
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

LinnOS: Predictability on Unpredictable Flash
Storage with a Light Neural Network

Mingzhe Hao, Levent Toksoz, and Nanqinqin Li, University of Chicago;
Edward Edberg Halim, Surya University; Henry Hoffmann and

Haryadi S. Gunawi, University of Chicago
https://www.usenix.org/conference/osdi20/presentation/hao

LinnOS: Predictability on Unpredictable Flash Storage

with a Light Neural Network

Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim†,

Henry Hoffmann, and Haryadi S. Gunawi

University of Chicago †Surya University

Abstract

This paper presents LinnOS, an operating system that lever-

ages a light neural network for inferring SSD performance

at a very fine—per-IO—granularity and helps parallel stor-

age applications achieve performance predictability. Lin-

nOS supports black-box devices and real production traces

without requiring any extra input from users, while outper-

forming industrial mechanisms and other approaches. Our

evaluation shows that, compared to hedging and heuristic-

based methods, LinnOS improves the average I/O latencies

by 9.6-79.6% with 87-97% inference accuracy and 4-6µs in-

ference overhead for each I/O, demonstrating that it is pos-

sible to incorporate machine learning inside operating sys-

tems for real-time decision-making.

1 Introduction

Predictable performance is an important requirement for to-

day’s and future systems [19, 51, 55, 65]. For data-center

systems serving web search, email, and many other types of

interactive services, predictable latency is even more impor-

tant. On the bright side, faster and faster SSDs are available

and becoming a dominant factor in the storage market [10].

On the negative side, SSD internal complexity continues to

grow, and achieving highly predictable latency on modern

flash devices remains an open challenging problem.

Due to the intrinsic NAND idiosyncrasies, modern flash

devices behave like an “operating system,” managing all of

its internal resources with background operations such as

garbage collection, buffer flushing, wear leveling, and read

repairs. While important, these are the kinds of operations

that pose a threat to latency predictability [15, 25, 27, 30, 49,

53, 71, 76], which is still a fresh problem faced by many stor-

age industries in recent years [4, 31, 50, 57]. Furthermore,

with a report that flash devices contribute to more than 19%

of the total response time for some online applications [76],

more solutions should be explored.

Because the device itself cannot mask the unpredictable

latency, a vast amount of research has been devoted to this

space. “White-box” approaches—that re-architect device in-

ternals [17, 33, 34, 36, 47, 61, 68, 71]—are powerful, but

face a high barrier to adoption unless SSD vendors imple-

ment the recommendations. In the middle ground, “gray-

box” methods suggest partial device-level modification com-

bined with OS or application-level changes working together

in taming the latency unpredictability [38, 39, 40, 58, 76, 77].

However, they also depend on the vendors’ willingness to

modify the device interface. Finally, more adoptable “black-

box” techniques attempt to mask the unpredictability with-

out modifying the underlying hardware and its level of ab-

straction. Some of them optimize the file systems or storage

applications specifically for SSD usage [18, 37, 41, 42, 43,

54, 59, 69, 70], while some others simply use speculative

execution [1, 5] but pay the cost of extra I/Os due to being

oblivious to storage behaviors. Among all the approaches

above, arguably, the most popular solution is speculative ex-

ecution given its simplicity and capability to mitigate ev-

ery slow I/O. For example, “hedged requests” [21], a form

of speculative execution, is supported in many widely-used

key-value stores today [1, 5, 8].

We take a new approach: let the device be the device

(black-box) and do not redesign the file systems or applica-

tions, but learn the device behavior (i.e., not be storage obliv-

ious). The key to our approach is learning. Can we learn the

behavior of the underlying device in a black-box way and

use the results of the learning to increase predictability, so

applications can know in advance whether their performance

expectations can be fulfilled? This is a domain that machine

learning can likely help. We introduce LinnOS, an operat-

ing system that has the capability of learning and inferring

per-I/O speed with high accuracy and minimal overhead us-

ing a lightweight neural network. We show how LinnOS

helps storage applications, in particular storage arrays/clus-

ters with built-in failover logic (e.g., flash RAID, Cassandra,

MongoDB), achieve extreme latency predictability on unpre-

dictable flash storage.

The biggest challenge for LinnOS is to be as effective and

fine-grained as the popular approach, speculative execution,

which can mitigate every slow I/O by sending a duplicate I/O

to another node or device. Speculative execution’s success in

increasing predictability comes at the cost of poor resource

utilization. The key to avoiding this cost is to know the cur-

rent activities going on inside the devices and always sched-

ule I/Os to those devices that will provide faster responses.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 173

However, because keeping the abstraction barrier is a funda-

mental constraint, we need to learn to infer latency and make

the inference highly usable. Achieving this requires learning

and inferring on a very fine, per-I/O scale in a live fashion.

To the best of our knowledge, there is no existing learning

approach for I/O scheduling that supports such fine-grained

learning due to the challenges of achieving per-I/O accuracy

and fast online inference. To address this, LinnOS introduces

three technical contributions.

First, LinnOS converts the hard latency inference problem

into a simple binary inference (“fast” or “slow” speed). We

take advantage of the typical latency distributions in system

deployments, specifically, a behavior that forms a Pareto dis-

tribution with a high alpha number. In other words, most

of the time (e.g., >90%), the latency is very stable, but oc-

casionally (e.g., <10% of the time), the latency exhibits a

long-tail behavior [16, 21, 45, 53]. The behavior of flash

storage reflects the same distribution [15, 26]. In this simple

view where users only want “slow” I/Os to become “fast,”

inferring the exact latencies is overkill. With this intuition,

LinnOS comes with an algorithm that monitors the latency

distribution of the current workload running on the flash de-

vice and computes a roughly optimal threshold that separates

the slow and fast speed ranges.

Second, with the binary model, LinnOS employs a simple

admission control for clustered storage applications. LinnOS

makes a binary inference on every incoming I/O using a light

neural network model that infers the I/O speed in advance in

a black-box manner without any guide from the device nor

application. If the I/O is inferred to be fast, LinnOS will

submit it to the flash device; otherwise it will revoke the I/O

and inform the application. With this timely and straightfor-

ward binary information, the storage application can quickly

failover the I/O to another node or device that holds the same

replica. Furthermore, resources are efficiently utilized be-

cause the original slow I/O has been revoked.

Third, LinnOS balances the accuracy and performance of

the neural network. High accuracy but high inference time

will lead to a significant per-I/O overhead, especially for

modern SSDs. On the other hand, lowering inference time

by lowering accuracy will lead to many false inferences that

make storage performance hard to reason about.

For high accuracy, LinnOS profiles the latency of millions

of I/Os submitted to the device (a natural “data lake”), which

will be used to train the neural network. Furthermore, as we

convert regression to a simple binary classification, the out-

put accuracy is significantly improved (akin to the simplicity

of “cat or dog” image classification). The next challenge is

to decide the input features that matter most to improving

accuracy. We will present our surprising findings. For ex-

ample, “important-looking” features such as block offsets,

read/write flags, or long history of writes do not play a sig-

nificant role. In the end, the input features become tractable

with only two types of information: the latencies of a few re-

p50

p75

p90
p95

 0 5 10 15 20

Latency (Millisecond)

(a) Latency CDF - FIO Workload

Model A
Model B
Model C

read-only

read/write
 devices

Latency

(b) Latency CDF - Production

Figure 1: Latency distribution. The figures show CDFs of

block-level read latencies, as discussed in Section 2. For the left

figure, we ran one FIO workload on five different SSD models (the

five CDF lines). For the right figure, we plot the latencies of seven

block-level traces obtained from four read-write servers (colored

lines) and two read-only servers (bold gray lines) in Azure, Bing,

and Cosmos clusters. The x-axis is anonymized for proprietary

reasons. The traces are available from Microsoft with NDA.

cently completed I/Os and the number of pending I/Os when

those I/Os and the current, to-be-inferred I/O arrived.

For performance, the challenge is to make an inference

(admission decision) in sub-10µs, which is crucial as we tar-

get fine-grained live inference for fast storage devices. While

using deeper models with more features can improve accu-

racy, it will hurt inference latency and would be too expen-

sive for usage in the I/O layer. Through several design itera-

tions, we cut the inference time to 4-6µs with minor accuracy

loss, achieved with several methods: a 3-layer light neural

network, weight quantization, and (optional) 2-threaded/2-

core matrix multiplication.

Our evaluation shows that LinnOS supports a wide variety

of black-box devices (10 device models tested) and works

on real production traces without requiring any extra input

from users (e.g., hints about traces/devices or latency dead-

lines etc.), outperforms industrial approaches such as pure

hedging, and beats simple and “advanced” heuristics that we

design. Compared to these methods, LinnOS, complemented

by hedging based on the learning outcome, further improves

the average I/O latencies by 9.6-79.6% with 87-97% accu-

racy and only 4-6µs inference overhead for every I/O.

Overall, we show that it is plausible to adopt machine

learning methods for operating systems to learn black-box

devices. We conclude with many interesting discussions to

explore in the future. LinnOS code is made public.

2 Background

Unpredictability. To motivate the problem, the colored lines

in Figure 1a show read latency distribution in a read-write

workload running on five different SSD models ranging from

consumer SATA and NVMe SSDs to new data-center ones.

Model A delivers fast and stable latencies up to about “p98”

(the 98th percentile), but models B and C exhibit larger la-

174 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tency tails starting at p90 and p75, respectively. However,

when the write operations are converted into read I/Os, the

performance becomes highly stable without much latency

tail (not shown in the figure). Figure 1b also confirms this in

real production scenarios in Microsoft SSD-backed servers.

The colored lines show block-level read latencies of read-

write servers (more variability), and the gray lines for read-

only servers (more predictability). All of these confirm how

write-triggered garbage collection (GC), buffer flushing, and

other internal operations are contending with user read I/Os.

We only address read performance unpredictability because

we found write latencies to be (surprisingly) stable as they

are absorbed by the internal memory buffer on the device,

hence not affected by internal contentions. Write latency

spikes only happen when the buffer is full (rarely happened

due to internal periodic flush).

Internal complexities. Inferring when a flash drive is ex-

hibiting tail latency is hard given the internal complexities

that factor into latency behavior. As a couple of examples,

I/Os contend with each other if they fall into the same chip or

channel, which depends on the hidden striping and partition-

ing logic; two user I/Os that go to separate channels might

have different fates when one channel is occupied by GC data

transfers between the chips in the channel. Our internal find-

ings show that SSDs can have wide layouts (e.g., 32 channels

with four chips per channel) or deep layouts (e.g., four chan-

nels with 16 chips per channel), where the latter will cause

more channel contention. Some SSDs employ large write

buffers from 256MB to as small as 12 MB and can period-

ically flush from every 3ms to as high as one second. As

shown in Figure 1, this internal contention can affect from

1% to 25% of all read requests.

In this context, modern storage applications usually ap-

ply a “wait-then-speculate” approach that is agnostic about

the device’s internal complexities. For example, with hedg-

ing, applications wait for a timeout (e.g., the p95 latency),

then issue extra speculative I/Os, and use whichever is the

faster response. Speculative execution works well for coarse-

grained tasks (tens to hundreds of seconds), but is ineffective

for flash storage since the waiting is costly when the expected

response time is less than a few milliseconds (§5.3).

Machine learning. Before we tried machine learning

techniques such as neural networks, we asked whether sim-

ple heuristics would be accurate enough in inferring per-I/O

speed. For example, one might assume that a long I/O queue

length implies longer latencies—a heuristic that works well

for spinning disks [13, 62, 64]. However, for SSDs, due to

the internal complexities, queue length is not highly corre-

lated with delay (we did not find a high Pearson’s corre-

lation or Spearman’s correlation between queue length and

I/O latency). We also created a more “advanced” heuristic,

but it did not yield a satisfying result (more in the evalua-

tion section). While it is possible to keep crafting the right

a LC=true
ret=read(…,LC)

fast

slow revoke

submit

if(ret==slow)
 failover()

d

c

e

failover()

f

b

Figure 2: Usage scenario. This usage scenario is explained in

Section 3.1. “LC” implies latency critical.

heuristic that can adapt to different workloads and device

models, we decided to resort to machine learning. Recent

operating and distributed systems research successfully em-

ployed machine learning for resource allocation and schedul-

ing [22, 23, 24, 28, 48, 51, 52, 60]. A similar exploration

targeting the I/O layer can lead to a powerful result, as we

show in this paper.

3 Overview

We now give the overview of LinnOS, its usage scenario,

architecture, and challenges, followed by its design (§4).

3.1 Usage Scenario

LinnOS is beneficial for parallel, redundant storage such as

flash arrays (cluster-based or RAID) that maintain multiple

replicas of the same block, as illustrated in Figure 2. (a) With

LinnOS, when a storage application performs an I/O via OS

system calls, it can add a one-bit flag, hinting to LinnOS that

the I/O is latency-critical (LC=true), e.g., for interactive ser-

vices. Such tagging of critical operations has been proposed

many times [73, 76], but in our case, the bit is used to trigger

LinnOS to infer the I/O latency. (b) Before submitting the

I/O to the underlying SSD, LinnOS inputs the I/O informa-

tion to the neural network model that it has trained, which

will make a binary inference: fast or slow. (c) If the output is

“fast,” LinnOS submits the I/O down to the device. (d) Oth-

erwise, if it is “slow,” LinnOS revokes the I/O (not entered to

the device queue) and returns a “slow” error code. (e) Upon

receiving the error code, the storage application can failover

the same I/O to another replica. (f) In the worst case where

the application must failover to the last replica, this last retry

will not be tagged as latency-critical so that the I/O will com-

plete and not be revoked.

3.2 Overall Architecture

Figure 3 shows LinnOS’s overall architecture, which consists

of five main components.

(a) The model. At the center of LinnOS is the speedy in-

ference model (Section 4.3) with a light neural network. The

model’s input features are information about the current out-

standing I/Os and recently completed ones. The model infers

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 175

Blk# Sz Lat

.... .. 85
.... .. 510
.... .. 350
.... .. 45

Upload

Blk# Sz Lat

.... .. Fast
.... .. SLOW
.... .. SLOW
.... .. Fast

LinnApp

Label Train

1.7

8.4

0.4

9.2

4.3

0.3

5.1

3.1

c

Storage
Userse

b a Off

LinnOS

d

1.7

8.4

0.4

9.2

4.3

0.3

5.1

3.1

Tracing

Storage
Users

ON

Figure 3: LinnOS architecture. The figure displays LinnOS

architecture including LinnApp, as summarized in Section 3.2. The

two SSD pictures represent the same SSD instance; the left one de-

picts tracing/training and the right one live inference on the SSD.

the speed of every incoming I/O individually. The model’s

output is the binary inference about the I/O (fast/slow).

(b) Tracing. To train the model, LinnOS uses the current

live workload that the SSD is serving. To have a rich repre-

sentative dataset, this can be done during normal busy hours.

The I/O metadata (block offset, size, read/write) and their re-

sulting latencies are recorded using blktrace. With millions

of I/Os collected, this naturally forms the “data lake” of our

model. The training data (the collected trace) is expected to

be different than the “test data” (the I/Os that will be inferred

when the model is activated).

(c) Labeling with inflection point analysis. The col-

lected trace is then supplied to LinnApp, a supporting user-

level application. LinnApp has three main jobs: labeling,

training, and uploading trained weights to LinnOS. Because

the model is designed to produce a binary output, the model

must be trained with two labels, “fast” and “slow.” Hence,

given a latency distribution in the trace, LinnApp runs an al-

gorithm (§4.2.1) that finds the “inflection point,” a latency

value that divides the fast and slow latency ranges.

(d) Training. With this inflection point, LinnApp labels

the traced I/Os with “fast” and “slow” labels and proceeds

with the training phase (using TensorFlow). We emphasize

the labeling is done automatically without human input. This

training phase can be run anywhere, on GPU or CPU nodes.

(e) Uploading weights. The training phase generates the

weights for the neurons in the model that will be uploaded to

LinnOS. Because using floating points is not well supported

in OS kernel, the weights are converted to integers by quan-

tization. The model is then activated, and LinnOS is ready to

make inferences and revoke “slow” I/Os.

3.3 Challenges

Using a machine learning approach for making online, fine-

grained inferences on I/O speed requires us to solve the fol-

lowing fundamental challenges.

L
in
n
A
p
p

L
in
n
O
S1.7

8.4

0.4

9.2

4.3

0.3

5.1

3.1Blk# Lat

.... 85
.... 510
.... 350
.... 45

Blk# Lat

.... 490
.... 80
.... 95
.... 670

9.2

7.3

0.3

8.9

3.7

0.9

4.3

5.4

per load-device pairTracing

Uploading unique weights

Figure 4: Anticipating heterogeneity. The figure shows

heterogeneous trained models, as mentioned in Section 3.3.

High accuracy. The inference must be accurate. We

should not revoke I/Os that can be served fast (“false re-

voke”) or submit those that will be slow (“false submit”).

Accuracy depends on careful output labeling and input fea-

tures selection. If the label classification is too complicated,

high accuracy is hard to achieve, e.g., we find that classi-

fication by linear bucketing (0-10, 10-20µs, etc.) or expo-

nential bucketing (0-1, 2-4µs, etc.) is hard to make accurate

and should remain as a future work. However, the simple

two-class approach (fast or slow) simplifies the output into a

binary format, which helps the model achieve high accuracy.

Fast inference. For modern SSDs, while the raw NAND

read latency is advertised to be below 100µs, we see that for

typical production workload on data-center SSDs (Section

5), the actual user-perceived latency is above 200µs more

than 50% of the time. Given this observation, we believe the

challenge is to do decision-making in around 5µs, a <3%

overhead per I/O. Fast inference depends on input prepro-

cessing, the depth of the layers, neuron complexity, and fea-

ture representation. Using deep layers that tend to improve

accuracy is not attractive in our problem domain. The input

features must be minimized to include only the features that

matter. Hence, we must balance accuracy and performance.

Moreover, considering that operating systems run on CPUs,

the models must be CPU-friendly [67].

Anticipating heterogeneity. In flash arrays (RAID or

cluster-based), the user load is not always balanced, and all

the flash hardware might not be homogeneous. Because this

heterogeneity can lead to different latency distributions ob-

served on different devices, we should not use one global

latency value (e.g., 1ms inflection point) to differentiate fast

and slow speed for all the devices. For example, 3ms per-

haps could be considered fast enough on slower SSDs or the

ones with heavier user load. While we do not expect that the

heterogeneity will be extreme (e.g., a good storage system

typically balances the load very well), heterogeneity is still

important to address. For this reason, LinnApp collects per-

device traces and trains the model for every load-device pair

in the array (Figure 4). After the training phase completes,

LinnApp supplies the model weights to all instances of Lin-

nOS in a cluster-based array or to one instance of LinnOS in

a RAID-based array. In the latter, LinnOS carries N trained

176 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

models for the N drives in the RAID. Furthermore, to an-

ticipate workload changes over time, LinnApp occasionally

recollects traces (e.g., every few hours) to check if the inflec-

tion point has shifted significantly such that the model must

be retrained.

4 LinnOS Design

In this section, we describe our solution to the challenges

mentioned above. To the best of our knowledge, LinnOS is

the first operating system that successfully infers I/O speed

in a fast, accurate, live, fine-grained, and general fashion.

The key to this is the “lightness” of the neural network model

that LinnOS employs. This section presents the final design

and the principal intuitions about how we get there. We will

explain LinnOS design chronologically, from data collection

(§4.1), labeling via inflection point analysis (§4.2), the model

design (§4.3), and how to improve its accuracy (§4.4) and

performance (§4.5), and summarize its advantages (§4.6).

4.1 Training Data Collection

This project started with a simple question: can we infer the

performance of every I/O accurately? Since we use machine

learning, accuracy depends on the amount of true-signal data

available, the more, the better. Fortunately, I/O systems in-

herently can collect a large amount of data. Given low-

overhead tracing tools and hundreds of KIOPS of workload

that modern SSDs can serve, collecting a large amount of

data for training is not an issue (a large “I/O data lake”).

For every load-SSD pair to model, LinnApp collects traces

of the real workload running on the drive. For example, for

inferring a production workload performance on a particular

SSD in deployment, an online trace will be collected. For

every I/O, we collect five raw fields, the submission time,

block offset, block size, read/write, and most importantly,

the I/O completion time. Because the model input (Section

4.3) does not necessarily take the same raw fields, in this

phase, we also convert the fields to the input feature format.

The main challenge here is to decide how long the trace

should be. If the behavior of the training data (the latency

distribution) is very different from that of the “test” data (the

to-be-inferred I/Os), the inference accuracy will drop. In this

work, we take a simple approach where we use a busy-hour

trace (e.g., midday). In the evaluation (§5.2), we show that

for production workloads, a busy-hour trace well represents

the other hours, i.e., the inflection point does not deviate

much. As mentioned above, to anticipate a dramatic shift

in workload behavior, retracing and retraining can be done.

4.2 Labeling (with Inflection Point)

As we employ a supervised classification approach, the

model must be trained with labels. If we label every I/O

p90

small
speedup

larger
“boost
area”more

overhead

(a)

IP=?

p80

(b) (c) (d)

p95

semi-
opt
IP

(too low)

(too

high)

slow

fa
s
t

Figure 5: Inflection point (fast/slow threshold). The fig-

ures show the results of using a higher, lower, or semi-optimum in-

flection point (IP) for the fast/slow threshold as explained in Section

4.2. The figure format is latency CDF, as in Figure 1.

with the actual µs-level latency, there will be too many la-

bels for our problem domain; a user might not care if the I/O

is delayed by 1µs. Another option is to use a linear (0-10µs,

10-20µs, and so on) or exponential labeling (2-4µs, 4-8µs,

and so on). While these fit better, the model is still hard

to make accurate and fast after many design iterations. The

accuracy only reached 60-70% because many times, an I/O

that should fall into a specific group (e.g., 128-256µs) is of-

ten mis-inferred to the neighbor groups (e.g., 256-512µs)—

“a Lhasa Apso dog can easily be misidentified as a Shih Tzu

dog.” This is perhaps why prior successes in auto-learning

storage performance were only done at a coarse-grained level

such as average latency or throughput aggregated for many

requests [29, 66, 74].

With all this mind and an understanding of how perfor-

mance variance behaves in the field [15, 21, 26, 45, 49], we

observe that latencies often form a Pareto distribution with

a high alpha number [7]. As an example shown in Figure

5a, 90% of the time, the latency is likely stable, but in the

other 10% of the time, it starts forming a long tail. Such

a Pareto distribution clearly contrasts the fast and slow re-

gions. Hence, a simple conjecture can be made that users

only worry about the tail behavior, not the precise latency.

To separate the two regions, we need to find the “best”

inflection point (marked with “IP=?” in Figure 5a) for max-

imizing the latency reduction. Setting the inflection point too

relaxed (e.g., the p95 latency in Figure 5b) will make LinnOS

treat the relatively slow I/Os between p90 and p95 as “fast”

(no failover), reducing the scope for effective retries, hence

failing to cut many tail latencies, as highlighted by the small

shaded area between the original and projected distributions

(more in §4.2.1) in Figure 5b. On the other hand, setting the

inflection point too low (e.g., the p80 latency in Figure 5c)

will make LinnOS revoke too many I/Os, including those

that are supposed to be fast, which will induce unnecessary

retry overhead as shown in Figure 5c.

An optimum inflection point implies that for every slow

I/O that will be revoked, it is likely that the other replicas can

serve it fast within the same time frame. Likewise, for every

fast I/O, it should not be failed over. Finding this optimum

point will deliver the maximum gap between the original

tail-heavy and tail-free distributions, as shown by the large

shaded area in Figure 5d. Finding an optimum value how-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 177

3-digit queue length
when the N-th to last

I/O arrived 3 x 4 neurons

4-digit latency
of the N-th to last I/O

4 x 4 neurons N=1…4

The current
queue length

3 neurons

256 neurons
ReLU activation functions

……

Linear activation functions
(argmax)fast? slow?2 output neurons

Input layer

Hidden layer

Figure 6: Light neural network. The figure depicts LinnOS

3-layer neural network explained in Section 4.3.

ever is hard in practice, fundamentally because of the many

unknowns: we do not know which replica the request will

be failed over to (application dependent); the training data

is only an approximation of the future unknown test data;

other variability such as CPU or network contention can fac-

tor into unknown retry overhead. The next section describes

our best-effort algorithm in finding a semi-optimum inflec-

tion point for every workload-device pair.

4.2.1 Inflection Point Algorithm

First, during data collection, we collect t workload traces (T1

to Tt) running on d devices (D1 to Dd), respectively, where

t==d. Every trace Ti gives us the latency distribution of the

workload running on the device (as in Figure 5a). To find the

unique inflection point (IP) value for every Ti−Di pair, we

run a user-space simulation based on random replica selec-

tion, with the assumption that latency delay is independent

across the SSDs. For illustrative purposes, we use specific

device numbers (e.g., D1) in our explanation below.

(1) For every Ti−Di pair, we pick a starting IP value

where the slope of the CDF is one (likely entering the tail

area). For example, if for D1, T1’s 45-degree slope is at

y=p90.5 and x=1ms, then the IP value is initially set to

1ms. (2) For the currently simulated device, D1, we run a

simulation of one million I/Os, (ri=0..1000000) where each

I/O request ri takes a random latency value from T1’s real

latency distribution. We then simulate LinnOS admission

control: if the chosen latency is smaller than 1ms (the cur-

rent IP), the ri’s new latency is set to be the same; else, if it

is larger than 1ms, it will be revoked and failed over to an-

other randomly selected node (e.g., D4) where a new random

latency is picked from its trace, T4, and the admission con-

trol is repeated (submit or revoke). We assume three replicas

(configurable), hence a request can only be revoked a max-

imum of two times. (3) The simulation produces the new,

optimized latencies for all the ri in workload trace T1 that

previously went to only one device, D1, but now can be redi-

rected as if LinnOS admission control is activated. These op-

timized ri latencies form the new CDF (as in the bold blue

line in Figure 5d). Using the original and new CDFs, we

can calculate the area difference (the shaded “boost area” in

Figure 5d), which represents the latency gain if 1ms (p90.5)

is used as the IP value. (4) Still, for D1, we repeat all the

steps above by moving +/−0.1 percentile within the +/−10
percentile ranges from the initial IP value. For every new IP

value, the simulation gives a new boost area. We now can

pick the IPmax, the IP value that gives us the largest (posi-

tive) boost area, which will be used as the fast-slow thresh-

old in training the model for device D1. (5) We repeat all the

steps for other devices (D2, D3, etc.). At the end, for every

Ti−Di pair, our algorithm generates a unique IPmax

i
value.

All these steps are repeated upon recalibration (§4.4).

4.3 Light Neural Network Model

Before we decided to build a light neural network model, we

explored various learning methods such as logistic regres-

sion, decision trees, and random forests. We found that the

accuracy only ranges from 17-84%, while a basic neural net-

work can reach a better accuracy. Although it is possible to

continue optimizing each of these methods to its full poten-

tial, we decided to start from an acceptable baseline that our

initial neural model delivered. Below, we describe our final

model (Figure 6), from input features, their representation,

to the neural layers. We will emphasize how we use storage

intuitions to design the model, as opposed to brute-force.

Input features. To infer the speed of every I/O, our model

takes three inputs: (a) the number of pending I/Os when an

incoming I/O arrives (in the number of 4KB pages, including

the incoming I/O), (b) the latency of the R most-recently

completed I/Os, where we set R as 4, and (c) the number of

pending I/Os at the time when each of the R completed I/Os

arrived. We now reason about these necessary inputs.

Deciding the first feature is straightforward—an I/O la-

tency typically correlates with how many I/Os are currently

pending. The unit we use here is the number of 4KB pending

pages, and the reason is that the lowest granularity of strip-

ing inside SSDs is typically at the page level and the main

contention is at channel and chip level.

While for disks, the first feature might be sufficient for in-

ferring single-spindle performance, for SSDs, the other two

features are required. In essence, to speculate whether the

SSD is currently busy internally, we need to record a small

piece of historical information, the latencies of the last four

I/Os, as well as how many pending I/Os existed when those

I/Os arrived. Put simply, if recent I/Os experienced a long

delay without many pending I/Os, then the model could learn

that there is likely an internal contention due to device-level

activities such as GC, internal flushing, or wear leveling. In

this case, the model will suggest revoking incoming I/Os un-

til the number of pending I/Os drops substantially so that the

device can provide fast responses despite heavy internal ac-

tivity. Once the device resumes serving I/Os, the model can

tell whether the device-level contention is over from the re-

turned latency values.

Our features above look simple because we have removed

178 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

unnecessary features after many design iterations. For exam-

ple, we surprisingly found that important-looking features

such as block offsets, read/write flags, or long history of

writes do not significantly improve accuracy. We make sev-

eral conjectures. First, on read/write flags, although NAND-

level read/write latencies differ, almost all medium/high-end

SSDs employ write buffering. Thus, the problem of read-

behind-write is no longer observable. More likely observ-

able is read-behind-buffer-flush delays, which can be learned

from our input features. Second, on block offsets, because

we target production workloads and the fact that SSDs typi-

cally stripe incoming I/Os uniformly across all channels and

chips (or with some bounded partitioning), the workload is

likely to be evenly scattered, hence block offsets do not really

matter for learning. In other words, scenarios where a batch

of incoming I/Os with block offsets that simultaneously hit

only one chip rarely happen in the field. Third, on history

of writes, internal activities such as GC and buffer flush of-

ten happen in a short burst, hence they can be sensed by just

observing the speed of the last four I/Os. These are surpris-

ing but fortunate findings because using just a small set of

features will reduce the model’s overhead.

Input format. The next challenge is to choose the right

input format to be fed to the neurons. First, for the R value,

if accuracy is the only important metric, we should record

more completed I/Os (the higher R, the better), but it would

prolong inference time as the number of neurons would in-

crease. We found that R=4 suffices for balancing perfor-

mance and accuracy.

In another simplification, we format the number of pend-

ing I/Os into three decimal digits. For example, the format

for 15 pending I/Os is three integers {0,1,5}. Three digits

suffice as device queue length of over 1,000 is rarely heard

of. Similarly, for the latencies of the recent completed I/Os,

we break the µs latency value into four digits. For exam-

ple, a latency of a recent I/O that completed in 240µs will be

formatted as four features {0,2,4,0}. Latencies larger than

9,999µs will be capped to {9,9,9,9}. In total, our model

takes 31 input features, each a one-digit decimal number.

Reformatting the original integers into decimal digits is an

effective trade-off. If we use bits and supply every bit to ev-

ery neuron, there will be too many neurons that increase the

model size and hurt inference time. On the other extreme, if

every neuron takes a raw integer value, the neurons need to

learn over a wide input range, which makes learning/train-

ing harder (e.g., latency value can range from 1µs to over

9,999µs). With decimal digits, we make the neuron learning

bounded within a small range of 0 to 9.

The network. The final model is a fully-connected neural

network with only three layers (“light”), including one in-

put/preprocess layer, one hidden layer, and one output layer,

as shown in Figure 6. All the neurons are regular linear neu-

rons (y=wx+b).

The input layer is supplied with the 31 features described

above. The raw information from the block layer is con-

verted to the feature format, in an offline way for training

and an online way for live inference. For the latter, with

some programming optimization, we can achieve O(1) pre-

processing overhead. Next, the hidden layer consists of 256

regular neurons. This layer uses RELU activation functions

for its low computation cost and ability to support non-linear

modeling. More neurons will cause longer inference time

and fewer neurons less accuracy. Lastly, the output layer

has two neurons with linear activation functions. We use an

argmax operator to convert the output to a binary decision

(e.g., {0.4,0.6} to {0,1}). Overall, this design makes the net-

work lightweight and easy to integrate into the OS, while

balancing inference accuracy and performance.

Preceding design iterations. Here we briefly describe

how we reach the current design. We started by using the I/O

offsets in binary format (32-bit) as the input features since

the device FTL mapping basically uses I/O offsets to decide

where the I/Os go, which defines the resource contention.

This setting allows the learning models to achieve higher ac-

curacies (up to 99% for some traces), however it has a heavy

model and high inference overhead, which is impractical for

real-time usage. We further trimmed the heavy model but

could not find a reasonable tradeoff between generality and

inference overhead. As a result, we took a step back from the

fine-grained features and switched to more aggregate ones,

and finally reached the current design.

4.4 Improving Accuracy

To further improve the model accuracy, we perform false-

submit reduction via biased training, model recalibration

via retracing/retraining, and inaccuracy masking with high-

percentile hedging.

Reducing false submits. An accurate inference means

LinnOS submits I/Os that will be fast (true negative) and

revokes those that will be slow (true positive). Reversely,

inaccurate cases can be categorized into (a) “false submit”

(false negative) wherein the model believes the request will

be served fast, making LinnOS submit the request to the

device, but the request will take longer than the fast-slow

threshold, or (b) “false revoke” (false positive) where the I/O

is revoked, but in fact, it can be served fast by the device.

Using the same system intuition on typical latency dis-

tributions in the field (Section 4.2), we found that reducing

false submits is far more important, while false revokes are

more tolerable. When the storage devices of a cluster exhibit

similar tail behavior (high-alpha Pareto), the probability that

peer devices are simultaneously busy is relatively small. For

example, with three replicas and P% busyness, the proba-

bility that all the replicas are busy around the same time is

(P/100)3 (e.g., 0.000125 with 5% busyness). Another factor

is that, with faster networks, a failover cost can be as low

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 179

as 1-6µs for flash arrays across PCIe or Fiber Channel or

5-40µs across Ethernet [3] (plus some negligible software

overhead).

To summarize, the wrong inference penalty is small for

false revokes but high for false submits. In the latter, the I/O

will be “stuck” in the device and cannot be revoked. This

motivates us to use biased training for reducing false submits

by allowing more false revokes. We do this by customiz-

ing the categorical hinge loss function with a multiplier that

puts more penalty weights for false submits, which makes

the trained models favor false revokes.

Recalibrating. Another source of inaccuracy happens

when the inflection point computed over the training data

does not represent the same threshold of the “test” data (the

workload during live inference). This can happen under sig-

nificant workload changes that cause shifts in the latency dis-

tributions of the nodes in the cluster. Fortunately, our eval-

uation of production traces shows that latency distributions

do not widely shift across hours (§5.2). However, to antici-

pate this scenario, re-tracing and re-computation of inflection

point analysis can be done periodically every few hours. If in

the new workload-device pair, the inflection point has shifted

by five percentiles, LinnApp will retrain the model using the

newly collected trace and re-upload the new trained weights

to the device. Running blktrace during the busiest hour in

the production workloads we use only generates 300 MB of

data (85 KB/s of trace writes) and increases CPU overhead

by 0.5% (only relevant parameters are traced).

Masking small inaccuracy. Our methods above managed

to increase accuracy up to 98%. Just like other neural net-

works, achieving 100% accuracy is fundamentally hard and

usually implies a lack of generality. Within the small inac-

curacy, the long latency tail due to false submits still needs

to be circumvented. This is where we marry learning and

hedging [21]. When the false submit rate1 (Section 5.4) is

significant (e.g., >5%), we use the rate as an indicator for

the hedging percentile value. For example, if 6% of the in-

ferences produce false submits, then p94 hedging will be ap-

plied. When the false submit rate is lower, we round up to

conventional p95 hedging. Though sometimes this design

issues extra I/Os, we show that it can further improve the

performance (§5.3).

4.5 Improving Inference Time

A large part of deep neural network (DNN) research mainly

focuses on how to structure even larger networks to achieve

the highest possible accuracy [11]. Strict latency is often

not a constraint. However, putting a neural network into the

storage layer poses a unique challenge. Our goal is to reach

1To clarify, different from conventional way of calculating false pos-

itive/negative, in this paper, the false submit rate is based on the submit

decision and the actual resulting latency.

around 5µs of inference time (as discussed in §3.3), and al-

though the 3-layer design is fundamental to reach the goal,

we made further optimizations.

Quantization. First, neuron weights are by default in

floating points for improving accuracy, but it is an overkill

for our purpose. Some of the major storage functionalities

that define contention are striping and partitioning using mod

operations over integers, which does not require ultra-high

precision. Besides, floating point calculations are expen-

sive and hard to manage inside the OS. Hence, we adopt

DNN quantization by maintaining precision of three decimal

points; the trained floating-point weights are converted to in-

tegers with precision of three decimal points. DNN quanti-

zation is a popular technique to reduce the space, power, and

computation cost of DNN on mobile-platform and IoT de-

vices, albeit some loss on accuracy [20, 32, 72]. In our case,

the accuracy loss from quantization is less than 0.1%.

Co-processors. Second, using additional accelerators

such as GPUs and TPUs may be possible in the future, but

currently, they are optimized towards throughput and do not

easily interact with host kernel code. If we move the in-

ference to GPUs, the cross-communication would add more

overhead. Furthermore, technology trends suggest that 100-

200x improvement on inference latency can be foreseen in

the near future with more advanced hardware [6]. This may

make LinnOS faster in the future, especially as storage de-

vices are also getting faster. However, until this technology

arrives, we show that LinnOS can opportunistically use co-

processors (if available) to reduce the average inference time

from 6 to 4µs with 2-threaded optimized matrix multiplica-

tion using one additional CPU core.

4.6 Summary of Advantages

With all of the techniques, LinnOS delivers advantages in

various dimensions, which we show in the evaluation.

• Performance predictability. The most important advan-

tage is that LinnOS helps storage applications achieve pre-

dictable performance on flash arrays, outperforming other

popular methods.

• Automation. LinnOS infers I/O operation latency by learn-

ing from millions of I/Os and automatically trains and pro-

duces neuron weights for different workloads and devices.

Storage developers do not have to tweak and configure

heuristics manually.

• Generality. To achieve predictability, LinnOS does not re-

quire device-level modification nor a heavy redesign of file

systems or applications. Storage applications simply need

to tag latency-critical I/Os. Failover/retry logic is already

standard in many storage applications with data replicas.

• Timeliness. With fast inference, the application can

failover as soon as the slow error code is returned, with-

out the need to wait for a timeout.

180 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• Efficiency. With auto-revocation, LinnOS eliminates du-

plicate I/Os suffered in hedging. Some production sys-

tems do not use hedging for the same reason and instead

use a more efficient method such as “tied requests,” where

clones are sent but when one of them is served, the dupli-

cate is canceled [21]. Similar to this “clone-then-cancel”

method, our “revoke-then-failover” also avoids duplicates.

Furthermore, while some implementation of tied requests

burdens the application layer [21], LinnOS supports I/O

revocation inside the kernel.

• Simplicity. We do not require applications to supply an

SLO value such as a deadline [14, 25, 63, 75]. I/O system

calls today do not accept SLO info, arguably because set-

ting the proper SLO is not easy [35, 46]. LinnOS simplifies

this with an auto-tuned fast/slow binary classification.

4.7 Implementation Complexity

LinnOS extends Linux v5.4.8 in 2170 LOC within the block

layer, mostly for the neural network model (written in C)

and the simple revocation mechanism. The memory space

needed for one neural network model (in total 8706 weights

and biases) is 68 KB of kernel memory. LinnApp is written

in 3820 LOC including data collection, analysis, labeling,

training (using TensorFlow), and quantization. We make the

source code public (Section A).

5 Evaluation

In this section, we first describe our evaluation setup (Sec-

tion 5.1) and then present the results that answer the follow-

ing important questions:

- Stability (Section 5.2): Is our inflection point algorithm

stable enough for production workloads?

- Latency predictability (Section 5.3): Does LinnOS suc-

cessfully deliver more predictable latencies compared

to other methods?

- Model accuracy (Section 5.4): How accurate is the Lin-

nOS neural network in inferring per-I/O speed?

- Trade-offs (Section 5.5): What are the performance and

accuracy trade-offs in LinnOS?

- Others (Section 5.6): How does LinnOS work on other

public traces? Can LinnOS support full-stack storage

applications? What is the CPU overhead?

5.1 Setup

We present the evaluation workloads, devices, experiments,

and methods to which we compare.

Workloads. Our ultimate goal is to evaluate whether Lin-

nOS can help real production scenarios. We use SSD-level

traces from Microsoft Azure (AZ), Bing Index (BingI/BI),

Bing Select (BingS/BS), and Cosmos (CO) servers. Each

server type contains I/O traces for six devices. The average

trace contains 36 hours of I/O operations.2 For training data,

from each of the four server types, we pick the three busi-

est device traces and then pick the busiest hour (same three

hours); we limit to three due to the number of (expensive) en-

terprise SSDs that we have (more below). For the “test data”

that is dedicated for live experiments, we pick a random time

slice from other busy hours, hence training and test data do

not overlap. Overall, the training and test data do not occupy

the entire available traces.

SSD devices. For performance evaluation, we show how

much LinnOS helps flash arrays deliver predictable latencies.

We prepared two flash arrays with consumer (“C”) and en-

terprise (“E”) configurations. The former connects an array

of three homogeneous SM951 consumer-level SSDs, and the

latter forms three heterogeneous enterprise-level SSDs, Intel

P4600, Samsung PM1725a, and WD Ultrastar DC SN200.

We assume every block is replicated three times across the

devices, a typical setup for consumer-facing storage servers.

For both configurations, the machine has a 2.6GHz 18-core

(36-thread) Intel i9-7980XE CPU with 128GB DRAM. Un-

less otherwise stated, we do not use accelerators (§4.5). The

overhead for failing over revoked I/Os is 15µs. For accu-

racy evaluation, beyond these four flash models, we also use

Intel SSDSC1BG40, Intel SSDSC2BX01, Intel P3700, Intel

P4510, Intel S3700, and Samsung 960 EVO, for a total of 10

models. Prior to this evaluation, all devices have been used

for months with many workloads that reach the devices’ full

capacities, hence mimicking devices in the field.

The experiments. For performance evaluation, the ex-

periments are performed with a storage application that ex-

ecutes the traces on the flash arrays, where all the devices

serve read/write workloads. For example, in one experi-

ment, the application simultaneously executes three different

Azure traces on three separate SM951 devices in the con-

sumer flash array and records the latencies of completed read

I/Os. The application has a failover capability to complete

revoked I/Os at other devices (as shown earlier in Figure 2).

All read I/Os are marked as latency-critical.3 We are also

aware that the traces were collected on medium-end devices

at Microsoft (in 2016). Hence, for our high-end flash array

configuration, we have to mimic a heavier workload by re-

rating the traces to be more intensive. Our methodology is

that for each re-rated trace, the resulting baseline latency dis-

tribution (after running it on the high-end device) should be

similar to the latency distribution in the original trace.

Table 1 shows the I/O characteristics of the re-rated traces.

Typically, running these re-rated traces on our drives shows

a low slack (<5% of all I/Os), where SSDs see no pend-

2The traces are available from Microsoft to the academic community

with NDA.
3We assume that no write I/Os are latency critical as they are usually

absorbed by write buffers. However, if needed, our techniques can be eas-

ily integrated with kernels/applications that support write re-routing (e.g.,

AutoRAID, RAID+).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 181

Test Avg Max R:W Avg I/O Size Max I/O Size

Trace IOPS IOPS Ratio Read/Write Read/Write

AZ/C 745 4.9K 27:73 24K/18K 64K/64K

BI/C 361 1.8K 17:83 57K/30K 64K/1M

BS/C 114 1.1K 22:78 163K/73K 2M/9M

CO/C 113 623 32:68 479K/121K 6M/32M

AZ/E 13K 31K 25:75 25K/17K 64K/64K

BI/E 2.4K 9.2K 23:77 55K/30K 512K/1M

BS/E 1.3K 4.3K 27:73 196K/73K 2M/9M

CO/E 2.5K 7.2K 22:78 430K/107K 7M/32M

Table 1: I/O characteristics of re-rated traces (§5.1). The

upper part (first four rows) is for the consumer-level flash array and

the lower is for the enterprise-level one. Every max-IOPS value is

measured within a 10-second window.

ing I/Os for a few milliseconds, and noticeable burstiness (5-

30%), where I/Os need to wait in the OS as the SSD queues

are full. We believe this accurately emulates the slack and

tail behaviors seen in real deployments. Also, the work-

load bursts across devices are highly correlated, which, in

some cases, can cause inevitable long-tail behaviors that no

failover can handle. However, in real runs we find that the

internal busyness of the devices is not necessarily correlated

due to device-level complexities, as LinnOS shows great im-

provement by evading the underlying device idiosyncrasies

(§5.3). All the experiments are repeated three times, and no

significant variance was observed.

Methods compared. We perform an extensive eval-

uation that compares eight methods: baseline, cloning,

constant-percentile hedging (e.g., at p95 latency), inflection-

point hedging (with our algorithm), simple heuristic, ad-

vanced heuristic, LinnOS (by itself), and LinnOS with high-

percentile hedging. Comparing LinnOS with white-box ap-

proaches [25, 30, 44, 56] is out of the scope of the paper be-

cause LinnOS targets black-box devices and we do not have

access to an array of programmable devices.

5.2 Inflection Point (IP) Stability

One of the contributions

 0

 4

 8

 12

 0 5 10 15 20

M
a
x
 I
P

 D
e
v
.

Hours

1hrW

2hrW

30minW
15minW

Figure 7: IP stability.

in this paper is finding the

semi-optimal fast/slow inflec-

tion point (IP) that brings

a balance between timeliness

and overhead (Figure 5 in Sec-

tion 4.2). Table 2 shows

the IP values our algorithm

computed for every workload-

device pair. The three num-

bers in every cell represent three different traces (from the

same server type), each running on one of the SSDs in the

flash array. As shown, the IP values widely range from p72

to p98, which highlights why a constant timeout value is not

optimal and hurts performance. These IP values will be used

for fast/slow labeling and training, which then generates a

Consumer Enterprise

Azure p73.3, p77.0, p91.4 p91.0, p93.2, p97.8

BingIndex p80.0, p94.5, p98.5 p80.1, p83.3, p97.0

BingSelect p72.0, p76.9, p87.2 p75.3, p83.7, p86.8

Cosmos p73.4, p82.5, p84.1 p83.2, p84.8, p95.1

Table 2: Inflection point (IP) settings. This table, as ex-

plained in Section 5.2, shows the IP values that our algorithm in

Section 4.2.1 computed for every workload-device pair.

unique set of weights for each device.

We chose a busy hour (T=1hr Window) to collect the train-

ing data and calculate the IP values in that time slice. Fig-

ure 7 shows the stability of our methodology by plotting the

max IP deviations in percentile (y-axis) within the next 20

hours (x-axis) for various T window values. For example,

if the chosen hour exhibits p85 IP, but a subsequent hour

exhibits p75 or p95 IP, then the deviation is 10 percentiles

(y=10). The graph shows that if T=1hrWindow, the deviation

is bounded within five percentiles in the next 15 hours, indi-

cating that frequent retraining is unnecessary. If T is shorter

(e.g., 15minWindow), the deviation is more apparent (needs

frequent retraining, which typically converges within 15-20

minutes on CPUs, due to LinnOS’s light model). If T is

larger (2hrWindow), the gain is not significant. For general-

ity, the figure is the result of our algorithm simulation on all

the datasets (36 hours per trace, 24 traces, four server types).

The cost of delayed retraining depends on the deviation.

Let us take an example of a model trained for p95 (5ms),

but then the workload deviates such that the real IP is at p90

(10ms) because the workload becomes more write-intense.

In this case, LinnOS (still using 5ms) will over-revoke many

IOs that could have finished before 10ms (more false re-

vokes). If the failover overhead is negligible, this will not

cause much harm. Another scenario is when the workload

deviates such that the IP moves up to p99 (3ms). Here, Lin-

nOS would over-accept (more false submits) because 3-5ms

latency is inaccurately considered “fast,” but actually can be

made faster. This is where LinnOS without retraining hurts.

5.3 Latency Predictability

We now evaluate LinnOS’s success in achieving extreme la-

tency predictability. Figure 8 shows the average I/O laten-

cies (user-perceived) on the two flash arrays (consumer and

enterprise) across the eight methods. In more detail, Figure

9 shows the latencies at specific percentiles (p80 to p99.99 in

the x-axis). Below we dissect the strengths and weaknesses

of every method. We start from the baseline, then we jump

to “LinnOS+HL” (the best outcome), followed by the others.

Baseline. The Base lines in Figure 9 confirm unpre-

dictability of flash storage with latencies that spike almost

exponentially in between p95 to p99.99, increasing the av-

erage latencies to 1.3–6.5 times compared to our best cases

182 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 2

 4

Azure BingIndex

on Consumer

LinnOS+HL,
 best result

R
e

a
d

 L
a

t.
 (

m
s
)

Clone
Base

HeurSim
HeurAdv

 0

 15

 30

BingSelect Cosmos

on Consumer

Hedge95
HedgeIP

LinnOS-Raw
LinnOS+HL

0

.3

.6
on Enterprise

R
e

a
d

 L
a

t.
 (

m
s
)

 0

 1

 2 on Enterprise

Figure 8: Average latencies. The figures show that LinnOS

consistently outperforms all other methods, as explained in Section

5.3. The top and bottom graphs represent experiments on the con-

sumer and enterprise arrays, respectively.

(Figure 8). Clearly, flash arrays with data redundancy should

adopt tail-cutting methods to achieve higher predictability.

LinnOS+HL. This label represents the LinnOS method

combined with high-percentile hedging for masking the

small inaccuracy that is intrinsically hard to eliminate in a

neural network (Section 4.4). That is, to compensate for the

inaccuracies that cause false submits, our application sends

a duplicate I/O after pX latency time has elapsed, where X

is the smaller of 95 and (1 – false submit rate)×100. We use

the false submit rates from the training process (Figure 10 in

Section 5.4).

[Key outcome] → The average latencies in Figure 8 show

that LinnOS+HL consistently outperforms all other methods

across different workloads and platforms. On average,

LinnOS+HL reduces latency by 9.6-79.6% compared

to p95 hedging (Hedge95), 14.2-49.5% to hedging

with our IP algorithm (HedgeIP), and 10.7-71.2%

to an advanced heuristic (HeurAdv). These speed-

ups are a product of the stable latencies; in Figure 9,

LinnOS+HL lines exhibit stable latencies even at extremely

high percentiles, p99 to 99.99. These results bring a positive

conclusion that the downsides of LinnOS (a 15µs failover

overhead including a 6µs per-I/O inference cost and the in-

accuracies) are outweighed by its effectiveness in delivering

predictable latencies.

LinnOS (Raw). Here we show LinnOS efficiency even

without hedging (i.e., revoke+failover without I/O duplica-

tion). The LinnOS-Raw bars in Figure 8 shows that Lin-

nOS by itself is effective enough, only 1.3-45.7% worse than

LinnOS+HL, and compared to p95 hedging, LinnOS-Raw re-

duces latency by 0.3-62.3%, and to an advanced heuristic,

by 3.0-60.7%. Figure 9 details why adding hedging is use-

ful. At high percentiles, above p99, LinnOS-Raw starts ex-

 2

 4

 6

 8

(a) AZ/C

R
e
a
d
 L

a
t.
 (

m
s
)

Clone
Base

HeurSim
HeurAdv

 2

 4

 6

(e) AZ/E

Hedge95
HedgeIP

LinnOS-Raw
LinnOS+HL

 10

 20

 30

 40

(b) BI/C

R
e
a
d
 L

a
t.
 (

m
s
)

 2

 4

 6

(f) BI/E

 Stability
even at p99.99!

100

200

300

400

(c) BS/C

R
e
a
d
 L

a
t.
 (

m
s
)

10

20

30

40

50

(g) BS/E

 50

100

150

200

80 90 95 99 99.9 99.99

(d) CO/C

R
e
a
d
 L

a
t.
 (

m
s
)

20

40

60

80

80 90 95 99 99.9 99.99

(h) CO/E

Figure 9: Percentile latencies. Explained in Section 5.3,

the figures show that LinnOS +HL delivers the most predictable

latencies (y-axis) across all percentiles (x-axis), even at p99.99. In

Figure (a), “AZ/C” means Azure running on consumer array.

hibiting high latencies (due to false submits). Learning from

the “small-tail” behavior of hedging (e.g., the Hedge95 lines),

we combined the best of the two in LinnOS+HL.

Hedging at p95. Sending a duplicate I/O after a p95-

latency timeout has elapsed is a popular method used in the

field [12, 21]. Figure 9 shows that, in general, this method is

effective in cutting latency tail but generally incurs higher

latencies than LinnOS+HL. This is because Hedge95 needs

to wait for the timeout to happen before sending the du-

plicate I/Os, while LinnOS returns a timely revocation that

allows the application to failover quickly. As the implica-

tion, Hedge95, on average, is slower than LinnOS+HL or even

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 183

LinnOS-Raw (Figure 8).

Hedging at IP. Many of the IP values shown in Table 2

are below p95, which raises the question of whether hedg-

ing at IP would be better than at p95. The average values

in Figure 8 show a mixed result. On the consumer devices,

HedgeIP improves upon Hedge95 by 2x for heavy workloads

BingS and Cosmos, but loses by up to 15% in light workloads

Azure and BingI. Similarly, on enterprise devices, HedgeIP

wins in BingS while slightly losing in the others. Upon fur-

ther investigation, we see that, for example, in consumer de-

vices, Azure and BingI latencies are generally fast (<2 and

10ms respectively, as shown by the y-axis in Figure 9a-b),

hence are sensitive to the extra load from duplicate I/Os;

HedgeIP in our experiments are sending more duplicates than

Hedge95. Nevertheless, our experiments show that for most

of the workloads, HedgeIP is more effective than Hedge95,

hence systems with hedging can adopt our IP algorithm.

Simple heuristic. The first heuristic we wrote, “HeurSim,”

is based on a popular heuristic for spinning disks: if the de-

vice queue length (the number of outstanding I/Os) is larger

than a threshold, the incoming I/O should be retried else-

where [13, 62, 64]. For the threshold, we use a similar

method as HedgeIP, but instead of using IP latency value, we

use IP queue length. That is, we first profile the queue length

distribution during tracing and then select the queue length

at the IP percentile as the threshold for revoking. Figure 8

shows that HeurSim only gives a small improvement over the

baseline and is far from the best case. In short, it is not smart

enough to infer device-internal disruptions.

Advanced heuristic. We extend HeurSim to a more “ad-

vanced” heuristic, HeurAdv. For comparison fairness, we

reuse the same intuition we had in building LinnOS and ap-

ply it to HeurAdv. An additional task that HeurAdv performs

is scanning the last N completed I/Os (N=4, same as in Lin-

nOS) and if this history shows a slow I/O (“slow” as defined

in §4.2) but with a low queue length (less than the median), it

will mark the drive as “internally busy.” In this state, incom-

ing I/Os will not be admitted unless the queue length drops

to a low value (less than the lower-quartile queue length).

The state will not be changed from “busy” to “normal” until

it sees recent I/Os become fast (“fast” as defined in §4.2).

[2nd key outcome] → Figure 8 shows that HeurAdv im-

proves upon HeurSim in most cases, but still loses from other

methods. We would like to note that we spent several weeks

tuning the heuristic to the “best” outcome we can achieve.

Continued expansion and tuning of the heuristic is possible.

However, the main difficulty that will arise is the large design

space of parameters (normal/busy states, median and lower-

quartile queue lengths, etc.) that must be optimally and man-

ually configured for different workloads and devices. This is

where we show that machine learning helps. The use of a

lightweight neural network allows us to focus on deciding

what features matter, but at the same time letting the model

 0

 2

 4

 6

 8

 10

 12

AZ/C BI/C BS/C CO/C AZ/E BI/E BS/E CO/E AZ/P BI/P BS/P CO/P

Inaccuracy (%): original

P
e
rc

e
n
ta

g
e
 (

%
)

False Submit False Revoke

 0

 2

 4

 6

 8

 10

 12

AZ/C BI/C BS/C CO/C AZ/E BI/E BS/E CO/E AZ/P BI/P BS/P CO/P

Inaccuracy (%): with biased training

 Lower
false submits

Higher (but acceptable)
 false revokes

P
e
rc

e
n
ta

g
e
 (

%
)

Figure 10: Low inaccuracy. The figure shows the percentage

of false submits and false revokes. Note that only false submits

really matter (see Section 5.4). Additionally, “P” represents other

device models that we can access from a public cloud. For graph

readability, here for “P” we only show the results for one device

model, while the observations stand across the rest. In total, the

accuracy evaluation covers 10 device models (1C+3E+6P).

learn and reverse-engineer SSD behaviors. In our case, Lin-

nOS neural network auto-trains all the 8706 weights for dif-

ferent devices and workloads.

Cloning. This method is essentially p00 hedging, sending

a duplicate I/O for every I/O on the outset. Although SSDs

are fast and have internal parallelism, Figure 8 shows that

Clone is mostly worse than the baseline due to the 2x load.

5.4 (Low) Inaccuracy

We now measure LinnOS inaccuracy by counting the num-

ber of false submits and false revokes (Section 4.4). The live

experiments can only measure the former but not the latter.

This is because revoked I/Os are never submitted to the de-

vice, hence we never know whether the revoke is accurate

or not. Thus, for this evaluation, we measure inaccuracy in

an offline way using TensorFlow, just like the training phase.

However, note that both the training and test data were col-

lected from running the workloads on real flash arrays (i.e.,

not simulated data). Just like before, we use 1-hour data sets

for training and then pick three different 1-hour data sets for

testing accuracy, and measure the average inaccuracy.

Figure 10 shows the inaccuracies before and after we use

biased training. To recap Section 4.4, false submits are more

dangerous than false revokes. Without bias, the top graph

shows that the false submit rates (red bars) are high, between

1.3% to 10.8%. With biased training, as shown in the bottom

graph, we successfully lower the false submit rates to 0.7-

5.7%, by shifting the inaccuracies to false revokes, which are

more tolerable as explained in Section 4.4. For example, let

us assume an inferior scenario of p80 inflection point (i.e.,

184 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Model: A B C D E

Acc. (%) −(3-12) −(1-4) +(1-2) +(4-5) +(8-12)

Perf. (µs) −4 −1 +40 +94 +1670

Table 3: Trade-offs balance. This table is explained Section

5.5. All the +/− of accuracy and performance values are com-

pared to our final neural network model described in §4.

20% slowness), which means the probability that all three

replicas are slow is 0.008 ((20/100)3). Thus, although we

have spiked up the false revokes to 2.8-9.7% in Figure 10b,

only 0.008 of these false revokes probabilistically will result

in slow I/Os. Finally, as mentioned before, for masking the

dangerous low inaccuracy (the 0.7-5.7% false submits), com-

bining LinnOS with high-percentile hedging (LinnOS+HL) led

to a powerful result.

5.5 Trade-offs

Table 3 shows some possible trade-offs between inference

overhead and accuracy (models A-E, with accuracy involv-

ing both false submits and false revokes). On one hand, if

lower overhead is preferred and some accuracy loss is ac-

ceptable, then one option is to trim the input features and the

model. For example, in model B with R=3 (i.e., including

fewer history I/Os instead of R=4) can reduce the number of

input features from 31 to 24 and lower inference overhead,

−1µs, but it will bring some accuracy loss, −(1-4%), due to

fewer inputs. Or, if even lower overhead is favorable, then in

model A we can further cut the input features (R=2, 17 fea-

tures) and use a slimmer hidden layer (from 256 neurons to

128), resulting in a lower inference time,−4µs, while bring-

ing larger accuracy loss, −(3-12%).

If higher accuracy is needed, then we can bring in more

features and heavier models. For example, in model C, by

adding one more hidden layer to the model, we can gain+(1-

2%) higher accuracy, while the inference overhead rises by

+40µs. Taking a step further, we can involve more features

(up to R=10 and 73 features) and more hidden layers (three

layers with 256-512-256 neurons) to push the accuracy gain

by +(4-5%), but an increased overhead, +94µs. The ex-

treme model E includes block offsets in the input features

(2048 features in total) and applies a model with five hidden

layers (with 512 neurons each). For some traces, this model

improves the accuracy by +(8-12)%, but its inference over-

head, +1670µs, is extremely high for live inference.

5.6 Other Evaluations

5.6.1 Additional Performance Evaluations

Other possible manually-tuned heuristics. To get a sense

of how much performance a heuristic can ultimately reach,

we pick several 10-min slices from the traces and manu-

ally tweak the adjustable parameters of HeurSim and HeurAdv

with various thresholds until an optimal outcome is achieved.

In a nutshell, we start with the generic HeurSim and HeurAdv,

evaluate them with the sliced traces, track the high-latency

I/Os that are not revoked, update the thresholds to catch these

I/Os without causing too many false revokes (e.g., >15%),

re-evaluate and repeat the entire process until an approxi-

mate optimum is observed. This approach is indeed capa-

ble of granting heuristics a further stretch. For example,

we see a few cases where tweaked heuristics can outperform

LinnOS-Raw by up to 20% at p95. However, this tuning pro-

cedure is onerous and impractical in real runs as the repeated

manual tweaking is too slow to catch up with the fluctuation

of incoming workloads.

LinnOS+H99. We also

p90

p95

p99

 0 2 4 6 8

Lat. (ms)H
ig

h
e

r
P

e
rc

e
n

ti
le

s

LinnOS+H99
 longer tailsL

in
n
O

S
+

H
L

p40

p50

p60

 0.4 0.6 0.8

Lat. (ms)L
o

w
e

r
P

e
rc

e
n

ti
le

s LinnOS+H99
 less I/Os

Li
nn

O
S

+
H

L

Figure 11: LinnOS+H99.

try LinnOS+H99, which

employs p99 hedging that

only generates 1% extra

I/Os. Figure 11a shows

one of its comparisons

with LinnOS+HL. Generally,

LinnOS+H99 encounters a

larger tail area due to longer

waiting, but responds faster

at lower percentiles due

to less extra I/Os. With

that, sometimes LinnOS+HL

can show slightly worse

average latencies (up to 3%)

than LinnOS+H99 (Figure

11b). However, in a large

majority of our bench-

marks, LinnOS+HL achieves

1.7-39.2% better average latencies than LinnOS+H99.

5.6.2 On Public Traces

Beyond our evaluation with Microsoft traces, Figure 12

shows a quick evaluation with the latest SSD traces pub-

lished on the SNIA website [9] run on our consumer flash

array. The result confirms that LinnOS also exhibits low in-

accuracy (Figure 12a) and substantial latency improvement

(Figure 12b).

5.6.3 MongoDB on Different Filesystems

To see how data applications can benefit from LinnOS, we

set up a local MongoDB replica set on top of our three en-

terprise drives with homogeneous filesystem settings. For

each type of filesystem, MongoDB receives 120K random

read requests, and all drives run Microsoft traces as back-

ground noise when serving MongoDB requests as latency-

critical I/Os. Here, we focus on high-percentile latency (e.g.,

p99 latency) since the average latency is largely impacted by

filesystem buffering, while the tail latency reflects the raw

performance from the devices.

Figure 13 shows that with LinnOS, MongoDB achieves

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 185

 0

 2

 4

 6

Without
Bias

With
Bias

(a) Inacc.

P
e

rc
e

n
ta

g
e

 (
%

)

False Submit
False Revoke

p90

p95

p99

 0 1 2

Lat. (ms)

(b) Lat. CDF

LinnOS
Base

Figure 12: On public traces. As explained in §5.6.2.

much more predictable performance. For example, with all

underlying devices formatted with f2fs, LinnOS reduces the

p99 latency by 76.7%. Moreover, LinnOS only requires mi-

nor changes to MongoDB and filesystems: 50 additional

LOC. For example, the filesystems should directly return

LinnOS’s error code to the applications instead of conduct-

ing unnecessary self-checking, and MongoDB needs to be

slightly modified to reuse its built-in failover logic.

5.6.4 Computation Overhead/Optimization

CPU overhead. A reasonable concern is that if the en-

tire OS has many neural networks, then it will be CPU-

intensive. Across all the benchmarks and SSDs, paired with

a lightweight neural network, each device only costs 0.3-

0.7% of the host CPU resource, making LinnOS practical

for large-scale deployments.

Co-processors for acceleration. As mentioned in Section

4.5, additional processors can be utilized to speed up the in-

ference. By utilizing one more CPU core, LinnOS can re-

duce the inference overhead by 36% (to 4µs), with the max-

imal CPU usage increased up to 1.4% per device.

6 Conclusion and Discussion

We have presented LinnOS, to the best of our knowledge, the

first operating system capable of inferring the speed of every

I/O to flash storage. We have shown the feasibility of using a

light neural network in the operating system for making fre-

quent, fine-grained, black-box live inferences. LinnOS out-

performs many other methods and successfully brings pre-

dictability on unpredictable flash storage. We also believe

that LinnOS’s success leads to exciting discussions and ques-

tions that can spur future work:

On performance. Though LinnOS inference overhead (4-

6µs) is less noticeable compared with the access latency of

current SSDs (e.g., 80µs), it could become problematic as

SSDs march to 10µs latency range. Also, the consumption

of computation resources can increase substantially as the

IOPS grow. How to further lower the inference cost (e.g., to

1µs) to support faster devices and higher throughput? Can

advanced accelerators help accelerate OS kernel operations?

Can near-storage/data processing help? Can we skip the in-

ference when the outcome is highly assured (e.g., the queue

length is very low)? Can we cache the approximation results

for popular predictions?

 0

 1

 2

 3

btrfs ext4 f2fs FAT32 xfsP
9

9
 R

e
a

d
 L

a
t.

 (
m

s
)

LinnOS
Base

p95

p99

1 2 3 4 50
Read Lat. (ms) on Ext4

LinnOS
Base

Figure 13: MongoDB on different filesystems. This figure

shows that LinnOS can easily help data applications achieve more

predictable latency (§5.6.3).

On masking the inaccuracy of machine learning. As

machine learning (e.g., LinnOS) can never achieve 100%

accuracy, how should “ML-for-system” solutions mask the

cases that machine learning fails to catch, while still bene-

fiting from its generality? Is marrying learning and heuristic

(e.g., as in LinnOS+HL) a powerful option that exploits the

advantages of both worlds?

On other integrations and extensions. One interest-

ing question raised by LinnOS is why the latency behav-

ior of SSDs—devices with complex idiosyncrasies—can

be learned by the block layer with a few observable fea-

tures. Understanding this can help other higher layers such

as RAID, direct device access (SPDK), user/device-level

filesystems, or distributed storage adopt our concept. Like-

wise, in lower layers, it is also a possibility in the future to

have SSDs with latency inference capability built in. Al-

though, arguably, one can say that the device already has full

knowledge of its internals and does not need a black-box pre-

diction, an argument can be made that SSD vendors can use

the same machine learning method across different internal

architectures. Hence, they do not need to re-develop the in-

ference logic every time they modify the internal hardware,

logic, and policies. Alternatively, SSD vendors can employ

“gray-box” learning that incorporates some of the internal

knowledge.

On precision. Can fast/slow inference be converted to a

more precise latency inference, such as latency ranges (e.g.,

2-4µs, 4-8µs, ...), percentile buckets (e.g., p0-p10, ..., p90-

p100), or precise latency with high accuracy? Can model

permutation or other machine learning techniques help?

7 Acknowledgments

We thank Tom Anderson, our shepherd, and the anony-

mous reviewers for their tremendous feedback and helpful

comments. We also thank the Azure CSI group for pro-

viding the traces. This material was supported by funding

from NSF (grant Nos. CCF-2028427, CNS-1405959,

CNS-1526304, CNS-1764039, and CNS-1823032), ARO

(W911NF1920321), DOE (DESC00141950003) and

UChicago CERES Center, as well as generous donations

from Dell EMC, Google, and NetApp.

186 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Cassandra - Speculative Execution for Reads / Eager Retries.

https://issues.apache.org/jira/browse/

CASSANDRA-4705.

[2] Chameleon. https://www.chameleoncloud.org.

[3] Ethernet: The High Bandwidth Low-Latency Data Center

Switching Fabric. http://www.force10networks.com/

whitepapers/pdf/F10_wp_Ethernet.pdf.

[4] GreyBeards on Storage. https://silvertonconsulting.

com/gbos2/tag/tail-latency/.

[5] MongoDB - Basic Support for Operation Hedging in

NetworkInterfaceTL. https://jira.mongodb.org/

browse/SERVER-45432.

[6] New GraphCore IPU BenchMarks. https://www.

graphcore.ai/posts/

new-graphcore-ipu-benchmarks .

[7] Pareto Distribution. https://en.wikipedia.org/wiki/

Pareto_distribution.

[8] Rapid Read Protection in Cassandra 2.0.2. https://www.

datastax.com/blog/2013/10/

rapid-read-protection-cassandra-202 .

[9] SNIA I/O Trace Data Files. http://iotta.snia.org/

traces.

[10] The Data Center Flash Storage Market Is Expected to Grow

at a CAGR of Nearly About 17% during 2018-2024.

https://prn.to/2z58q4L.

[11] The Evolution of Image Classification Explained. https://

stanford.edu/~shervine/blog/

evolution-image-classification-explained .

[12] Tuning Speculative Retries to Fight Latency. https://www.

youtube.com/watch?v=uRJSuQofJWQ, 2016.

[13] Irfan Ahmad. Easy and Efficient Disk I/O Workload

Characterization in VMware ESX Server. In IEEE

International Symposium on Workload Characterization

(IISWC), 2007.

[14] Ganesh Ananthanarayanan, Michael Chien-Chun Hung,

Xiaoqi Ren, Ion Stoica, Adam Wierman, and Minlan Yu.

GRASS: Trimming Stragglers in Approximation Analytics.

In Proceedings of the 11th Symposium on Networked Systems

Design and Implementation (NSDI), 2014.

[15] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean

Hildebrand, and Erez Zadok. On the Performance Variation

in Modern Storage Stacks. In Proceedings of the 15th

USENIX Symposium on File and Storage Technologies

(FAST), 2017.

[16] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and

Thomas F. Wenisch. The Mystery Machine: End-to-end

Performance Analysis of Large-scale Internet Services. In

Proceedings of the 11th Symposium on Operating Systems

Design and Implementation (OSDI), 2014.

[17] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and

Sungjin Lee. LightStore: Software-defined Network-attached

Key-value Drives. In Proceedings of the 24th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2019.

[18] John Colgrove, John D. Davis, John Hayes, Ethan L. Miller,

Cary Sandvig, Russell Sears, Ari Tamches, Neil

Vachharajani, and Feng Wang. Purity: Building Fast,

Highly-Available Enterprise Flash Storage from Commodity

Components. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data

(SIGMOD), 2015.

[19] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark

Russinovich, Marcus Fontoura, and Ricardo Bianchini.

Resource Central: Understanding and Predicting Workloads

for Improved Resource Management in Large Cloud

Platforms. In Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP), 2017.

[20] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. BinaryNet: Training Deep

Neural Networks with Weights and Activations Constrained

to +1 or -1. CoRR, abs/1602.02830, 2016.

[21] Jeffrey Dean and Luiz Andre Barroso. The Tail at Scale.

Communications of the ACM (CACM), 56(2), 2013.

[22] Christina Delimitrou and Christos Kozyrakis. Paragon:

QoS-Aware Scheduling for Heterogeneous Datacenters. In

Proceedings of the 18th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2013.

[23] Christina Delimitrou and Christos Kozyrakis. Quasar:

Resource-Efficient and QoS-Aware Cluster Management. In

Proceedings of the 19th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2014.

[24] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi

Gilad, P. Brighten Godfrey, and Michael Schapira. PCC

Vivace: Online-Learning Congestion Control. In

Proceedings of the 15th Symposium on Networked Systems

Design and Implementation (NSDI), 2018.

[25] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma

Pakha, Riza O. Suminto, Cesar A. Stuardo, Andrew A.

Chien, and Haryadi S. Gunawi. MittOS: Supporting

Millisecond Tail Tolerance with Fast Rejecting SLO-Aware

OS Interface. In Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP), 2017.

[26] Mingzhe Hao, Gokul Soundararajan, Deepak

Kenchammana-Hosekote, Andrew A. Chien, and Haryadi S.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 187

https://issues.apache.org/jira/browse/CASSANDRA-4705
https://issues.apache.org/jira/browse/CASSANDRA-4705
https://www.chameleoncloud.org
http://www.force10networks.com/whitepapers/pdf/F10_wp_Ethernet.pdf
http://www.force10networks.com/whitepapers/pdf/F10_wp_Ethernet.pdf
https://silvertonconsulting.com/gbos2/tag/tail-latency/
https://silvertonconsulting.com/gbos2/tag/tail-latency/
https://jira.mongodb.org/browse/SERVER-45432
https://jira.mongodb.org/browse/SERVER-45432
https://www.graphcore.ai/posts/new-graphcore-ipu-benchmarks
https://www.graphcore.ai/posts/new-graphcore-ipu-benchmarks
https://www.graphcore.ai/posts/new-graphcore-ipu-benchmarks
https://en.wikipedia.org/wiki/Pareto_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
https://www.datastax.com/blog/2013/10/rapid-read-protection-cassandra-202
https://www.datastax.com/blog/2013/10/rapid-read-protection-cassandra-202
https://www.datastax.com/blog/2013/10/rapid-read-protection-cassandra-202
http://iotta.snia.org/traces
http://iotta.snia.org/traces
https://prn.to/2z58q4L
https://stanford.edu/~shervine/blog/evolution-image-classification-explained
https://stanford.edu/~shervine/blog/evolution-image-classification-explained
https://stanford.edu/~shervine/blog/evolution-image-classification-explained
https://www.youtube.com/watch?v=uRJSuQofJWQ
https://www.youtube.com/watch?v=uRJSuQofJWQ

Gunawi. The Tail at Store: A Revelation from Millions of

Hours of Disk and SSD Deployments. In Proceedings of the

14th USENIX Symposium on File and Storage Technologies

(FAST), 2016.

[27] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. The Unwritten Contract of Solid

State Drives. In Proceedings of the 2017 EuroSys Conference

(EuroSys), 2017.

[28] Henry Hoffmann. JouleGuard: energy guarantees for

approximate applications. In Proceedings of the 25th ACM

Symposium on Operating Systems Principles (SOSP), 2015.

[29] Chin-Jung Hsu, Rajesh K Panta, Moo-Ryong Ra, and

Vincent W. Freeh. Inside-Out: Reliable Performance

Prediction for Distributed Storage Systems in the Cloud. In

The 35th Symposium on Reliable Distributed Systems

(SRDS), 2016.

[30] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath,

Sudipta Sengupta, Bikash Sharma, and Moinuddin K.

Qureshi. FlashBlox: Achieving Both Performance Isolation

and Uniform Lifetime for Virtualized SSDs. In Proceedings

of the 15th USENIX Symposium on File and Storage

Technologies (FAST), 2017.

[31] Amber Huffman. Addressing IO Determinism Challenges at

Scale with NVM Express Part 2: Renegotiating the

Host/Device Contract. In Proceedings of the 2017

Non-Volatile Memory Workshop (NVMW), 2017.

[32] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew G. Howard, Hartwig Adam, and

Dmitry Kalenichenko. Quantization and Training of Neural

Networks for Efficient Integer-Arithmetic-Only Inference. In

2018 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[33] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and

Steven Swanson. KAML: A Flexible, High-Performance

Key-Value SSD. In Proceedings of the 23rd International

Symposium on High Performance Computer Architecture

(HPCA-23), 2017.

[34] Myoungsoo Jung, Wonil Choi, Miryeong Kwon, Shekhar

Srikantaiah, Joonhyuk Yoo, and Mahmut Kandemir. Design

of a Host Interface Logic for GC-Free SSDs. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), 8(1), May 2019.

[35] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,

Shravan Matthur Narayanamurthy, Alexey Tumanov,

Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru

Krishnan, Janardhan Kulkarni, and Sriram Rao. Morpheus:

Towards Automated SLOs for Enterprise Clusters. In

Proceedings of the 12th Symposium on Operating Systems

Design and Implementation (OSDI), 2016.

[36] Bryan S. Kim, Hyun Suk Yang, and Sang Lyul Min.

AutoSSD: an Autonomic SSD Architecture. In Proceedings

of the 2018 USENIX Annual Technical Conference (ATC),

2018.

[37] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee,

Changwoo Min, and Sam H. Noh. Alleviating Garbage

Collection Interference Through Spatial Separation in All

Flash Arrays. In Proceedings of the 2019 USENIX Annual

Technical Conference (ATC), 2019.

[38] Taejin Kim, Duwon Hong, Sangwook Shane Hahn,

Myoungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul

Lee, and Jihong Kim. Fully Automatic Stream Management

for Multi-Streamed SSDs Using Program Contexts. In

Proceedings of the 17th USENIX Symposium on File and

Storage Technologies (FAST), 2019.

[39] Youngjae Kim, Junghee Lee, Sarp Oral, David A. Dillow,

Feiyi Wang, and Galen M. Shipman. Coordinating Garbage

Collection for Arrays of Solid-State Drives. IEEE

Transactions on Computers (TC), 63(4), April 2014.

[40] Youngjae Kim, Sarp Oral, Galen M. Shipman, Junghee Lee,

David A. Dillow, and Feiyi Wang. Harmonia: A Globally

Coordinated Garbage Collector for Arrays of Solid-state

Drives. In Proceedings of the 27th IEEE Symposium on

Massive Storage Systems and Technologies (MSST), 2011.

[41] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. ReFlex:

Remote Flash ≈ Local Flash. In Proceedings of the 22nd

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS),

2017.

[42] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter,

Emmett Witchel, and Thomas Anderson. Strata: A Cross

Media File System. In Proceedings of the 26th ACM

Symposium on Operating Systems Principles (SOSP), 2017.

[43] Changman Lee, Dongho Sim, Joo-Young Hwang, and

Sangyeun Cho. F2FS: A New File System for Flash Storage.

In Proceedings of the 13th USENIX Symposium on File and

Storage Technologies (FAST), 2015.

[44] Sungjin Lee, Ming Liu, SangWoo Jun, Shuotao Xu, Jihong

Kim, and Arvind. Application-Managed Flash. In

Proceedings of the 14th USENIX Symposium on File and

Storage Technologies (FAST), 2016.

[45] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D.

Gribble. Tales of the Tail: Hardware, OS, and

Application-level Sources of Tail Latency. In Proceedings of

the 5th ACM Symposium on Cloud Computing (SoCC), 2014.

[46] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. PSLO:

Enforcing the Xth Percentile Latency and Throughput SLOs

for Consolidated VM Storage. In Proceedings of the 2016

EuroSys Conference (EuroSys), 2016.

[47] Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung,

Mahmut T. Kandemir, and Chita R. Das. SOML Read:

Rethinking the Read Operation Granularity of 3D NAND

SSDs. In Proceedings of the 24th International Conference

on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2019.

188 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[48] Martin Maas, David G. Andersen, Michael Isard,

Mohammad Mahdi Javanmard, Kathryn S. McKinley, and

Colin Raffel. Learning-based Memory Allocation for C++

Server Workloads. In Proceedings of the 25th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2020.

[49] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos

Maltzahn, Ryan Stutsman, and Robert Ricci. Taming

Performance Variability. In Proceedings of the 13th

Symposium on Operating Systems Design and

Implementation (OSDI), 2018.

[50] Amirhossein Mirhosseini, Akshitha Sriraman, and Thomas F.

Wenisch. Hiding the Microsecond-Scale Latency of

Storage-Class Memories with Duplexity. In Proceedings of

the 2019 Non-Volatile Memory Workshop (NVMW), 2019.

[51] Nikita Mishra, Connor Imes, John D. Laferty, and Henry

Hoffmann. CALOREE: Learning Control for Predictable

Latency and Low Energy. In Proceedings of the 23rd

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS),

2018.

[52] Nikita Mishra, John D. Lafferty, and Henry Hoffmann. ESP:

A Machine Learning Approach to Predicting Application

Interference. In The 14th International Conference on

Autonomic Computing (ICAC), 2017.

[53] Pulkit A. Misra, Mara F. Borge, Iigo Goiri, Alvin R. Lebeck,

Willy Zwaenepoel, and Ricardo Bianchini. Managing Tail

Latency in Datacenter-Scale File Systems Under Production

Constraints. In Proceedings of the 2019 EuroSys Conference

(EuroSys), 2019.

[54] Mihir Nanavati, Jake Wires, and Andrew Warfield. Decibel:

Isolation and Sharing in Disaggregated Rack-Scale Storage.

In Proceedings of the 14th Symposium on Networked Systems

Design and Implementation (NSDI), 2017.

[55] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and

Scott Shenker. Monotasks: Architecting for Performance

Clarity in Data Analytics Frameworks. In Proceedings of the

26th ACM Symposium on Operating Systems Principles

(SOSP), 2017.

[56] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong

Wang, and Yuanzheng Wang. SDF: Software-Defined Flash

for Web-Scale Internet Storage System. In Proceedings of

the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems

(ASPLOS), 2014.

[57] Chris Petersen. Addressing IO Determinism Challenges at

Scale with NVM Express. In Proceedings of the 2017

Non-Volatile Memory Workshop (NVMW), 2017.

[58] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran,

Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven

Swanson. Willow: A User-Programmable SSD. In

Proceedings of the 11th Symposium on Operating Systems

Design and Implementation (OSDI), 2014.

[59] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos

Maltzahn, and Scott Brandt. Flash on Rails: Consistent Flash

Performance through Redundancy. In Proceedings of the

2014 USENIX Annual Technical Conference (ATC), 2014.

[60] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and

Gernot Heiser. Koala: a platform for OS-level power

management. In Proceedings of the 2009 EuroSys

Conference (EuroSys), 2009.

[61] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose,

Jeremie S. Kim, Yixin Luo, Yaohua Wang, Nika Mansouri

Ghiasi, Lois Orosa, Juan Gmez-Luna, and Onur Mutlu.

FLIN: Enabling Fairness and Enhancing Performance in

Modern NVMe Solid State Drives. In Proceedings of the

45th Annual International Symposium on Computer

Architecture (ISCA), 2018.

[62] Toby J. Teorey and Tad B. Pinkerton. A Comparative

Analysis of Disk Scheduling Policies. Communications of

the ACM (CACM), 15(3), 1972.

[63] Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar.

Deadline-Aware Datacenter TCP. In Proceedings of the

ACM Special Interest Group on Data Communication

(SIGCOMM), 2012.

[64] Elizabeth Varki, Arif Merchant, Jianzhang Xu, and Xiaozhou

Qiu. Issues and Challenges in the Performance Analysis of

Real Disk Arrays. IEEE Transactions on Parallel and

Distributed Systems (TPDS), 15(6), 2004.

[65] Shivaram Venkataraman, Zongheng Yang, Michael Franklin,

Benjamin Recht, and Ion Stoica. Ernest: Efficient

Performance Prediction for Large-Scale Advanced Analytics.

In Proceedings of the 13th Symposium on Networked Systems

Design and Implementation (NSDI), 2016.

[66] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony

Brockwell, Christos Faloutsos, and Gregory R. Ganger.

Storage Device Performance Prediction with CART Models.

In Proceedings of the IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), 2004.

[67] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training

and Inference with Integers in Deep Neural Networks. In 6th

International Conference on Learning Representations

(ICLR), 2018.

[68] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and

Kuan-Ching Li. Overcome the GC-induced Performance

Variability in SSD-based RAIDs with Request Redirection.

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), 38(5), May 2019.

[69] Suzhen Wu, Weidong Zhu, Guixin Liu, Hong Jiang, and

Bo Mao. GC-aware Request Steering with Improved

Performance and Reliability for SSD-based RAIDs. In

Proceedings of the 32th IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 189

[70] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha

Gangadharaiah, Amit Borase, Tamires Brito Da Silva, Andy

Rudoff, and Steven Swanson. NOVA-Fortis: A

Fault-Tolerant Non-Volatile Main Memory File System. In

Proceedings of the 26th ACM Symposium on Operating

Systems Principles (SOSP), 2017.

[71] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong,

Swaminathan Sundararaman, Andrew A. Chien, and

Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect

Elimination of Garbage Collection Tail Latencies in NAND

SSDs. In Proceedings of the 15th USENIX Symposium on

File and Storage Technologies (FAST), 2017.

[72] Haojin Yang, Martin Fritzsche, Christian Bartz, and

Christoph Meinel. BMXNet: An Open-Source Binary

Neural Network Implementation Based on MXNet. In

Proceedings of the 2017 ACM on Multimedia Conference

(ACMMM), 2017.

[73] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan,

and J. Eliot B. Moss. Redline: First Class Support for

Interactivity in Commodity Operating Systems. In

Proceedings of the 8th Symposium on Operating Systems

Design and Implementation (OSDI), 2008.

[74] Li Yin, Sandeep Uttamchandani, and Randy Katz. An

Empirical Exploration of Black-Box Performance Models for

Storage Systems. In Proceedings of the IEEE International

Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS),

2006.

[75] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian,

Hao Wang, Haibing Guan, and Ming Zhang. Guaranteeing

Deadlines for Inter-Datacenter Transfers. In Proceedings of

the 2015 EuroSys Conference (EuroSys), 2015.

[76] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon

Koh, Changlim Lee, Mohammad Alian, Myoungjun Chun,

Mahmut Taylan Kandemir, Nam Sung Kim, Jihong Kim, and

Myoungsoo Jung. FlashShare: Punching Through Server

Storage Stack from Kernel to Firmware for Ultra-Low

Latency SSDs. In Proceedings of the 13th Symposium on

Operating Systems Design and Implementation (OSDI),

2018.

[77] Yiying Zhang, Leo Prasath Arulraj, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

De-indirection for Flash-based SSDs with Nameless Writes.

In Proceedings of the 10th USENIX Symposium on File and

Storage Technologies (FAST), 2012.

A Artifact Appendix

A.1 Abstract

We assemble an executable LinnOS workflow that runs

on Chameleon Cloud Research Platform [2]. This self-

contained artifact contains the major components and step-

by-step instructions.

A.2 Artifact check-list

• Program: LinnOS with preprocess scripts 4.

• Data set: Example I/O traces.

• Run-time environment: Chameleon’s shared Jupyter

experiment environment.

• Hardware: A flash array with at least three SSDs.

• Output: Trained models for I/O prediction and latency

CDF lines.

• Experiments: LinnOS workflow.

• Expected experiment run time: Several hours.

• Public link: https://www.

chameleoncloud.org/experiment/share/15?

s=409ab137f20e4cd38ae3dd4e0d4bfa7c

A.3 Description

A.3.1 How to access

Access the public link provided above and click the

“Launch on Chameleon” botton (account required to access

Chameleon resources), then see Readme.txt for a high-level

description and LinnOS.ipynb for step-to-step instructions.

A.3.2 Hardware dependencies

Evaluating LinnOS requires a flash array with at least three

SSDs, which are provided by the storage-hierarchy instances

from Chameleon Testbed.

A.3.3 Data sets

The artifact contains some example I/O traces, which are

used in the workflow for testing purposes.

A.4 Installation

Step-by-step installation instructions are available in the ar-

tifact.

A.5 Evaluation and expected result

Upon successful running, the workflow should produce a

trained model, the accuracy outcome, and the I/O latency

distribution of LinnOS and baseline. Please see readme.txt

in the artifact for further details.

4Excluding the data collection and analysis code that may reveal sensi-

tive information in Microsoft traces

190 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c
https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c
https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c

