
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Performance-Optimal Read-Only Transactions
Haonan Lu, Princeton University; Siddhartha Sen, Microsoft Research;

Wyatt Lloyd, Princeton University
https://www.usenix.org/conference/osdi20/presentation/lu

Performance-Optimal Read-Only Transactions
Haonan Lu?, Siddhartha Sen†, Wyatt Lloyd?
?Princeton University, †Microsoft Research

Abstract

Read-only transactions are critical for consistently reading
data spread across a distributed storage system but have
worse performance than simple, non-transactional reads. We
identify three properties of simple reads that are necessary
for read-only transactions to be performance-optimal, i.e.,
come as close as possible to simple reads. We demonstrate
a fundamental tradeoff in the design of read-only transac-
tions by proving that performance optimality is impossible to
achieve with strict serializability, the strongest consistency.

Guided by this result, we present PORT, a performance-
optimal design with the strongest consistency to date. Cen-
tral to PORT are version clocks, a specialized logical clock
that concisely captures the necessary ordering constraints.
We show the generality of PORT with two applications.
Scylla-PORT provides process-ordered serializability with
simple writes and shows performance comparable to its non-
transactional base system. Eiger-PORT provides causal con-
sistency with write transactions and significantly improves
the performance of its transactional base system.

1 Introduction
Large-scale web services are built on distributed storage sys-
tems. Sharding data across machines enables distributed
storage systems to scale capacity and throughput. Sharding,
however, complicates building correct applications because
read requests sent to different shards may arrive at different
times and thus return an inconsistent view of the data.

Consistently interacting with data in a distributed storage
system thus requires transactional isolation, which unifies
the view of data across shards. While general transactions
provide isolation for reading and writing across shards, this
paper focuses on read-only transactions that only read data.
Read-only transactions are prevalent: they are used in sys-
tems without general transactions [4, 14, 31, 32, 34] and,
even for systems with general transactions, they are often
implemented with a specialized algorithm [10, 11, 34, 37,
38, 39, 51]. Read-only transactions are practically important
because reads dominate real-world workloads: Facebook re-
ported 99.8% reads for TAO [8] and Google reported three
orders of magnitude more reads than general transactions
for the ads workload (F1) that runs on Spanner [10]. They
are also theoretically important because they provide a lower
bound for other classes of transactions: anything impossible
for read-only transactions is also impossible for any class of
transactions that includes reads.

The dominance of reads in real-world workloads makes
their performance the primary determinant of end-user
latency and overall system throughput. Unfortunately,
read-only transactions perform worse than simple, non-
transactional reads due to the coordination required to
present a consistent view across shards. Whether a view is
consistent is determined by a system’s consistency model:
stronger consistency provides an abstraction closer to a
single-threaded environment, greatly simplifying application
code [33]. Thus, ideal read-only transactions would provide
the strongest consistency and have optimal performance.

What is the “optimal” performance? Although recent
work has studied optimality through the lens of latency [34],
it did not consider throughput, which adds a fundamentally
new dimension to this question. In this paper, we formalize
the notion of optimality for read-only transactions and use
it to explore the tradeoff between their consistency and per-
formance. We posit that optimality should be defined by the
algorithmic properties of simple reads that comprise a read-
only transaction. Simple reads do not provide transactional
isolation and thus capture the minimum work required to
read data in a distributed storage system: One round of Non-
blocking communication with a Constant amount of meta-
data. As we elaborate in §3, these algorithmic properties (N,
O, and C) precisely capture the additional coordination in-
curred by read-only transactions to present a consistent view.
Thus, we define performance-optimal read-only transactions
to be those with the same NOC properties as simple reads.

Our main theoretical result is that performance optimality
is impossible in a system that provides Strict serializability—
the strongest type of consistency. Specifically, our NOCS
Theorem states that no read-only transaction algorithm can
be performance optimal and provide strict serializability.
This result holds even in systems that only support non-
transactional writes, and thus applies to systems with and
without more general types of transactions. It shows there
is a fundamental choice in the design of distributed storage
systems: they can either provide the strongest consistency or
the best performance for read-only transactions, not both.

Guided by our impossibility result, we present the PORT
design, which enables performance-optimal read-only trans-
actions with the strongest consistency to date: process-
ordered serializability. Previous performance-optimal trans-
actions only provided relatively weak consistency (§5.1).
PORT provides performance-optimal read-only transactions
without harming either the latency or throughput of writes.
The main mechanism enabling our design is a new special-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 333

ized logical clock, called version clocks, that concisely cap-
ture the ordering constraints imposed by process-ordered se-
rializability on read and write operations. PORT uses version
clocks to tightly co-design its components. Version clock
values index its multi-versioning framework, control what
read-only transactions see, and control where writes are ap-
plied. They also enable optimizations that avoid the work of
applying some concurrent writes (write omission) and limit
the staleness of reads (data freshness).

We use the PORT design with the write omission
and data freshness optimizations to build a new stor-
age system, Scylla-PORT, that adds performance-optimal
read-only transactions to ScyllaDB [47] while providing
process-ordered serializability. As a single-versioned, non-
transactional system, ScyllaDB provides a clean slate for im-
plementing PORT and allows us to quantify the overhead
of our performance-optimal read-only transactions relative
to simple reads. ScyllaDB’s simple reads are a challeng-
ing baseline as the system is aggressively engineered for
high performance, including core-level sharding and custom
lock-free data structures. Our evaluation shows that PORT’s
read-only transactions introduce low overhead, achieving
throughput and latency within 3% of ScyllaDB on most of
the workloads we test, and within 8% in the worst case. Our
evaluation also compares PORT to a variant of OCC that
is optimized for read-only transactions. PORT significantly
outperforms OCC with at least double the throughput and at
most half the latency because Scylla-PORT always finishes
in one round while OCC’s best case is two rounds.

We also applied PORT with data freshness optimizations
to Eiger [32] to make its read-only transactions performance
optimal while preserving the system’s causal consistency and
write transactions. Eiger is a challenging baseline because it
can complete read-only transactions in a single round. Our
evaluation shows that Eiger-PORT significantly improves
performance with throughput up to 3× higher and latency
up to 60% lower than Eiger. These improvements do come
with some staleness relative to strongly consistent systems,
but our data freshness optimizations keep the staleness low.

In summary, this work makes the following contributions:
• A fundamental understanding of the tradeoff between per-

formance and consistency for read-only transactions. This
includes a precise definition of performance optimality
(§3) and the NOCS Theorem that proves optimality is im-
possible with strict serializability (§4).

• The PORT design that achieves performance-optimal read-
only transactions with the strongest consistency to date by
leveraging version clocks, a new type of logical clock that
concisely captures the necessary ordering constraints (§6).

• The implementation and evaluation of two new systems
based on the PORT design. Scylla-PORT is a clean-slate
application of PORT to a non-transactional system, Scyl-
laDB (§7). Eiger-PORT makes the read-only transaction
algorithm of Eiger performance optimal (§8, §9).

2 Background
Web service architecture. Web services are typically built
using two tiers of machines: a stateless frontend tier and a
stateful storage tier. The frontends handle end user requests
by executing application logic that generates sub-requests to
read or write data in the storage tier. We refer to the frontends
as clients and the storage machines as servers, as is common.
Web services are often replicated across multiple datacen-
ters. For simplicity, we focus on a single datacenter setting,
but our results also apply to multi-datacenter settings.

Read-only transactions. Read-only transactions provide a
consistent, unified view of data spread across servers in a
storage tier. They consist of one or more logical rounds of
simple read requests issued in parallel to the servers, which
collectively return a view satisfying the consistency model
of the system. One-shot transactions [23] know the data
locations of all reads prior to the transaction start. In con-
trast, multi-shot transactions may include key dependencies,
where the data read in one shot determines what data to read
in later shots. We study one-shot transactions for simplicity,
because they are common, and because what is impossible
for them is also necessarily impossible for multi-shot trans-
actions. The NOCS Theorem thus also applies to multi-shot
transactions. The PORT design for read-only transactions
can be easily extended to support multi-shot transactions.

3 Performance-Optimal Read Transactions
This section explains the challenges of reasoning about per-
formance, the rationale of our approach, and the set of algo-
rithmic properties that define optimal performance.

3.1 Reasoning About Performance
The key challenges to reasoning about performance are iden-
tifying the fundamental overhead of read-only transactions
and modeling it in a way that connects with practical designs.

Capturing the fundamental overhead. As a layer built
upon simple reads, the performance of a read-only transac-
tion is impacted by both the engineering factors in executing
simple reads and the algorithmic properties of coordinating
simple reads to find a consistent view. Engineering factors,
such as load balancing, batching, and networking, equally
affect simple reads and the read-only transactions built on
them. In contrast, the algorithmic properties, such as rounds
of communication, only affect read-only transactions. For
instance, a read-only transaction protocol that requires mul-
tiple round trips incurs overhead due to those extra rounds
of messages, while the read requests in each round are engi-
neered the same as simple reads.

Thus, this work focuses on the algorithmic properties that
capture the fundamental overhead of read-only transactions.
These properties capture the additional overhead to coordi-
nate a consistent view and are orthogonal to underlying en-
gineering factors. More specifically, we answer the question,

334 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

“given a system, how low can we make the performance
overhead of read-only transactions relative to the system’s
simple reads?”
Being useful in practice. Our goal is to model optimal per-
formance in a way that is both theoretically insightful and
practically useful. Theoretical insights help clarify funda-
mental tradeoffs between performance and guarantees. Prac-
tically useful guidance helps us design better systems. Our
NOCS Theorem (§4.1) and properties yield theoretical in-
sights that lead to a better design, PORT (§6), that achieves
better performance in practice. This shows that our modeling
is practically useful (§5).

3.2 Approach Overview
To reason about optimal performance in a practically use-
ful way, we examine the mechanisms used in existing sys-
tems to coordinate a consistent view across shards. These
coordination mechanisms include blocking, extra messages,
and metadata. Some systems block read operations until a
consistent view is ready—e.g., systems that use two-phase
locking. Almost all systems use extra messages to deter-
mine a consistent view, such as multiple round trips on the
critical path of reads—e.g., OCC [24]—or approaches that
asynchronously coordinate a consistent view—e.g., COPS-
SNOW [34], GentleRain [15], Cure [3]. Finally, all systems
we are aware of use metadata to help compute a consistent
view for read-only transactions to return—e.g., timestamps,
transaction ids. Figure 9 in Section 10 shows representative
systems that use these mechanisms.

These coordination mechanisms cause read-only transac-
tions to have worse performance than simple reads, as they
consume additional system resources. Therefore, we define
performance-optimal read-only transactions to be those that
require the least amount of each coordination mechanism,
making their performance closest to that of simple reads.

3.3 NOC: Optimal Performance
We now explain the NOC properties, which we use to define
optimal performance for read-only transactions.
N: Non-blocking. A read-only transaction algorithm is non-
blocking if servers process each read request without waiting
for any external event, such as a lock to become available, a
message to arrive, or a timer to expire.

Blocking for a read request increases the latency of the
read-only transaction: the more time spent blocking, the
longer the transaction takes to complete. It also decreases
throughput due to the overhead of context switches. In prac-
tice, blocking can incur more serious performance issues,
e.g., CPU underutilization and deadlocks, which are increas-
ingly pronounced in modern services [44, 52].
O: One-round communication. A read-only transaction al-
gorithm has one-round communication if it uses exactly one
parallel round of on-path messages and does not have any
off-path messages. This matches the messages of simple

reads: the client sends a single request to each server holding
relevant data, and each server sends a single response back.
It excludes algorithms that use extra messages, such as those
that require multiple rounds of on-path communication, e.g.,
to abort/retry. It also disallows coordinating through off-path
messages, i.e., messages that are necessary for the read-only
transactions but lie off the critical path of reads.

A message is an off-path message for read-only transac-
tions if its removal affects only the correctness of read-only
transactions. For example, COPS-SNOW [34] adds extra
messages to writes. These messages are used for read-only
transactions to find a consistent snapshot and are not neces-
sary for processing writes. Because only the correctness of
read-only transactions is affected if these messages are re-
moved, they are off-path messages.

Additional rounds of on-path messages increase the la-
tency of read-only transactions. Both extra on-path and off-
path messages decrease system throughput because trans-
mitting and processing them consume network and CPU re-
sources that could otherwise be used to service requests.

C: Constant metadata. Metadata is the information re-
quired by a read-only transaction algorithm to coordinate
consistent values. It is information a server needs to find
the specific version of the data that will produce a consistent
cross-shard view across reads in the same transaction. Ex-
amples of metadata include timestamps [2, 10], transaction
ids [34, 41], and identifiers of participating servers [5].

A read-only transaction algorithm has constant metadata
if the amount of metadata required to process each of its read
requests is constant, i.e., it does not increase with the size
of the system, the size of the transaction, or the number of
concurrent operations. An example of constant metadata is
one timestamp per read request for snapshot reads in Span-
ner [10]. An example of non-constant metadata is COPS-
SNOW [34], which requires information about many con-
current read-only transactions to process each read request.

Transmitting and/or processing extra metadata consumes
more resources, increasing latency and decreasing through-
put. Its negative impact on performance has been reported in
recent work [13, 14, 15]. We use Big-O notation, i.e., “con-
stant,” to capture the algorithmic complexity of metadata re-
quired for coordination. In practice, system designers should
aim for as low a constant as possible. We realize this in our
PORT design, which uses a single integer per read request.

Performance optimality. We deem an algorithm perfor-
mance optimal if it satisfies the N+O+C properties because
they capture the least coordination overhead and thus enable
performance as close as possible to simple reads.

4 The NOCS Theorem
An ideal system would have performance-optimal read-only
transactions that provide the strongest consistency. Our
NOCS Theorem proves this ideal is impossible.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 335

S: Strict serializability. Strict serializability is the strongest
form of consistency, equivalent to linearizability [22] with
the addition of transactional isolation. It requires that there
exists a legal total order of transactions that respects the real-
time order between transactions [42]. A legal total order en-
sures that the results of transactions are equivalent to a single
entity processing them one by one. The real-time order en-
sures that if transaction T2 starts after transaction T1 ends,
then T1 must appear before T2 in the total order. If T1 and T2
have overlapping lifetimes, then they are concurrent and can
be placed in either order. Strict serializability gives applica-
tion programmers the powerful abstraction of programming
in a single-threaded, transactionally isolated environment.

4.1 NOCS is Impossible
Our main result is that performance-optimal read-only trans-
actions (N+O+C) cannot provide strict serializability (S).
This section present a condensed version of the proof. The
full proof appears in our accompanying technical report [35].

The NOCS Theorem. No read-only transaction algorithm
satisfies all NOCS properties.

System model. We model a distributed system as a set of
processes that communicate by sending and receiving mes-
sages. This model is similar to that used in FLP [17]. A set
of client processes (clients) issue requests to server processes
(servers) that store the data. Processes are modeled as deter-
ministic automata: in each atomic step, they may receive a
message, perform deterministic local computation, and send
one or more messages to other processes.

A transaction (operation) starts when a client sends the re-
quest messages to servers and ends when the client receives
the last necessary server response. Two transactions (oper-
ations) are concurrent if their lifetimes overlap, i.e., neither
begins after the other ends. If concurrent transactions (oper-
ations) access the same data item, then they conflict.
Assumptions. We make the following assumptions:

(A-0) There are ≥ 2 servers and ≥ 2 clients. Otherwise,
optimal performance and strict serializability are trivial. All
reads and writes eventually complete.

(A-1) The network and processors are reliable. Every
message is eventually delivered and processed by the des-
tination process. Processes are correct and never crash. By
proving our impossibility result under these favorable condi-
tions, it will necessarily hold when the system can fail.

(A-2) The network is either asynchronous [20], i.e.,
messages can be arbitrarily delayed, or partially syn-
chronous [16], i.e., physical clocks ensure bounded delays.
Proof intuition. Due to network asynchrony, it is always
possible for a read-only transaction to conflict with write op-
erations and other concurrent read-only transactions. These
requests occupy an unstable region in the system’s history,
where conflicts are possible and a total order has not yet
been established. In contrast, the stable region is the part

of history that precedes the unstable region, where all writes
have committed and system states are finalized. Reading in
the stable region is easy as there are no conflicting writes.
However, we show that the real-time order requirement of S
requires read-only transactions that are N+O to interact with
the most recent writes in the unstable region (Lemma 1). Do-
ing this while ensuring a legal total order requires transfer-
ring metadata between the servers (Lemma 2), either proac-
tively through read requests or through the write protocol.
By extending this construction, we show that processing a set
of read-only transactions requires metadata that is asymptot-
ically larger than the total size of the transactions, regardless
of how the metadata is transferred (Lemma 3). This violates
C, proving the theorem.
Proof. Suppose the system has two servers, S1 and S2, and
multiple clients. Let ALG be any read-only transaction algo-
rithm that satisfies N+O+S. Let R = {r1,r2} be a read-only
transaction that executes ALG, issued by client CR. Let w1 and
w2 be simple write requests issued by client Cw 6=CR, where
w1 → w2 in real-time, i.e., w2 is sent after the response for
w1 is received. We place no restrictions on the write protocol
(beyond assumption A-0). Consider the execution e1:
S1 : r1,w1
S2 : w2,r2

Suppose there is no metadata in the system, i.e., no infor-
mation for coordinating consistent values between requests.

Lemma 1. Without metadata, a read-only transaction that is
N+O+S must observe any write that precedes it at a server.

Proof Summary. Without metadata, S2 cannot distinguish be-
tween an execution where w2 and R are concurrent and one
with w2→R in real-time. The latter requires r2∈R to observe
w2 to satisfy S’s real-time order. �

Lemma 2. Processing e1 while satisfying N+O+S requires
dependency R→ w1 to be transferred from S1 to S2.

Proof Summary. Lemma 1 states that, without metadata, r2
must observe w2, implying w2 → R. But r1 must be pro-
cessed before w1 to satisfy N+O, implying R→ w1. Since
w1 → w2 by construction, this creates a cycle, violating the
legal total order of S. Using basic two-party communication
complexity, we show that legalizing the total order requires
transferring R→ w1 from S1 to S2. �

We now extend e1 with more read-only transactions,
servers, and write requests, and apply the structure above to
force more dependency metadata to transfer between servers.
We then quantify this metadata and show that it violates C.

Proof of the NOCS Theorem. Suppose the system has
M2 + 1 servers S1,S2, . . . ,SM2+1. Let R1,R2, . . . ,RN be N
read-only transactions that execute ALG, where each Ri sends
a read request to S1 and M−1 other servers, such that every
server other than S1 receives N/M read requests. (In practice
M2� N, but our construction works for any N,M ≥ 1.) The

336 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

specific mapping of read requests to servers is unimportant;
we lay them out sequentially by transaction index below. Let
ri, j be a read request of Ri assigned to S j. We assign one
read request from each of R1 to RN/M to S2, one read request
from each of RN/M+1 to R2N/M to S3, and so on, restarting at
R1 after reaching RN . Let w1,w2, . . . ,wM2+1 be M2 +1 sim-
ple writes issued to each server by a distinct client Cw that
does not issue any read-only transactions. Suppose w1 pre-
cedes all other writes, i.e., w1 → w j for j = 2, . . . ,M2 + 1,
and all read-only transactions are concurrent with all writes.
Consider the execution e∗:

S1 : r1,1, . . . ,rN,1,w1
S2 : w2,r1,2, . . . ,rN/M,2
S3 : w3,rN/M+1,3, . . . ,r2N/M,3
...
SM+1 : wM+1,rN−N/M+1,M+1, . . . ,rN,M+1
SM+2 : wM+2,r1,M+2, . . . ,rN/M,M+1
...
SM2+1 : wM2+1,rN−N/M+1,M2+1, . . . ,rN,M2+1

By decomposing this execution into layers, we can induc-
tively quantify the metadata required to process it. Let e1 be
the execution fragment containing all write requests and only
the read requests of R1. Let ei contain the requests of ei−1
plus all read requests of Ri, for i = 2, . . . ,N. Thus eN = e∗.

Lemma 3. Processing ek while satisfying N+O+S requires
Ω(kM2) metadata, for k = 1, . . . ,N.

Proof Summary. The proof is by induction. For the base
case of e1, Lemma 2 requires us to transfer R1 → w1 from
S1 to all M− 1 servers targeted by R1. We show that the
write protocol cannot efficiently transfer this metadata, since
it does not know which servers R1 targets, and hence must
send R1 → w1 to all M2 servers, or Ω(M2) metadata. Al-
ternatively, r1,1 can convey the list of target servers, but
due to asynchrony, a different execution could cause a dif-
ferent target server S j to play the role of S1, making it
impossible to know which r1, j will appear before a write.
Thus, every r1, j must include the list of M servers, requir-
ing Ω(M ∗M) = Ω(M2) metadata. In the inductive step, we
show that ek cannot rely on previous metadata transferred in
ek−1, and thus requires an additional Ω(M2) metadata. �

Completion of the proof. By Lemma 3, e∗ = eN requires
Ω(NM2) metadata. Since R1, . . . ,RN issue NM read requests
total, the amortized metadata required per read request is
Ω(NM2

NM) = Ω(M), which is not constant, violating C. �

4.2 The Broad Scope of NOCS
We prove NOCS is impossible in the specific setting of one-
shot read-only transactions in failure-free systems. When
it comes to an impossibility result, the more restricted the
setting it is proved in, the stronger the result, because any

setting that is more general is also subject to the impossibility
result (the general setting includes the restricted setting as a
special case). Thus, the NOCS Theorem also applies to more
general settings, such as those with read-write transactions,
multi-shot transactions, and/or failures.

4.3 NOCS Is Tight
While all properties are impossible to achieve together, we
find that NOCS is “tight” in the sense that any combina-
tion of three properties is possible. Spanner’s [10] read-only
transactions are one-round, use constant metadata, but block
reads in order to return strictly serializable results (O+C+S).
Many systems use multiple non-blocking round trips to coor-
dinate strongly consistent results (N+C+S), e.g., DrTM [49],
RIFL [29]. To the best of our knowledge, no existing system
provides strict serializability in one round of non-blocking
communication (N+O+S). We present the design of such a
system, PORT-SEQ, and a proof of its correctness in our
technical report [35]. The design uses a centralized write se-
quencer to totally order writes, and requires a linear amount
of metadata for read-only transactions. We are aware of two
systems that have performance-optimal read-only transac-
tions (N+O+C): MySQL Cluster [39] and the snapshot read
API of Spanner. These systems provide weak consistency,
however, as we discuss below.

5 NOCS Connects Theory with Practice
This section discusses the value of the NOCS Theorem in un-
derstanding the design space and in guiding system designs.

5.1 Theoretical Insights
Proving the impossible. NOCS is philosophically similar
to other impossibility results like CAP and SNOW, in that it
helps system designers avoid attempting the impossible and
instead identifies a fundamental choice they must make: their
system can either have performance-optimal read-only trans-
actions or provide strict serializability, but not both.
Identifying the possible. The crux of NOCS’s impossibil-
ity is that the real-time requirement of strict serializability
forces read-only transactions to confront conflicting requests
(Lemma 1). This suggests optimal performance could be
possible with even slightly relaxed consistency models that
do not require real-time ordering, and thus can avoid the
unstable region. In particular, the second strongest consis-
tency model we are aware of—process-ordered serializabil-
ity [34]—does not require real-time ordering.

Yet, there is a large gap in the current design space. The
only two existing systems whose read-only transactions are
performance optimal provide weak consistency. MySQL
Cluster’s read-committed consistency does not isolate trans-
actions. Spanner’s snapshot read API can be used to get
performance optimality, but it does not ensure clients see
their own recent writes when used in this way (§10). Be-
tween these weak guarantees and strict serializability are

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 337

many stronger consistency models, such as read-atomic [5],
causal consistency [31], and process-ordered serializabil-
ity [34]. We bridge this gap by presenting the PORT de-
sign that provides performance-optimal read-only transac-
tions and the strongest consistency to date: PORT provides
process-ordered serializability in systems with only simple
writes (§6), and it provides causal consistency in systems
with write transactions (§8). (We conjecture causal consis-
tency is the upper bound for performance-optimal read-only
transactions when transactional writes are present.)

5.2 Guiding System Designs
NOCS is also useful in guiding system designs. First,
to make a design performance-optimal, it must satisfy the
NOC properties: each transaction must succeed using a sin-
gle round of non-blocking messages with constant meta-
data. Therefore, the NOC properties indicate we must avoid
validation-based and stabilization-based techniques to sat-
isfy O, avoid techniques based on distributed lock manage-
ment to satisfy N, and ensure the complexity of processing
a read does not depend on the level of contention—i.e., the
number of conflicting reads and/or writes—to satisfy C. Sec-
ond, the NOCS Theorem suggests a path towards designing
NOC protocols by avoiding how it derives its impossibil-
ity: read-only transactions should always execute on system
states outside the unstable region. These implications of the
NOC properties and the NOCS proof significantly reduced
the design space of algorithm we needed to explore and led
us to two high-level techniques for PORT: explicit ordering
control and multi-versioning.
Explicit ordering control. There are two methods for en-
suring reads avoid the unstable region by explicitly control-
ling the ordering of concurrent operations. First, reads can
request versions of the data that lie before the unstable region
begins, which orders a read-only transaction before ongoing
writes. Second, servers can reorder operations when a read
requests data in the unstable region.

Explicitly controlling ordering is not compatible with
strict serializability because the real-time requirement forces
a specific ordering of operations (Lemma 1) that cannot be
communicated in a performance-optimal system (Lemma 3).
Consistency models without the real-time requirement, how-
ever, might be compatible with an explicitly controlled or-
dering while satisfying NOC. PORT confirms this, by using
versions clocks to capture this explicit ordering. PORT uses
both types of explicit control on top of multi-versioning to
provide its consistency guarantees and optimal performance.
Multi-versioning. Enabling reads to control what version
of data they request requires multi-versioning on servers.
Multi-versioning introduces storage overhead to temporarily
keep additional version around, but this overhead is minor as
storage is inexpensive and extra versions are not kept long.
It also introduces some processing overhead to look up the
correct version of data to return, reflected by our C property.

The need for multi-versioning to support efficient reads is
not new. The existing performance-optimal systems, Span-
ner and MySQL Cluster, are multi-versioned. In fact, all ex-
isting systems whose read-only transactions are guaranteed
to terminate—i.e., have a bounded number of retries and/or
bounded blocking—are multi-versioned (Table 9). On the
other hand, multi-versioning alone does not ensure optimal
performance: most MVCC protocols require either extra on-
path messages to query a timestamp oracle [6, 43], off-path
messages to compute stable snapshots [3, 15], or blocking
reads if the client-provided timestamp in MVTSO-based pro-
tocols points to the future [30, 45]. PORT’s novelty is in how
it uses version clocks to explicitly control ordering by manip-
ulating the multi-versioning framework in order to achieve
optimal performance.

6 PORT Design
PORT is a new system design that enables performance-
optimal read-only transactions with process-ordered serial-
izability, the strongest consistency to date.
Process-ordered serializability. Process-ordered serializ-
ability guarantees there exists a legal total order of transac-
tions that respects the ordering of transactions within each
process [34]. It is equivalent to sequential consistency [27]
with the addition of transactional isolation. It preserves all
the properties of strict serializability (§4) except for the real-
time order across processes (clients). That is, it preserves the
real-time order within each process, i.e., process order, and
a total order across processes, but a client may not see the
most recent updates of other clients. Process order ensures
that each client interacts with the system monotonically, e.g.,
sees her own recent writes. Total order ensures that concur-
rent transactions are observed by all clients in the same order.

6.1 Version Clocks
This section describes version clocks (§6.1), a new special-
ized logical clock that tightly couples all the components of
PORT (§6.2). Version clocks also allow us to avoid the work
of applying some writes (write omission, §6.3) and limit the
staleness of reads (data freshness, §6.4).

Version clocks are designed in the context of distributed
storage systems and have two features: they ensure pro-
cess order by concisely capturing the ordering constraints be-
tween requests and enable optimal performance by reading
at the most recent snapshot in the stable region.
Enforcing process order. Version clocks take advantage of
two observations. First, process order is a per-client order,
and thus can be explicitly controlled by clients. Second, read
and write requests have different semantics, i.e., writes mod-
ify system state while reads do not. Therefore, they should
be treated differently: it is unnecessary to enforce an order
among the read requests that observe the same system state.
Capturing the stable frontier. Version clocks follow the
practical guidance of the NOCS Theorem (§5.2) to avoid the

338 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 Client Side
2 versionstamp = 0 # clock value
3 view[] # max known versionstamp per server
4

5 # Sending requests
6 function get_vs_read():
7 versionstamp = tick(min{view[]}) # stable frontier
8 return versionstamp
9

10 function get_vs_write():
11 versionstamp++
12 return versionstamp
13

14 # Receiving a response msg from server svr
15 function recv_response(maxVS):
16 view[svr] = max{view[svr], maxVS}
17 if msg.for_write is true
18 versionstamp = tick(maxVS)
19 return
20

21 function tick(vs):
22 return max{vs, versionstamp}
23

24 Server Side
25 maxVS = 0 # max seeen versionstamp
26 # ... return maxVS when sending response msg

Figure 1: Pseudocode for version clocks.

unstable region by capturing the stable frontier. The stable
frontier is the most recent snapshot in which all writes are
in the stable region. Each server tracks the final version-
stamp of its most recent write. A version clock tracks the
minimum of such versionstamps across all servers the client
has contacted, which is exactly the stable frontier the client
knows. Version clocks direct read messages to the stable
frontier when possible. PORT takes care of the cases when
reads have to confront conflicting requests beyond the stable
frontier. “Promotion” is used in systems with simple writes
to advance the stable frontier beyond the versionstamp of an
incoming read to ensure a total order. “Per-client ordering”
is used in systems with write transactions to logically move a
client’s own writes before the stable frontier so the client can
always safely read at the stable frontier (§8.2). Both tech-
niques enforce the necessary order between concurrent reads
and writes without blocking either reads or writes.
Clock structure. Figure 1 shows the pseudocode of version
clocks. versionstamp stores the current clock value (line 2),
which is embedded in every read/write message to explicitly
control their ordering. When versionstamps are the same for
two operations of the same type, the server orders them ar-
bitrarily. When versionstamps for a read and a write are the
same, the server orders the read after the write. A server re-
sponds with the highest versionstamp it has seen (line 26).
A client uses view to track the highest versionstamps of the
servers it has contacted (line 3) and uses them to find the sta-
ble frontier (line 7) before sending a read message (lines 6–
8). view is updated upon receiving a response (line 16). If the
response is for a write message, then the clock is advanced
so that future read messages will have greater versionstamps
than the write (lines 17–18), ensuring read-your-writes. Be-
cause versionstamps increase monotonically and reads have

1 Client Side
2 function read_only_txn(<keys>):
3 vs = VersionClock.get_vs_read()
4 for k in keys # in parallel
5 vals[k], maxVS = read(k, vs)
6 VersionClock.recv_response(maxVS)
7 return vals # replies to end user
8

9 function write(key, val):
10 vs = VersionClock.get_vs_write()
11 maxVS = write(key, val, vs)
12 VersionClock.recv_response(maxVS)
13 return # replies to end user
14

15 Server Side
16 vers[keys][] # multi-versioned storage
17 function read(key, vs):
18 if vers[key][vs] exists
19 return vers[key][vs], VersionClock.maxVS
20 else # return nearest version to not block
21 near_vs = find_nearest_earlier(ver)
22 # ensure future writes have higher vs
23 vers[key].max_r_vs = max(vers[key].max_r_vs, vs)
24 return vers[key][near_vs], VersionClock.maxVS
25

26 function write(key, val, vs):
27 if vs <= vers[key].max_w_vs
28 return VersionClock.maxVS # omit write
29 if vers[key].max_r_vs >= vs
30 vs = max_r_vs + 1 # commit after promoted versions
31 vers[key][vs] = val
32 vers[key].max_w_vs = vs
33 if vs > VersionClock.maxVS
34 VersionClock.maxVS = vs
35 return VersionClock.maxVS

Figure 2: Pseudocode for PORT.

non-smaller versionstamps than earlier writes, version clocks
preserve process ordering.

6.2 Basic PORT Design
The basic PORT design includes a multi-versioning frame-
work, a read-only transaction algorithm, and a write algo-
rithm. We co-design these components tightly by leveraging
version clocks. Figure 2 shows PORT’s pseudocode.

Client library. The read-only transaction and write algo-
rithms are executed by a client library. For each read-only
transaction or write, the client obtains a versionstamp from
its version clock and embeds it in the request message(s).
This per-client versionstamp decides which system version
on the servers the operation must read (or write) to ensure the
client’s process order (lines 3, 10). The server-side logic en-
sures a total order on top of the process order on each client
to guarantee process-ordered serializability.

Multi-versioning framework. Servers store written values
in a multi-versioning framework (line 16). Since PORT
uses version clocks to track the ordering between operations,
it is natural and efficient to index the historical values of
each data item with versionstamps. In this way, the multi-
versioning framework and transaction layer are nicely cou-
pled via versionstamps. We omit a detailed discussion of
garbage collection, which uses standard mechanisms similar
to those used to provide at-most-once semantics.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 339

P1! P2!Sx!
0!
1!
2!

w1=1	

(a) orders www111 before www222 by arrival.

P1! P2!Sx!
0!
2!
1!

w2=2	

(b) orders www222 before www111 by arrival.

P1! P2!Sx!
0!
1!

w1=1	

(c) orders www222 before www111 by omission.

Figure 3: Space-time diagrams showing three executions of writes www111 and www222 that are concurrent and conflicting. The
value underneath Sx indicates the value stored by the server. Process-ordered serializability allows www111, www222 to be ordered
either way. This enables us to omit www222 in (c) because it is equivalent to the ordering in (b), i.e., (www222,www111).

Read-only transactions. To process a read request, a server
executes it against the system version specified by its ver-
sionstamp. Executing a read is thus equivalent to returning
the value indexed at versionstamp. If the server has the re-
quested version, then the read is inside the stable region and
it returns the version directly (lines 18, 19). Otherwise, it
uses promotion to ensure a total order between the read and
any concurrent writes at the specified versionstamp, without
blocking either the read or write (lines 20–24).

Promotion logically copies the value of the nearest earlier
version to all empty positions between that version and the
one requested by versionstamp. Logical versions are used
as placeholders to ensure a total order: once a version has
been read by any client, no earlier versions can be modified
to ensure different clients observe them in the same order.
For example, if a read request has vs = 4 and the data item
has committed values at vs = 1,2, the version at vs = 2 is
the nearest earlier version and is promoted to positions 3,4.
A conflicting write at vs = 3,4 will be “bumped up” to vs =
5 when it arrives. We implement promotion with a single
variable (line 23) that marks earlier positions as immutable.

Writes. When receiving a write request, a server finds the
position specified by the write’s versionstamp in the multi-
versioning framework. If the position is empty, then the write
is applied at the versionstamp (line 31). If the position has
been marked immutable by read promotion, the server finds
the next available position to write the version at (lines 29–
31). The write protocol also includes a mechanism for safely
skipping concurrent writes (lines 27–28), discussed next.

6.3 Write Omission
Write omission is a special conflict resolution mechanism
that skips an incoming write if it is concurrent with an al-
ready applied write. Omitting a write is desirable because it
saves the computation needed to apply it, reduces the number
of stored versions, and saves the work of replicating it.

Write omission is safe. Consistency models in general, and
process-ordered serializability specifically, allow conflict-
ing writes to be ordered either way. For instance, if two
processes concurrently issue w1 : write(x = 1) and w2 :
write(x = 2), then they can be ordered as either (w1,w2)
or (w2,w1). Typically, systems apply writes in the order that

they arrive, e.g., w1 then w2. But if instead we use the oppo-
site order, then this is equivalent to omitting w2, as shown in
Figure 3: skipping the later write is equivalent to ordering it
before the earlier write and immediately overwriting it with
the latter. Write omission does not affect the total order re-
quirement: all clients observe concurrent writes in the same
order, because omitted writes are never seen by any client.
Knowing a write is concurrent. Version clocks enable
PORT to identify when writes are concurrent, allowing a
later concurrent write to be omitted. PORT omits an incom-
ing write if its versionstamp, vsomit , is less than or equal to
the highest committed versionstamp of the data item, vshighest
(lines 27–29). The write with the highest committed version-
stamp cannot have happened-before [26] the omitted write
because vshighest ≥ vsomit . More specifically, version clocks
guarantee the invariant: if write x happens-before write y,
then vsx < vsy. The omitted write cannot have happened-
before the write with the highest committed versionstamp
because it has not happened yet. Therefore, the two writes
are concurrent, and it is safe to omit the incoming write.

Omitting a write is equivalent to applying it immediately
before the write with the highest versionstamp. A client’s
future reads must observe the “higher” write if its own write
was overwritten in this way. Therefore, the server returns the
versionstamp of its highest applied write to the client (line
29), which uses it to update its versionstamp as normal.

6.4 Keeping Reads Fresh
To avoid the unstable region, we must sometimes return val-
ues staler than what strict serializability would return (§5.2).
PORT limits data staleness in two ways, neither of which
incurs extra messages, blocking, or non-constant metadata.
That is, they do not forfeit optimal performance (NOC).
Reducing staleness with version clocks. Instead of naively
returning versions far behind the stable frontier, version
clocks try to track the stable frontier precisely. They use view
to track the most recent versionstamp on each server a client
has contacted, so a client’s version clock never ticks slower
than the servers it is aware of. This significantly improves
the freshness of data requested by read-only transactions.
Reducing staleness via co-location. Many storage systems
co-locate “end users” on the same client machine [12, 18,

340 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

40], i.e., each client (machine) has many sessions (threads),
one per end user. We leverage co-location to help user ses-
sions keep each other fresh by sharing one version clock
among them on the same client, which ensures no user ses-
sion is staler than the freshest session it is co-located with.

6.5 Correctness and Generality
The only technique PORT relies on is version clocks, which
can easily be added to systems with existing physical/logical
clocks, or implemented from scratch. We demonstrate both
by applying PORT to a system without transactions (shown
by Scylla-PORT) and a system with existing sub-optimal
read-only transactions (shown by Eiger-PORT). We present
a proof of correctness for PORT in our technical report [35].
Failures. PORT can tolerate server failures using typical
techniques such as state machine replication [46]. To tol-
erate client—i.e., frontend—failures, clients can send ver-
sionstamps back to end-user machines that then include the
versionstamp in subsequent requests to the application (e.g.,
via cookies). This ensures process ordering is maintained
even if an end user’s later requests go to a different frontend
due to load-balancing or frontend failure.

7 PORT Implementation and Evaluation
This section discusses Scylla-PORT, the implementation of
PORT on a clean slate base system.

7.1 Implementation
We build PORT on ScyllaDB [47], a clean slate, non-
transactional base system that supports only simple reads
and simple writes. ScyllaDB is a production system that
serves as a drop-in replacement for Cassandra [25] and pro-
vides an order-of-magnitude better performance. It is well-
engineered and aggressively-optimized for performance, in-
cluding a new implementation in C++14, core-level sharding
that avoids cross-core locking and context switches, and cus-
tomized lock-free data structures.
Rationale and takeaways. We chose to implement PORT
on ScyllaDB for three reasons. First, it stresses the effi-
ciency of PORT: as a highly efficient baseline system, it is
sensitive to any additional overheads, and thus amplifies any
performance cost introduced by PORT. Second, ScyllaDB
is single-versioned. The negligible performance overhead
shown in our evaluation includes the cost of making it multi-
versioned (§5.2), which shows the efficiency of co-designing
the multi-versioning framework and the transaction layer en-
abled by version clocks. Third, PORT is compatible with
all the customized engineering decisions of ScyllaDB, which
demonstrates the generality of the design of PORT.

7.2 Evaluation Overview
We evaluate Scylla-PORT against ScyllaDB (the clean slate,
non-transactional base system) and Scylla-OCC (an im-
plementation of OCC atop ScyllaDB). We compare their

throughput, latency, scalability, and quantify data staleness.

Scylla-OCC. We implemented a variant of OCC optimized
for read-only transactions, similar to Rococo’s read-only
transaction algorithm [37]. It includes an initial round of
optimistic reads and then a validation round. If the values
read in the optimistic round match the values in the valida-
tion round the transaction succeeds. If not, the read-only
transaction is aborted and retried. This variant has strictly
better performance than traditional distributed OCC because
it avoids the need for distributed commit: its best case is two
rounds compared to traditional distributed OCC’s best case
of three rounds (read, validate/prepare, commit).

Code. We implemented our server-side logic in ScyllaDB’s
codebase (release 2.1-RC3) in C++14 and our client-side
logic in the Java Thrift client of the YCSB benchmark (re-
lease 0.10.0) [9]. Version clocks are implemented on both
servers and clients. Scylla-PORT adds ~1,300 LOC.

Experimental setting. We run experiments on Emulab [50].
Each machine has two 2.4GHz 8-Core Xeon CPUs, 64GB
RAM, and a 10Gbps network interface. We use a single
datacenter setting. All experiments, except for scalability
tests, use 8 servers loaded by 8 client machines. The scal-
ability tests use up to 64 machines. Each client issues 10
million requests in each experiment, which takes 5–10 min-
utes to complete, sufficiently long to minimize warm-up and
cool-down effects and provide stable results. Experiments
are CPU-bound on servers.

Configuration and workloads. We use YCSB’s standard
workloads B (read-heavy, 95% reads) and C (read-only) with
customized read-to-write ratios of up to 25% writes. We use
YCSB’s default parameters: 1 million records, 10 fields per
record, 100 B values per field, and Zipf constant of 0.99.
Each request (a read-only transaction or a group of simple
writes) accesses 5 records and all fields in each record.

Results summary. Transactional overhead is generally evi-
dent with read-write conflicts and under skewed workloads,
so we focus our evaluation in such scenarios to amplify
Scylla-PORT’s cost. Our results show that Scylla-PORT can
almost match its performance to that of non-transactional
ScyllaDB: 1–3% overhead in throughput and latency in most
settings and less than 8% even in the worst case. Scylla-
PORT outperforms OCC by an order-of-magnitude in such
contended scenarios due to OCC’s retries, and outperforms
OCC under low contention (OCC’s best case) by at least two
times. Scylla-PORT scales as well as ScyllaDB and scales
better under contention. More than 40% of its reads return
fresh values.

7.3 Throughput and Latency
Figure 4a shows the overall performance of the systems as
we gradually increase the system load by using more closed-
loop client threads. Scylla-PORT has similar performance to
the baseline ScyllaDB. Their largest difference before Scyl-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 341

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200

A
v
e
ra

g
e
 L

a
te

n
cy

 (
m

s)

Throughput (K Txn/s)

Scylla-OCC
Scylla-PORT

ScyllaDB

(a) Overall performance

 0

 50

 100

 150

 200

 250

0% 5% 10% 15% 20% 25%

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Write Percentage

ScyllaDB
Scylla-PORT

Scylla-OCC

(b) System throughput

 0

 1

 2

0% 5% 10% 15% 20% 25%

A
v
e
ra

g
e
 L

a
te

n
cy

 (
m

s)

Write Percentage

 8

 12

 16 ScyllaDB
Scylla-PORT
Scylla-OCC

(c) Read latency

 0
 100
 200
 300
 400
 500
 600
 700
 800

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of servers (log)

ScyllaDB
Scylla-PORT
Scylla-OCC

(d) Scalability (uniform)

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of servers (log)

ScyllaDB
Scylla-PORT
Scylla-OCC

(e) Scalability (Zipf=0.99)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500

R
e
a
d

 S
ta

le
n

e
ss

 C
D

F

Staleness (ms)

25% writes
20% writes
15% writes
10% writes

5% writes

(f) Scylla-PORT data staleness

Figure 4: The performance of Scylla-PORT closely matches non-transactional ScyllaDB and is significantly better than
OCC, Scylla-PORT scales even better than ScyllaDB with skewed workloads, and half of its reads return fresh data.

laDB becomes overloaded is evident with 32 client threads:
5.6% in throughput and 5% in latency. All later experi-
ments report throughput and latency at this operating point,
i.e., with 32 client threads. OCC initially has latency that
is twice that of ScyllaDB and Scylla-PORT because it takes
at least two rounds to complete instead of one. As load in-
creases, OCC’s latency increases quickly and its throughput
decreases slightly because contention forces it to retry.

Varying write percentage. Figure 4b and 4c show the
throughput and latency as we vary the read-to-write ratio.
Scylla-PORT’s throughput is within 4% of ScyllaDB’s for
five of the experiments and within 7% for the remaining one.
Similarly, its latency is within 2% (20µs) of ScyllaDB’s
for two of the experiments and within 7% (107µs) for the
other four. As the write percentage increases, the overhead
disappears because of write omission: doing slightly more
work during reads is offset by doing less work during writes.
When there are only reads, Scylla-PORT has double the
throughput and half the latency of OCC because OCC’s read-
only transactions require at least two rounds. With writes,
OCC’s performance drops quickly due to retries.

7.4 Scalability
Figure 4d compares the scalability of the three systems
under a uniform workload as we increase the number of
servers while increasing the number of clients to keep the
servers CPU-bound. Scylla-PORT scales as well as Scyl-
laDB; the differences in throughput are negligible. Interest-
ingly, Scylla-PORT outperforms ScyllaDB under a skewed
workload, as shown in Figure 4e. ScyllaDB stops scaling
at 16 servers because the server holding the hottest keys be-
comes the bottleneck, and adding more servers does not help.
(We have confirmed this finding with ScyllaDB’s develop-

ers.) Scylla-PORT scales better than ScyllaDB under skewed
workloads because it can avoid the work of some writes to
the hottest keys due to write omission. Since write omis-
sion only applies to conflicting writes, this rarely occurs un-
der a uniform workload. OCC initially shows a similar scal-
ing pattern starting from its lower throughput. OCC’s scal-
ing stops, however, as more concurrent clients accessing the
same keys lead to higher contention and thus more retries.

7.5 Data Staleness
Figure 4f shows the staleness of Scylla-PORT under a
skewed workload with varying write percentages. Staleness
is measured relative to strict serializability, which always has
a staleness of 0: it is the amount of time since a newer version
has been committed. For example, if v0, v1 are consecutive
versions, v0 is returned at 0:05, and v1 committed at 0:00,
then the staleness of v0 is 5 seconds.

Scylla-PORT returns the most recent data ~40% of the
time, and 90% of reads return values no staler than 500 ms.
Scylla-PORT returns fresher data as the write percentage in-
creases because version clocks advance versionstamps more
frequently when there are more writes. Scylla-PORT lever-
ages version clocks to precisely capture the stable frontier,
but does not utilize client co-location. Sharing one clock
among co-located user sessions would further decrease stal-
eness, but also decreases the rate at which write omission can
be used. We leave investigating this tradeoff to future work.

7.6 Low Contention Evaluation
We focused here on high contention workloads because those
are where any differences between Scylla-PORT and Scyl-
laDB would appear. Scylla-OCC did poorly in this setting as
is expected because OCC is better suited to low contention

342 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

settings. We present the results of evaluating the three sys-
tems under low contention in our accompanying technical
report [35]. Even in that setting, Scylla-PORT significantly
outperforms Scylla-OCC with at least double the throughput
and at most half the latency because Scylla-PORT always
finishes in one round while OCC’s best case is two rounds.

8 Improving an Existing System
This section adapts PORT to improve Eiger, an existing sys-
tem that has both read-only and write transactions.

8.1 Eiger Overview and Rationale
Eiger is a geo-replicated, causally consistent system that
has read-only transactions and write transactions. Each ma-
chine implements a Lamport clock and attaches a Lamport
timestamp to each committed write that is guaranteed to be
larger than any earlier write it causally depends on. Eiger’s
write transaction protocol is a variant of two-phase com-
mit [21, 28] that always commits. Eiger’s read-only trans-
action protocol takes between one and three non-blocking
rounds of communication. If there are no concurrent write
transactions, it completes in a single round. Otherwise, it re-
quires a second round of messages to a subset of the servers,
followed by a third round if the concurrent write transactions
are still pending when the second-round requests arrive. In
the third round, each read request needs to query the states
of all write transactions it conflicts with, and thus the re-
quired metadata increases linearly with respect to the num-
ber of conflicting write transactions.
Rationale. We choose Eiger as a base system because of its
guarantees and the efficiency of its read-only transactions.
First, it provides causal consistency, not strict serializabil-
ity, so it may be possible to add performance-optimal read-
only transactions to it. Second, it includes write transactions,
which present a new challenge for the PORT design. Third,
it is the only system with write transactions and causal (or
stronger) consistency that completes read-only transactions
in a bounded number of non-blocking rounds of communica-
tion (Figure 9). Finally, its read-only transactions often com-
plete in a single non-blocking round, making them a more
difficult baseline than other algorithms such as OCC.

8.2 Eiger-PORT
Eiger’s read-only transactions are non-blocking, require
up to three rounds of on-path communication, and use
linear-sized metadata in the third round. We make them
performance-optimal by making them always finish in one
round using only constant metadata. The major challenge
is to ensure write isolation, i.e., return a system state that is
either before all updates in a write transaction or after.

More specifically, when a read-only transaction must read
beyond the stable frontier, e.g., to ensure read-your-writes,
PORT reorders the read-only transaction and the conflicting
writes without blocking by using “promotion” (§6.2). How-

1 Client Side
2 lst_map[][] # maps server to its local safe time
3 gst # global safe time
4

5 function read_only_txn(<keys>):
6 gst = get_read_ts(min{lst_map.valueSet()})
7 for k in keys # messages in parallel
8 vals[k], lst = read(k, gst, cl_id)
9 lst_map[k.server] = lst # lst is monotonic

10 return vals
11

12 function write_txn(<keys, vals>):
13 for k, v in <keys, vals> # in parallel
14 if k.server is coord # the coordinator
15 lst = write_coord(k, v, cl_id, gst)
16 else # a cohort
17 lst = write_cohort(k, v, cl_id, gst)
18 lst_map[k.server] = lst # lst is monotonic
19 return
20

21 function get_read_ts(ts):
22 return max{ts, gst}

Figure 5: Client-side pseudocode for Eiger-PORT.

1 Server Side (Read-Only Txn)
2 lst # local safe time, updated upon writes
3

4 function read(k, rts, cl_id):
5 ver = DS[k].at(rts) # vers are sorted by commit_t
6 for v in DS[k].newer_than(ver.commit_t)
7 # ensure read-your-writes, from newer ver to old
8 if v.cl_id == cl_id
9 return v.val, lst

10 if ver.cl_id != cl_id
11 return ver.val, lst
12 else # ensure write isolation
13 v = find_isolated(ver)
14 return v.val, lst
15

16 function find_isolated(ver):
17 # iterate from newer version to old
18 while v in DS[k].newer_than(ver.gst)
19 and v in DS[k].older_than(ver.commit_t)
20 if v.cl_id != ver.cl_id
21 return v
22 else
23 return find_isolated(v)
24 return ver

Figure 6: Read-only transaction logic for Eiger-PORT.

ever, promotion does not work for Eiger because it cannot
ensure that all writes in the same write transaction are pro-
moted at the same time since they can be on different servers.
Our solution, per-client ordering, enables clients to observe
conflicting writes in different orders, as allowed by causal
consistency. Specifically, it pulls back any of a client’s re-
cent writes that are beyond the stable frontier. This allows the
client to read at the stable frontier while also always seeing
their own writes. Figures 5, 6, and 7 show the pseudocode,
written in a way that favors clarity over efficiency.

Client-side logic. Figure 5 shows the client-side logic. Each
client maintains two variables (lines 2, 3). lst map tracks the
local safe time, lst, of each server. Global safe time, gst,
is the minimum lst across all servers (line 6) and advances
monotonically. gst is used as the read timestamp for each

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 343

1 Server Side (Write Txn)
2 lst # local safe time
3 pending_wtxns # uncommitted write txns
4 DS[][] # multi-versioned k-v data store
5

6 function write_coord(k, v, cl_id, gst): # coordinator
7 # PREPARE
8 ver, prepared_t = prepare_write(k, v, cl_id, gst)
9 # ... get yes-vote-msgs from all cohorts

10 # COMMIT
11 commit_t = max{yes-vote-msgs.prepared_t, prepared_t}
12 commit-msg = {"commit", commit_t}
13 # ... send commit-msg to all cohorts
14 commit_write(ver, commit_t)
15 return lst
16

17 function write_cohort(k, v, cl_id, gst): # cohort
18 # PREPARE
19 ver, prepared_t = prepare_write(k, v, cl_id, gst)
20 yes-vote-msg = {"yes", prepared_t}
21 # ... send yes-vote-msg to coordinator
22 # ... wait for commit-msg
23 # COMMIT
24 commit_t = commit-msg.commit_t
25 commit_write(ver, commit_t)
26 return lst
27

28 function prepare_write(k, v, cl_id, gst):
29 pending_t = LamportClock.current()
30 pending_wtxns.append(pending_t)
31 LamportClock.advance()
32 ver = DS[k].create_new_ver(v, cl_id, gst, pending_t)
33 ver.is_pending = true
34 return ver, LamportClock.current()
35

36 function commit_write(ver, commit_t):
37 ver.commit_t = commit_t
38 ver.is_pending = false
39 pending_wtxns.remove(ver.pending_t)
40 if pending_wtxns is empty
41 lst = LamportClock.current()
42 else
43 lst = pending_wtxns.head() # min of pending_wtxns
44 return

Figure 7: Write transaction logic for Eiger-PORT.

read-only transaction. Both lst and gst are Lamport times-
tamps as used in Eiger. A client sends all read requests in a
read-only transaction in parallel. Each read request includes
the key, the read timestamp gst, and the unique identifier of
this client (line 8). The server responds with the requested
value and lst on that server. A client issues a write transac-
tion by sending the write requests in parallel (lines 12–19).
One server is randomly chosen as the coordinator (line 14)
for 2PC with the others as cohorts. Each write request con-
tains the key, the value, the client ID, and the client’s current
gst (lines 15, 17). gst specifies the stable frontier this write
transaction causally depends on. The client updates lst map
after each read/write request (lines 9, 18).

Write transactions. Figure 7 shows the server-side logic of
write transactions. When a server receives a write request,
it records the current Lamport time (line 29) and creates a
new pending version (lines 8, 19, 32, 33). pending wtxns
tracks ongoing write transactions by keeping an ordered list
of pending times. The running minimum of pending wtxns
is the lst on this server, i.e., no pending writes exist before
lst. Because Lamport clocks advance monotonically, inser-

tion, removal, and fetching the minimum of pending wtxns
have a cost of O(1). At the end of the “prepare” phase of
2PC, each cohort sends a yes-vote message to the coordina-
tor, which includes the prepared time of this pending write
transaction. prepared time is guaranteed to be greater than
pending time by clock ticking (line 31).

To commit a write transaction, the coordinator calcu-
lates the commit time by taking the maximum across all
prepared times (line 11) and then sends a commit message to
the cohorts and commits its local pending version (lines 13,
14). When a cohort receives the commit message, it com-
mits its local pending version (lines 25, 38) with the commit
time (lines 24, 37). It then removes this write transaction’s
pending time from pending wtxns and updates lst (lines 39–
43). The server returns its lst to the client upon commit.
Eiger-PORT made minimum changes to Eiger’s write trans-
actions, i.e., the management of pending wtxns.

Read-only transactions. Figure 6 shows the server-side
logic of read-only transactions. When a server receives a
read request, it finds the version at the read timestamp, rts
(line 5), and checks if the same client has made a recent write
later than rts. It returns the most recent write by the same
client to ensure read-your-writes (lines 6–9). If the version
at rts was written by the same client, then we need to ensure
write isolation by checking whether there exist any versions
between the version’s gst, which is the snapshot time the ver-
sion depends on, and the version’s commit t (lines 18, 19). If
there exists such a version written by a different client, then
that version is returned to satisfy write isolation (lines 20,
21). We need to do this recursively, but our implementation
uses a loop instead for better performance. To ensure write
isolation (lines 16–24), we go through the multi-versioned
data store once, which has the same cost as finding a partic-
ular version by timestamp in other algorithms, e.g., MVCC.

Correctness. We show the correctness of Eiger-PORT by
proving that any execution in Eiger-PORT satisfies the causal
(“happened before”) relation [26] and write isolation for
write transactions. We present the full proof in the techni-
cal report [35].

9 Eiger-PORT Evaluation
We evaluate Eiger-PORT against Eiger, showing its through-
put and latency improvement as well as its data staleness.

Implementation. We implemented Eiger-PORT as a modi-
fication to Eiger’s code base, which is built on top of Cassan-
dra [25] and written in Java. Eiger-PORT adds ~1000 LOC.

Experimental setting. We try to match Eiger’s original ex-
perimental setup. We run all experiments on Emulab [50],
similar to the now-decommissioned PRObE testbed [19]
Eiger used. Each machine has one 2.4GHz Quad-Core Xeon
CPU, 12GB RAM, and a 1Gbps network interface. We run
5 trials for each data point, each lasting 65 seconds, and re-
port the median. We exclude the first and last 15 seconds to

344 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25 30 35 40 45

O.P.

R
e
a
d

 L
a
te

n
cy

 (
m

s)

Throughput (K Txn/s)

Eiger Eiger-PORT

(a) Median latency and throughput

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Zipf Constant

Eiger Eiger-PORT

(b) Throughput varying skew

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of Servers/DC (log)

Eiger-PORT
Eiger

(c) Scalability (Zipf=0.8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Zipf Constant

Eiger Eiger-PORT

(d) Read latency varying skew

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Zipf Constant

Eiger Eiger-PORT

(e) Write latency varying skew

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

R
e
a
d

 S
ta

le
n

e
ss

 C
D

F

Staleness (ms)

uniform
zipf=0.7
zipf=0.8
zipf=0.9

zipf=0.99
zipf=1.1
zipf=1.2

(f) Eiger-PORT data staleness

Figure 8: Throughput, latency, scalability, and staleness of Eiger-PORT: up to 3× throughput improvement and 60%
latency reduction compared to Eiger, better scalability, and low data staleness. All latencies are median latencies.

avoid artifacts due to warm-up, cool-down, and imperfectly
synchronized clients. All experiments are CPU-bound.
Configuration and workloads. We use the same setting
as Eiger: two logical datacenters co-located in the testbed.
Each datacenter has eight server machines, and uses eight
client machines to load the servers. The second datacenter
is used as a replica, which applies updates replicated from
the first datacenter. We use the dynamic workload generator
from Eiger with the same default values: 1 million keys, 128-
byte values, 5 columns per key, 5 keys per operation, and a
write percentage of 10% unless otherwise specified. We also
use a Zipf traffic generator with a default value of 0.8.

9.1 Performance Improvement
Results summary. Eiger-PORT significantly improves the
performance of Eiger under different workloads, without de-
grading write performance: 2× and 3× throughput improve-
ment under mild and high skew, respectively, and 20%–60%
latency reduction. The performance improvement comes
from Eiger-PORT’s fewer on-path messages and less meta-
data to process. The improvement is larger in contended
workloads because Eiger is more likely to require more than
one round and more metadata in the third round when there
are more conflicting write transactions.
Throughput improvement. Figure 8a shows the median
read latency and system throughput as we double the number
of closed-loop client threads loading the system (from 2 to
512). It shows that Eiger-PORT performs strictly better than
Eiger: it achieves higher throughput with the same latency
and lower latency with the same throughput. We run all other
experiments in Figure 8 with 32 threads, representing an op-
erating point with reasonably low latency (< 20ms), i.e., at
line “O.P.” in Figure 8a. The improvements are more pro-

found at higher loads. Figure 8b shows normalized through-
put with different skew; the improvement stops increasing
after Zipf value 1.1, where a single server becomes the bot-
tleneck. Figure 8c shows Eiger-PORT scales better than
Eiger due to fewer messages in the system.
Latency improvement. Figure 8d shows the normalized
median read latency as we vary skew. Eiger-PORT achieves
20% lower latency under uniform workloads and up to 60%
lower latency under contended workloads. Figure 8e shows
that Eiger-PORT achieves lower write latency even though
we did not intentionally improve writes. The lower latency
comes from less queuing delay for writes because reads are
faster and there are fewer messages in the system. This
demonstrates that PORT can make read-only transactions
performance-optimal without making writes more costly.

9.2 Data Staleness
Figure 8f quantifies the read staleness in Eiger-PORT. Stale-
ness is measured relative to strict serializability as in Scylla-
PORT’s evaluation. Even with high skew, over 40% of Eiger-
PORT’s read-only transactions return up-to-date values, and
over 90% of reads experience less than 1s staleness. Eiger-
PORT tends to return staler data than Scylla-PORT because
the stable frontier moves more slowly in Eiger/Eiger-PORT:
write transactions take longer to commit than simple writes.

10 Related Work
This section examines existing read-only transactions with
the NOCS Theorem, reviews impossibility results, and dis-
cusses the move from latency to performance optimality.
Bridging the gap in the design space. We use the NOCS
Theorem as a lens to better understand existing systems and
show a set of representative systems in Figure 9. We find

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 345

System N O C S W
Performance-optimal

Scylla-PORT * X X X POS ×
Eiger-PORT * X X X Causal X
Spanner-Snap [10]* X X X SR X
MySQL Cluster [39]* X X X RC X

One fewer performance property for stronger guarantees

Spanner-RO [10]* × X X X X
DrTM [49]* X ≥ 1 X X X
RIFL [29] X ≥ 2 X X X
Sinfonia [1] X ≥ 2 X X X

Candidates for improvement in performance and/or guarantees

TAPIR [51]* × X X Ser X
Pileus-Strong [48] × 2 X X X
Rococo-SNOW [34]* × X Linear X X
COPS-SNOW [34]* X Off-path Linear Causal ×
COPS [31]* X ≤ 2 Linear Causal ×
RAMP-F|H [5]* X ≤ 2 Linear RA X
RAMP-S [5]* X 2 X RA X
Eiger [32]* X ≤ 3 Linear Causal X
Janus [38] × ≤ 2 Linear X X
Callinicos [41] × 2 Linear X X
Occult [36] X ≥ 1 X PC-PSI X
Rococo [37]* × ≥ 2 X X X
Contrarian [13]* X 2 X Causal ×
GentleRain [15]* × ≤ 2 + off-path X Causal ×
Cure [3] × Off-path X Causal X
MVTSO [30, 45] × X X Ser X

Figure 9: A review of existing systems through the lens
of NOCS. Asterisks denote specialized read-only trans-
action algorithms. W denotes write transactions.

a large gap in the design space. The only existing systems
that have performance-optimal read-only transactions pro-
vide weak consistency (§4.3). MySQL Cluster [39] provides
read-committed, which does not isolate transactions. Span-
ner’s snapshot reads API [10] cannot always guarantee non-
blocking read-your-writes. Suppose a client updates key k
in a read-write transaction with commit timestamp ts, and
then immediately performs a read-only transaction involving
a set S of keys that includes k. To ensure read-your-writes,
the client must use a timestamp greater than or equal to ts for
its read-only transaction. But doing so may block since other
keys in S may be involved in a read-write transaction that is
in the midst of two-phase-commit with a commit timestamp
less than ts. That is, Spanner must use its externally con-
sistent read-only transaction API, which may block reads in
such cases to ensure read-your-writes.

We bridge this gap in the design space with PORT, the first
design that provides performance-optimal read-only transac-
tions and the strongest consistency to date.

Other read-only transactions. Some systems choose to
trade one performance property for stronger guarantees [1,
10, 29, 49] but still reside on the “tight boundary” of the
NOCS Theorem. Many systems neither are performance-
optimal nor provide the strongest possible guarantees [3, 5,
13, 15, 31, 32, 34, 36], and thus could potentially be im-

proved by our PORT design.

Impossibility results. Our NOCS Theorem is philosophi-
cally similar to other impossibility results, e.g., FLP [17],
CAP [7, 20], and SNOW [34], in that it saves system de-
signers’ effort from trying the impossible. The most relevant
result is the SNOW Theorem, which we discuss next.

The move from latency to performance. SNOW [34]
showed tradeoffs in the design space of read-only transac-
tions with a focus only on latency. It proved optimal latency
is impossible if the system is strictly serializable and has
write transactions. This work aims for a more complete un-
derstanding of the tradeoffs in the design of read-only trans-
actions by considering latency and throughput. The move
from latency to performance has two takeaways.

First, optimal latency neither translates to nor forfeits op-
timal throughput. The former is shown by the two systems
built with SNOW, which provided lower latency at the cost of
lowering throughput. The latter is shown by our new designs
that achieve both optimal latency and optimal throughput.
What really matters is a complete understanding of the trade-
off between performance and consistency and its insights for
designs—the major contributions of this work.

Second, higher demand for performance, e.g., the move
from latency only to both latency and throughput, suggests
higher difficulty in providing stronger guarantees. Optimal
latency is possible in strictly serializable systems without
write transactions, but optimal performance is not.

11 Conclusion

Distributed storage systems are a fundamental building block
of large-scale web services. They rely on read-only trans-
actions to provide consistent views of sharded data. Our
NOCS Theorem proves that read-only transactions cannot
have optimal performance in strictly serializable systems.
We presented PORT, a performance-optimal read-only trans-
action design that provides the strongest consistency to date.
We applied PORT to design Scylla-PORT and Eiger-PORT.
Scylla-PORT has minimal performance overhead compared
to its non-transactional baseline. Eiger-PORT significantly
improves the performance of its transactional base system.

Acknowledgments

We would like to thank our shepherd, Jinyang Li, for her in-
valuable feedback that improved this work. We thank the
anonymous reviewers for their careful reading of our paper
and their many insightful comments and suggestions. We
are also grateful to Christopher Hodsdon, Theano Stavrinos,
and Jeffrey Helt for their feedback on earlier stages of this
work. Our evaluation at scale was made possible by the Em-
ulab testbed. This work was supported by NSF award CNS-
1824130 as well as a gift from Microsoft Research.

346 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: A new paradigm for build-
ing scalable distributed systems. In ACM Symposium
on Operating System Principles (SOSP), Oct 2007.

[2] M. K. Aguilera, J. B. Leners, and M. Walfish. Yesquel:
scalable SQL storage for Web applications. In ACM
Symposium on Operating System Principles (SOSP),
Oct 2015.

[3] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li,
T. Crain, A. Bieniusa, N. Preguiça, and M. Shapiro.
Cure: Strong semantics meets high availability and low
latency. In IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Jun 2016.

[4] S. Almeida, J. Leitao, and L. Rodrigues. ChainRe-
action: a causal+ consistent datastore based on chain
replication. In ACM SIGOPS European Conference on
Computer Systems (EuroSys), Apr 2013.

[5] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Scalable atomic visibility with RAMP trans-
actions. In ACM Special Interest Group on Manage-
ment of Data (SIGMOD), Jun 2014.

[6] C. Binnig, S. Hildenbrand, F. Färber, D. Kossmann,
J. Lee, and N. May. Distributed snapshot isolation:
global transactions pay globally, local transactions pay
locally. The VLDB journal, 23(6):987–1011, 2014.

[7] E. A. Brewer. Towards robust distributed systems. In
ACM Symposium on Principles of Distributed Comput-
ing (PODC), Jul 2000.

[8] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni,
H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,
and V. Venkataramani. TAO: Facebook’s distributed
data store for the social graph. In USENIX Annual
Technical Conference (ATC), Jun 2013.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with YCSB. In ACM Symposium on Cloud Computing
(SoCC), Jun 2010.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. F. andSanjay Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Oct 2012.

[11] J. Cowling and B. Liskov. Granola: Low-overhead dis-
tributed transaction coordination. In USENIX Annual
Technical Conference (ATC), Jun 2012.

[12] Developer Blog. Twemproxy: A fast, light-
weight proxy for memcached. https:
//blog.twitter.com/developer/en us/
a/2012/twemproxy.html, 2012.

[13] D. Didona, R. Guerraoui, J. Wang, and W. Zwaenepoel.
Causal consistency and latency optimality: friend or
foe? In International Conference on Very Large Data
Bases (VLDB), Aug 2018.

[14] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:
Scalable causal consistency using dependency matri-
ces and physical clocks. In ACM Symposium on Cloud
Computing (SoCC), Oct 2013.

[15] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gen-
tlerain: Cheap and scalable causal consistency with
physical clocks. In ACM Symposium on Cloud Com-
puting (SoCC), Nov 2014.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM
(JACM), 35(2):288–323, 1988.

[17] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty pro-
cess. Journal of the ACM (JACM), 32(2):374–382,
1985.

[18] H. Fugal, A. Likhtarov, R. Nishtala, R. McEl-
roy, A. Grynenko, and V. Venkataramani. In-
troducing mcrouter: A memcached proto-
col router for scaling memcached deploy-
ments. https://engineering.fb.com/
core-data/introducing-mcrouter-
a-memcached-protocol-router-for-
scaling-memcached-deployments/, 2014.

[19] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.
Probe: A thousand-node experimental cluster for com-
puter systems research. USENIX ;login:, June 2013.

[20] S. Gilbert and N. Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 33(2):51–59, 2002.

[21] J. N. Gray. Notes on database systems. IBM Research
Report RJ2188 (Feb.1978), 1978.

[22] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 347

https://blog.twitter.com/developer/en_us/a/2012/twemproxy.html
https://blog.twitter.com/developer/en_us/a/2012/twemproxy.html
https://blog.twitter.com/developer/en_us/a/2012/twemproxy.html
https://engineering.fb.com/core-data/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://engineering.fb.com/core-data/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://engineering.fb.com/core-data/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://engineering.fb.com/core-data/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/

[23] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,
Y. Zhang, et al. H-store: a high-performance, dis-
tributed main memory transaction processing system.
In Proceedings of the VLDB Endowment (PVLDB),
Aug 2008.

[24] H.-T. Kung and J. T. Robinson. On optimistic meth-
ods for concurrency control. ACM Transactions on
Database Systems (TODS), 6(2):213–226, 1981.

[25] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. SIGOPS Operating Systems
Review, 44(2):35–40, Apr. 2010.

[26] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7), 1978.

[27] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
transactions on computers, 1979.

[28] B. Lampson and H. Sturgis. Crash recovery in a dis-
tributed storage system. Xerox Palo Alto Research
Center, 1979.

[29] C. Lee, S. J. Park, A. Kejriwal, S. Matsushitay, and
J. Ousterhout. Implementing linearizability at large
scale and low latency. In ACM Symposium on Oper-
ating System Principles (SOSP), Oct 2015.

[30] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman,
and R. Wang. High performance transactions in
deuteronomy. In Conference on Innovative Data Sys-
tems Research (CIDR), Jan 2015.

[31] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In ACM
Symposium on Operating System Principles (SOSP),
Oct 2011.

[32] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-
replicated storage. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
Apr 2013.

[33] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song,
W. Tobagus, S. Kumar, and W. Lloyd. Existential con-
sistency: Measuring and understanding consistency at
Facebook. In ACM Symposium on Operating System
Principles (SOSP), Oct 2015.

[34] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd. The
SNOW theorem and latency-optimal read-only trans-
actions. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Nov 2016.

[35] H. Lu, S. Sen, and W. Lloyd. Performance-optimal
read-only transactions (extended version). Techni-
cal Report TR-005-20, Princeton University, Computer
Science Department, 2020.

[36] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bron-
son, and W. Lloyd. I can’t believe it’s not causal! scal-
able causal consistency with no slowdown cascades.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), Mar 2017.

[37] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extract-
ing more concurrency from distributed transactions. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Oct 2014.

[38] S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating
concurrency control and consensus for commits under
conflicts. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Nov 2016.

[39] MySQL. MySQL :: MySQL Cluster CGE. https:
//www.mysql.com/products/cluster/, 2016.

[40] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at facebook. In USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI), Apr 2013.

[41] R. Padilha, E. Fynn, R. Soulé, and F. Pedone. Callini-
cos: Robust transactional storage for distributed data
structures. In USENIX Annual Technical Conference
(ATC), Jun 2016.

[42] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4), 1979.

[43] D. Peng and F. Dabek. Large-scale incremental pro-
cessing using distributed transactions and notifications.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Oct 2010.

[44] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.
Arachne: core-aware thread management. In USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Oct 2018.

[45] D. P. Reed. Implementing atomic actions on decen-
tralized data. ACM Transactions on Computer Systems
(TOCS), 1(1):3–23, 1983.

[46] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computer Surveys, 22(4), Dec. 1990.

[47] ScyllaDB. ScyllaDB :: Scylla Is Next Generation
NoSQL. http://www.scylladb.com/, 2018.

348 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.mysql.com/products/cluster/
https://www.mysql.com/products/cluster/
http://www.scylladb.com/

[48] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrish-
nan, M. K. Aguilera, and H. Abu-Libdeh. Consistency-
based service level agreements for cloud storage.
In ACM Symposium on Operating System Principles
(SOSP), Nov 2013.

[49] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
in-memory transaction processing using RDMA and
HTM. In ACM Symposium on Operating System Prin-
ciples (SOSP), Oct 2015.

[50] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. In USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Dec 2002.

[51] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishna-
murthy, and D. R. K. Ports. Building consistent transac-
tions with inconsistent replication. In ACM Symposium
on Operating System Principles (SOSP), Oct 2015.

[52] F. Zhou, Y. Gan, S. Ma, and Y. Wang. wPerf: generic
Off-CPU analysis to identify bottleneck waiting events.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Oct 2018.

A Artifact Appendix
A.1 Abstract
This appendix presents the steps for installing Eiger-PORT
and running experiments that compare the performance of
Eiger-PORT and its base system, Eiger. Eiger-PORT is im-
plemented as a modification to Eiger’s code base, which is
built on top of Cassandra and written in Java. The exper-
iments evaluate latency, throughput, and scalability. The
results are expected to show that Eiger-PORT outperforms
Eiger in all experiments and the performance advantages be-
come more significant under more skewed workloads. Eiger-
PORT’s better performance comes from its performance-
optimal read-only transactions.

A.2 Artifact check-list
• Hardware: 2.4GHz Quad-Core Xeon CPU, 12GB RAM,

1Gbps network interface

• Metrics: latency, throughput, scalability

• Expected experiment run time: 10–20 hours

• Public link: http://github.com/princeton-sns/
Eiger-PORT.git

A.3 Description
A.3.1 How to access

The code base of Eiger-PORT is publicly accessible
on Github at http://github.com/princeton-sns/

Eiger-PORT.git. It includes a README file that pro-
vides step-by-step instructions on how to set up the environ-
ment and run experiments.

A.4 Installation
Please clone the code repository under a clean directory on
a machine. The scripts in the package will work seamlessly
if the repository is cloned under /local. The required de-
pendencies can be installed by simply running the bash file
install-dependencies.bash. Apache Ant is used to build the
source code. Both the system files and the stress tool need to
be compiled. Please see the README file in the repository
for more details.

A.5 Experiment workflow
Running experiments as described in the paper requires set-
ting up two clusters with each having 8 servers and 8 clients.
One cluster is the active cluster for processing transactions
and the other cluster is used as a replica, which passively re-
ceives replicated writes from the active cluster. One extra
machine is needed for the control node. Therefore, to create
an 8-server-8-client environment, 33 machines are needed in
total (2 clusters, 16 machines in each, and 1 control node).

When the experiment topology is determined, the config-
uration files under the directory vicci dcl config need to be
modified accordingly. All the scripts used to run experi-
ments are under the directory eval-scripts. Experiments can
be launched by executing latency throughput.bash. The ex-
perimental parameters, such as Zipfian constant and read-to-
write ratio, are specified in the file dynamic defaults. For
details, please see the README file.

A.6 Evaluation and expected result
The results of each experiment are stored under the directory
experiments/dynamic. Throughput numbers are shown in the
file combined.graph. A set of latency processing scripts are
provided under the directory data proc scripts. Eiger-PORT
is expected to have ~2X higher throughput and ~50% latency
compared to Eiger. The performance advantages of Eiger-
PORT are expected to become more significant under more
skewed workloads.

A.7 AE Methodology
Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/
osdi20/call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 349

http://github.com/princeton-sns/Eiger-PORT.git
http://github.com/princeton-sns/Eiger-PORT.git
http://github.com/princeton-sns/Eiger-PORT.git
http://github.com/princeton-sns/Eiger-PORT.git
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

	Introduction
	Background
	Performance-Optimal Read Transactions
	Reasoning About Performance
	Approach Overview
	NOC: Optimal Performance

	The NOCS Theorem
	NOCS is Impossible
	The Broad Scope of NOCS
	NOCS Is Tight

	NOCS Connects Theory with Practice
	Theoretical Insights
	Guiding System Designs

	PORT Design
	Version Clocks
	Basic PORT Design
	Write Omission
	Keeping Reads Fresh
	Correctness and Generality

	PORT Implementation and Evaluation
	Implementation
	Evaluation Overview
	Throughput and Latency
	Scalability
	Data Staleness
	Low Contention Evaluation

	Improving an Existing System
	Eiger Overview and Rationale
	Eiger-PORT

	Eiger-PORT Evaluation
	Performance Improvement
	Data Staleness

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access

	Installation
	Experiment workflow
	Evaluation and expected result
	AE Methodology

