improve latency as the time to replicate
mailboxes from the master to the workers goes up, while the
CPU on the workers starts to become idle. Thus, an immedi-
ate scalability bottleneck in Addra is the time to broadcast
mailboxes from the master to the workers. Distributing the
master or reducing the number of workers by extracting more
efficiency from each may further push out the inflection point.

6.2 Server-side CPU consumption

Figure 7 shows that server-side CPU time increases with the
number of users. This is expected as both the number of CPIR
queries and the time to generate an answer for each query
increases with the number of users (§3.2). Addra’s CPU con-
sumption is lower than Pung’s. For instance, for 32,768 users,
Addra takes 22.3 minutes while Pung (with XPIR and CPIR
recursion depth d = 2) takes 77.1 minutes (3.45× higher).
If we convert these times to CPU provisioning requirements,
then for each subround lasting 480 ms or 0.48 seconds, Ad-
dra’s server consumes 22.3 minutes, or 1,338 seconds, of CPU,
which is provided by provisioning 1, 338/0.48 = 2788 CPUs,
or 0.085 CPU per user. Similarly, each Pung user requires 0.29
CPU per user. A key reason for this difference is that FastPIR
in Addra consumes lower amount of server-side CPU relative
to XPIR or SealPIR in Pung (§6.5). We note that even though
a recursion depth of d = 2 reduces CPU consumption relative

to no recursion (d = 1), increasing depth further (d = 3)
does not reduce CPU consumption [7]. Furthermore, a higher
depth increases network overhead (§6.3). Thus, as mentioned
earlier (§6), we restrict our experiments to a depth of d = 2.

6.3 Client-side resource overheads

Network transfers. Figure 8 shows the amount of data a
client downloads and uploads for one round of communica-
tion (a round corresponds to five minutes of voice call).

An Addra user downloads ≈55.1 MiB in a five-minute
round when 32,768 users use Addra. That is, each user re-
quires 1.46 Mbps of network download bandwidth. Of the
55.1 MiB, ≈39 MiB is due to the communication phase of
the round while the rest is due to the dialing phase (§3.2). Fur-
ther, the former is independent of the number of system users,
while the latter depends linearly on the number of users.

Relative to a non-private baseline which does not hide meta-
data, Addra’s network overhead is significantly higher due to
the use of CPIR, which encrypts messages into BFV cipher-
texts. For example, if the non-private baseline uses LPCNet
which encodes 480 ms of speech in 96 bytes of data, then a
user’s network download bandwidth will be 1.56 Kbps. In
contrast, Addra encrypts the 96 bytes into a 64 KB ciphertext,
which is a 682× increase.

However, relative to Pung, an Addra user downloads less
data, by 4.5–45.7×, depending on the Pung variant. The im-
provement is due to two reasons. First, Pung requires a mes-
sage recipient to make multiple CPIR queries with the server
to search through the message library that is organized as a
tree. Second, CPIR answer size increases with a higher CPIR
recursion depth (d = 2 versus d = 1). Addra’s FastPIR, on
the other hand, operates at d = 1 to keep CPIR answer sizes,
and thus the downloads, smaller (§4).

An Addra user uploads one CPIR query per round during its
dialing phase. The Addra server then reuses the query across
subrounds (§3.2). Even though the query size for Addra is
larger compared to that of Pung (§6.5), unlike Pung, this cost
is amortized over multiple subrounds of the communication
phase. As a result, Addra’s upload network transfers are small:
≈1.1 MiB per round, or 30 Kbps.

We remark that even though Addra’s instantaneous network
overhead (1.46 Mbps download and 30 Kbps upload) appears
manageable, it adds up over time due to the involvement of
a client in dummy calls (§3.2). Thus, Addra requires certain
conditions such as unlimited network downloads for its clients
to be deployable. We anticipate that in the future, as the need
for privacy increases, so will advances in network technology
that will provide options for unlimited data.

CPU time. An Addra client consumes ≈27.5 seconds of CPU
time per a five-minute round when the number of users is
32,768. 94% of this time is from the dialing protocol (§5).
For the same configuration, a Pung client consumes 1.7–63×
higher CPU, primarily due to multiple CPIR queries with the
server for transmitting each message.
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Figure 8—Data downloaded and uploaded by a user per round with varying number of users. A round corresponds to five minutes of voice call.

6.4 Discussion on voice quality

The quality of voice calls and user experience depends on
several factors including message transmission latency, jitter
(the inconsistencies among packet arrival intervals [41]), and
the effectiveness of the voice encoder that converts human
speech into a digital signal. This section briefly discusses
Addra’s performance on these metrics.

We reported Addra’s message transmission latency in §6.1.
Specifically, latency varies with the number of users, and
is lower for a lower number of users. For example, for 8K
users, the latency is 306 ms, which is below the ITU-G.114
recommended value of 400ms [40]. As the number of users
increases, Addra’s latency crosses the recommended value,
but stays below one second for a significant number of users
(32,768); this value of one second is critical as it is possible
to make voice calls at this latency [49].

To measure jitter, we ran Addra for one round (i.e., 5 min-
utes of voice call) with 80 worker machines and a varying
number of users. Ideally, a user should receive a voice packet
every 480 ms, which is the duration of one subround. We mea-
sured the interval between consecutive packet arrival times-
tamps and calculated the absolute deviation of this value from
480 ms as jitter. Addra’s mean jitter is 4.1 ms for 4,096 users
and increases to 36.8 ms for 32,768 users. This increase with
the number of users is correlated with higher CPU and network
load at the server.

Finally, the effectiveness of voice encoding is a property of
the encoder. Addra’s current prototype uses the LPCNet [57]
encoder developed by Mozilla. Conducting a user experience
study on LPCNet’s quality is outside the scope of this paper,
but we refer the reader to the original paper on LPCNet that
discusses a subjective assessment of LPCNet’s quality based
on an experiment with one hundred human listeners [75].

6.5 Comparison of CPIR schemes

A core component of Addra and Pung is the CPIR crypto-
graphic primitive. Pung uses either XPIR or SealPIR, which
are also the state-of-the-art schemes. Addra uses FastPIR
(§4). This section compares the cost of these CPIR schemes
in isolation. Besides, since CPIR applies to several other
contexts [14, 30, 36, 56], this section sheds light on which

scheme could be better for which application.
We microbenchmarked the XPIR, SealPIR, and FastPIR

libraries on a single CPU of an AWS instance of type
c5.12xlarge (48 vCPU, 3.6 GHz, 96 GiB RAM). We config-
ured all three libraries for a 128-bit security level. However,
XPIR does not set parameters from the homomorphic encryp-
tion standard [6], and its parameters are smaller relative to
those for SealPIR and FastPIR.

We varied the number of messages in the library (n ∈
{213, . . . , 220}) and the size of each message (m ∈
{96B, 256B, 1024B}). The lowest value of n captures a small
library with a few thousand messages, while the other extreme
of n = 220 demonstrates how FastPIR scales with the number
of messages relative to the other CPIR libraries. Similarly, the
different message sizes demonstrate performance for scenar-
ios with small messages (for example, Addra) and also larger
messages.

We measure and report both CPU and network overhead
for query generation (QUERY), answer generation (ANSWER),
and answer decode (DECODE) CPIR procedures, for 10 trials.
Given that the CPIR cost in Addra is dominated by the cost
to run the ANSWER procedure, we describe the results while
focusing on ANSWER. At a high level, FastPIR keeps both the
CPU cost for ANSWER and the size of ANSWER output small,
while XPIR and SealPIR sacrifice one of the two.

CPU time for ANSWER. Figure 9 shows the CPU time for the
ANSWER procedure for different values of n and m. Beyond
a threshold n, and for all values of m, FastPIR consumes the
least amount of CPU time for ANSWER independent of whether
the baselines use recursion or not (d = 1 is no recursion, and
d = 2 enables it). For instance, when n=220 and m=256B,
ANSWER in FastPIR takes 2.5× less time than XPIR (d = 2)
and 2.7× less time than SealPIR (d = 2).

The figure also shows the impact of FastPIR’s optimiza-
tions (§4.3, §4.4) in reducing its CPU overhead. For smaller
values of n, the impact of these optimizations is significant.
For instance, for n=215 and m=256B, FastPIR without the
two optimizations (F-1 in the figure) is 2.73× more expen-
sive than the full-fledged FastPIR, while FastPIR without its
last optimization in §4.4 (F-2 in the figure) is 1.45× more
expensive than FastPIR will all optimizations enabled. But,
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Figure 9—CPU time to run the ANSWER CPIR procedure for XPIR (X), SealPIR (S), and three variants of FastPIR (F) with a varying number
of messages n in the server library and a varying size m of each message. F-1 and F-2 are intermediate baselines for FastPIR: F-1 leaves out
both optimizations for the rotation operations (§4.3 and §4.4), while F-2 leaves out only the optimization in §4.4. Both axes are log-scaled.
d denotes recursion depth (§4). FastPIR does not use recursion (sets d = 1, which means no recursion). For both XPIR and SealPIR, an
optimization to aggregate multiple small messages into a larger one (called aggregation in the literature) is enabled.

n = 32,768 n = 1,048,576

X (d = 1) X (d = 2) S (d = 1) S (d = 2) F (d = 1) X (d = 1) X (d = 2) S (d = 1) S (d = 2) F (d = 1)

query size (KiB)
m = 96 bytes 33,856 2,112 32 64 1,024 1,082,432 11,776 928 64 32,768
m = 256 bytes 95,328 3,520 96 64 1,024 3,050,432 19,776 2,752 64 32,768
m = 1024 bytes 524,288 8,192 512 64 1,024 16,777,216 46,368 16,384 64 32,768

answer size (KiB)
m ∈ {96B, 256B, 1024B} 32 256 32 320 64 32 288 32 320 64

client CPU costs (ms)
QUERY (m = 96B) 118.6 7.4 0.7 1.4 21.3 3801.8 41.5 19.2 1.4 679.0
QUERY (m = 256B) 335.2 12.4 2.0 1.4 21.4 10711.3 69.8 56.9 1.4 678.6
QUERY (m = 1024B) 1841.6 28.8 10.6 1.4 21.4 58990.8 164.2 338.8 1.4 678.7
DECODE (m ∈ {96B, 256B, 1024B}) 0.1 0.41 0.19 1.88 0.36 0.1 0.37 0.2 1.86 0.41

Figure 10—Network costs and client-side CPU costs for XPIR (X), SealPIR (S), and FastPIR (F) with a varying number of messages (n) and
the size of each message (m) in the server library. d denotes recursion depth (§4). FastPIR does not use recursion (sets d = 1, which means no
recursion). For both XPIR and SealPIR, an optimization to aggregate multiple small messages into a larger one (called aggregation in the
literature) is enabled.

as n increases the lower CPU time benefit of the optimizations
diminishes. This trend is expected as for larger n the cost
for the ANSWER procedure is dominated by the time to run
the BFV.SCMULT and BFV.ADD operations rather than the
rotation operations, which is what the optimizations focus on
(§4.2–§4.4).

Output size of ANSWER. Figure 10 shows the size of the
CPIR response generated by the ANSWER procedure for the
three CPIR schemes. When the schemes do not use recursion
(d = 1), their answer output sizes are smaller relative to when
they use recursion, although FastPIR’s response size is double
the size of XPIR and SealPIR. However, d = 1 is not a viable
solution for either XPIR or SealPIR. For XPIR, the query
size is large for d = 1, which increases network bandwidth
and CPU time for processing of CPIR queries (Figure 7). For
SealPIR, the compressed query is smaller on the wire, but
the expanded query has comparable size to that of XPIR.
Furthermore, the cost to expand adds significant CPU time for
SealPIR d = 1.

When the schemes use recursion (d = 2), both XPIR and
SealPIR do not have the query-size drawback, but increase

answer output size, by 8 to 10 times, relative to the d = 1
setting. Overall, FastPIR produces smaller responses (answer
outputs) without large queries (XPIR with d = 1) or signifi-
cant addition to computation time (SealPIR with d = 1).

Query-related overheads. Query generation time and query
sizes are significantly larger in FastPIR than SealPIR (espe-
cially when the latter uses recursion). For instance, query
size for 215 items in SealPIR with d = 2 is 17 times smaller
than the query size in FastPIR (with d = 1). However, Fast-
PIR’s query sizes are either smaller or comparable to those
for XPIR, depending on recursion depth and message size.

Summary. If ANSWER is invoked frequently for an applica-
tion with a library that has over several tens of thousands of
messages, then FastPIR is a better fit. However, if the applica-
tion cannot be designed such that its costs are dominated by
those of ANSWER, then SealPIR or XPIR may be a better fit.

7 Related work
Onion-routing. Systems such as Tor [72], which are based
on onion-routing [35, 65], can support anonymous VoIP calls
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with low message latency. However, they do not provide
strong guarantees. Indeed, a network adversary, such as an ISP,
can learn call metadata via traffic analysis [16, 38, 44, 58, 62].

Mix-nets. Chaum introduced a mix-net: a network of nodes
in which each node (called a mix) batches incoming mes-
sages and releases them in a permuted order [18]. A mix-net
based system fundamentally requires at least one mix to be
trusted [45–49, 51, 52, 64, 73, 76]. Yodel [49] is a state-of-the-
art system based on mix-nets that specifically targets voice
calls. Yodel scales to a few million users while providing a
sub-second message latency. However, Yodel assumes that
a fraction of the mixes it uses (80%) are not compromised.
As one relaxes this assumption, say to make the fraction of
trusted mixes to be 70% or lower, Yodel increases the latency
between a caller and a callee.

DC-nets. Unlike a mix-net, a dining cryptographers network
(DC-net) provides unconditional security using a technique
that requires broadcasting of messages between network par-
ticipants [17]. Due to the broadcasting requirement, earlier
systems based on DC-nets scaled to only tens of partici-
pants [24, 34, 70]. Later systems [25, 77] improved scala-
bility but at the cost of relaxing the threat model. For instance,
Dissent in numbers [77] scales to 5000 clients with 600 ms
latency for 600-client groups, but runs a DC-net among a
(smaller) group of servers while assuming that one of them
is trusted. PriFi [13] is the latest DC-net based system. It
improves latency for a LAN setting of a small organization
with a few hundred users (latency is 100 ms for 100 users).
PriFi does not scale to thousands or tens of thousands of users.
It also assumes that one of its servers in the group of servers
is trusted.

Private mailboxes. Systems based on private mailboxes ei-
ther obliviously write to [23, 32] or read from [7, 10, 14, 42,
68] mailboxes hosted over untrusted servers. The state-of-the-
art system based on this strategy that works over completely
untrusted infrastructure is Pung [7, 10] (rest of the systems
assume non-colluding servers).

We empirically compared Addra to Pung, particularly to its
scalable tree-based message retrieval scheme called BST (§6).
Pung offers two other retrieval schemes: one called explicit
retrieval and the other based on Bloom filters. The explicit
scheme requires two round trips between a message recipient
and the server, and incurs comparable server-side CPU over-
head as the BST scheme. However, it is not viable in terms
of network overhead as the server has to frequently broadcast
a mapping comparable in size to the entire message library.
For instance, for 32K users, the server pushes 625 MiB of
mapping data every five minutes to every user, thus adding
a bandwidth requirement of 16.6 Mbps per user. The Bloom
filter scheme significantly lowers the network overhead rel-
ative to the explicit scheme. However, its overhead is still
linear in the number of objects (so it is not a viable solution
as the system scales up to hundreds of thousands of users).

Besides, it works probabilistically: a message recipient is not
guaranteed to download the message sent by the sender, thus
degrading the quality of service by a non-zero amount.

Although Addra supports synchronous voice calls at scale,
and Pung does not (§6.1), Addra does not replace Pung, which
is designed for asynchronous applications such as email and
chat. Indeed, Addra cannot retrieve long-lived messages from
the server, which is a requirement for such applications.

Private information retrieval (PIR). Chor et al. [19, 20]
introduced the problem of PIR over multiple non-colluding
servers, while Kushilevitz and Ostrovsky [43] introduced
CPIR over a single untrusted server. Since these decades old
seminal works, there have been numerous improvements to
concrete constructions of PIR. For instance, some schemes
reduce PIR overheads [4, 7, 28, 29, 71], while others improve
answer recovery against a byzantine server [31, 60]. In this
paper, we introduced FastPIR, a new CPIR scheme that re-
duces the server-side computation overhead relative to the
state-of-the-art CPIR schemes [4, 7] (§6.5).

8 Summary and future work
Metadata from voice calls contains rich information about
people’s lives, and is a prime target for powerful adversaries
such as nation states. Prior work that hides metadata either
requires trusted intermediaries or does not scale to more than
tens of users for low-latency voice calls. This paper described
Addra, the first system that hides metadata for voice calls
over completely untrusted infrastructure for tens of thousands
of users. Addra’s current prototype supports 32,768 users on
a cluster of 80 machines with a message latency of 726 ms
and a voice synthesis rate of 1.6 Kbps. Addra provides its
performance and privacy properties through a new, simple,
and efficient protocol to access private mailboxes hosted on an
untrusted server (§3), and a new private information retrieval
(PIR) scheme, FastPIR (§4).

Our future work involves further scaling Addra from tens of
thousands of users to hundreds of thousands or a few million
users. To accelerate CPIR computation, a promising direction
could be to explore efficient implementations of the master-
worker architecture of Addra’s server, as well as increased
efficiency for the workers using GPUs and FPGAs. For the
latter, one would have to address challenges related to running
PIR on a heterogeneous system. Finally, a full-fledged Addra
system would require extending its support from peer-to-peer
voice calls to group calls.
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