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Abstract
Karaoke is a system for low-latency metadata-private com-
munication. Karaoke provides differential privacy guaran-
tees, and scales better with the number of users than prior
such systems (Vuvuzela and Stadium). Karaoke achieves
high performance by addressing two challenges faced
by prior systems. The first is that differential privacy re-
quires continuously adding noise messages, which leads
to high overheads. Karaoke avoids this using optimistic
indistinguishability: in the common case, Karaoke re-
veals no information to the adversary, and Karaoke clients
can detect precisely when information may be revealed
(thus requiring less noise). The second challenge lies in
generating sufficient noise in a distributed system where
some nodes may be malicious. Prior work either required
each server to generate enough noise on its own, or used
expensive verifiable shuffles to prevent any message loss.
Karaoke achieves high performance using efficient noise
verification, generating noise across many servers and
using Bloom filters to efficiently check if any noise mes-
sages have been discarded. These techniques allow our
prototype of Karaoke to achieve a latency of 6.8 seconds
for 2M users. Overall, Karaoke’s latency is 5× to 10×
better than Vuvuzela and Stadium.

1 Introduction
Text messaging systems are often vulnerable to traffic
analysis, which reveals communication patterns like who
is communicating with whom. Hiding this information
can be important for some users, such as journalists and
whistleblowers. However, building a messaging system
just for whistleblowers is not a good idea, because us-
ing this system would be a clear indication of who is a
whistleblower [9]. Thus, it is important to build metadata-
private messaging systems that can support a large number
of users with acceptable performance, so as to provide
“cover” for sensitive use cases.

A significant limitation of prior work, such as Vu-
vuzela [26], Pung [1], and Stadium [25], is that they incur
high latency. For example, with 2 million connected users,
Vuvuzela has an end-to-end latency of 55 seconds, and
the latencies of Pung and Stadium are even higher. Such
high latencies hinder the adoption of these designs.

This paper presents Karaoke, a metadata-private mes-
saging system that reduces latency by an order of mag-
nitude compared to prior work. For instance, Karaoke

achieves an end-to-end latency of 6.8 seconds for 2 mil-
lion connected users on 100 servers (on Amazon EC2 with
simulated 100 msec round-trip latency between servers),
80% of which are assumed to be honest, and achieves dif-
ferential privacy guarantees comparable to Vuvuzela and
Stadium. Furthermore, Karaoke can maintain low latency
even as the number of users grows, by scaling horizon-
tally (i.e., having independent organizations contribute
more servers). Karaoke supports 16 million users with 28
seconds of latency, a 10× improvement over Stadium.

Achieving high performance requires Karaoke to ad-
dress two challenges. The first challenge is that differ-
ential privacy typically requires adding noise to limit
data leakage. Prior work achieves differential privacy
for private messaging by enumerating what metadata an
adversary could observe (e.g., the number of messages ex-
changed in a round of communication), and adding fake
messages (“noise”) that are mixed with real messages
to obscure this information. This translates into a large
number of noise messages that have to be added every
round, and handling these noise messages incurs a high
performance cost.

Karaoke addresses this challenge using optimistic in-
distinguishability. Karaoke’s design avoids leaking in-
formation in the common case, when there are no active
attacks. Karaoke further ensures that clients can precisely
detect whether any information was leaked (e.g., due to an
active attack), so that the clients can stop communicating
to avoid leaking more data. This allows Karaoke to add
fewer noise messages, because the noise messages need to
mask fewer message exchanges (namely, just those where
an active attack has occurred).

The second challenge lies in generating the noise in
the presence of malicious servers. One approach is to
require every server to generate all of the noise on its
own, under the assumption that every other server is mali-
cious [26]. This scheme leads to an overwhelming num-
ber of noise messages as the number of servers grows.
Another approach is to distribute noise generation across
many servers. However, a malicious server might drop
the noise messages before they are mixed with messages
from legitimate users. As a result, achieving privacy re-
quires the use of expensive zero-knowledge proofs (e.g.,
verifiable shuffles) to ensure that an adversary cannot
drop messages [25]. This approach reduces the number
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of noise messages, but leads to significant CPU overheads
due to cryptography.

Karaoke’s insight is that verifiable shuffles are overkill:
it is not necessary for all messages to be preserved, and
it is not necessary to prove this fact to arbitrary servers.
Instead, to achieve privacy, it suffices for each server to
ensure that its noise is observed by all other servers. This
can be done efficiently using Bloom filters, without having
to reveal which messages are noise and which messages
come from real users.

The contributions of this paper are as follows:
• The design of Karaoke, a metadata-private text mes-

saging system that achieves an order of magnitude
lower latency than prior work.

• Two techniques, optimistic indistinguishability and
efficient noise verification, which allow Karaoke to
achieve high performance.

• A privacy analysis of Karaoke’s design that supports
the use of these techniques.

• An experimental evaluation of a prototype of Karaoke.
One limitation of Karaoke is that it does not provide

fault tolerance, since it requires all servers to be online.
Handling server outages and denial-of-service attacks is
an interesting direction for future work.

2 Related work
In this section, we compare Karaoke to prior work in two
dimensions: privacy guarantees and the trade-off between
scalability and server trust assumptions.

2.1 Privacy guarantees
Karaoke considers adversaries that control network links
and some of the system’s servers. This attacker model
rules out systems based on Tor [7] such as Ricochet [3],
due to traffic analysis attacks [5, 11, 18]. Loopix [20] is a
recent system that delays messages and uses entropy [24]
as a metric for reasoning about a user’s anonymity set.
However, Loopix does not provide any formal guaran-
tees about privacy after users exchange multiple mes-
sages; it also requires users to trust a designated service
provider [20: Table 1].

Some systems leak no information to the attacker, us-
ing techniques like DC-nets [28], Private Information
Retrieval [1], or message broadcast [4]. Such systems pro-
vide the strongest form of privacy that users could hope
for, but due to the quadratic overhead of these schemes
in the number of users, their latency becomes high when
supporting millions of users.

Karaoke achieves differential privacy for metadata-
private messaging, much like Vuvuzela [26], Alpen-
horn [15], and Stadium [25]. One key difference in
Karaoke is that its design leaks no information about
a user’s traffic patterns in the common case, when there
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Figure 1: Overview of Karaoke’s design.

are no lost messages, using the idea of optimistic indis-
tinguishability. This allows Karaoke to add less noise for
reaching the same privacy level as prior work [15, 25, 26],
which improves performance.

Like Stadium, Karaoke is distributed over many ma-
chines, and must ensure that malicious servers do not
compromise privacy. Stadium uses zero-knowledge
proofs (e.g., verifiable shuffles) for this purpose, whereas
Karaoke relies on more efficient Bloom filter checks.

2.2 Scalability vs. trust assumptions

Systems that assume the anytrust model (where all but
one server may be malicious), such as Vuvuzela [26], Dis-
sent [28], and Riposte [4], do not scale horizontally and
cannot support the same magnitude of users as Karaoke.

One approach to horizontal scalability in metadata pri-
vate messaging systems is to route messages through only
a subset of all servers in the network, as in Loopix, Sta-
dium, and Atom [14]. This requires trusting multiple
servers to be honest, and introduces a tradeoff between
the number of trusted servers (translating into the number
of servers that process each message) and performance.

In Loopix every message is processed by a small num-
ber of servers (e.g., Loopix considers 3 or more servers
to be a good choice [20: §4.3.1]). For privacy, Loopix
requires that one of these servers is honest. However, if a
significant fraction of servers are malicious, using a small
number of servers means some users’ messages will not
be processed by any honest server. Karaoke ensures pri-
vacy with high probability by sending messages through
more servers (e.g., 14 servers).

Atom [14] assumes that a fraction of the servers might
be corrupt, and requires each message to be processed
by many servers (hundreds). This leads to high latency,
from 30 minutes to several hours. Karaoke also assumes
that some fraction of servers are malicious. However
it arranges its servers in a different, full-mesh topology,
which allows it to achieve privacy while processing each
message at fewer servers (e.g., 14 servers).
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3 Overview
Figure 1 shows the main components of Karaoke. At the
highest level, Karaoke consists of users, servers, and dead
drops, similar to Vuvuzela and Stadium. All communica-
tion in Karaoke happens in rounds. In each round, users
communicate by sending and receiving messages to and
from dead drops. A dead drop is a designated location
used to exchange messages. Dead drops are named by the
server on which they are located, along with a pseudoran-
dom identifier, and are not reused across rounds. When
two users access the same dead drop, their messages are
exchanged, and each user receives the other user’s mes-
sage. When two users want to communicate, they arrange
to access the same dead drop (based on a shared secret).
If a user is not communicating with anyone, he or she
sends cover traffic to a randomly chosen dead drop.

The middle of the figure shows Karaoke’s servers, la-
beled 1 through N, which are used to shuffle messages in
order to hide information about which user is accessing
which dead drop. The servers shuffle messages in lay-
ers, which are indicated by vertical groups in Figure 1,
similar to a parallel mixnet [6, 8, 12, 21]. Each layer
decrypts the messages (which are onion-encrypted) and
re-orders them, so that the order of messages sent by a
server does not correlate with the order in which the mes-
sages were received. Each server takes part in each layer;
the figure depicts this by including each server in each
layer. Between layers, servers exchange messages with
one another.

The path of a message through the layers is chosen by
the message sender at random. The message is onion-
encrypted using the public keys of the servers on the
chosen path, so that the message cannot be decrypted
unless it passes through those servers. This ensures that
an adversary cannot bypass the shuffling of the honest
servers on the path of a message. Karaoke assumes that
users know the public keys of all servers.

In Figure 1, Alice and Bob are communicating in a
particular round. Their dead drop access paths are shown
using bold arrows; solid for Alice and dashed for Bob.
Alice and Bob send their messages to the same dead drop
B on server 2. When the messages arrive at server 2,
the server swaps them, and sends them back through the
layers: Alice’s message back to Bob along the reverse
of the dashed arrows, and Bob’s message back to Alice
along the reverse of the solid arrows. This ensures server
2 does not know whose messages it swapped.

3.1 Goals and threat model
Karaoke’s goal is to hide the communication patterns be-
tween users, so that an adversary cannot determine which
users are communicating with one another. Karaoke does
not hide information about which users are using Karaoke;
an adversary can determine that a user is using Karaoke

by observing a connection to one of Karaoke’s servers.
However, we hope that supporting a large number of users
makes the mere act of using Karaoke less suspicious, sim-
ilar to the argument by Dingledine et al. [7]. Karaoke also
does not make availability guarantees; defending against
DoS attacks is an interesting direction for future work.

In addition to Karaoke’s privacy goals, Karaoke aims
to achieve low latency for many users. This is important
in order to enable broad adoption of Karaoke’s design.
Furthermore, Karaoke’s goal is to provide horizontal scal-
ability, so that Karaoke’s operators can scale to more users
over time by adding physical machines, thereby spread-
ing the CPU and bandwidth requirements for operating
Karaoke across more servers.

Karaoke assumes that an adversary has full control
over the network and has compromised some number
of servers and users’ computers. Karaoke assumes that
some fraction of servers (e.g., 80%) remains honest (not
compromised), which we believe is achievable given
leaked documents [19] and measurements of the Tor net-
work [23, 27]. Karaoke hides communication patterns
between users whose computers have not been compro-
mised. If an adversary compromises a user’s computer,
the adversary can directly observe that user’s activity, and
Karaoke cannot provide any privacy guarantees. Karaoke
makes standard cryptographic assumptions (the adversary
cannot break cryptographic primitives), and assumes that
Karaoke clients know the public keys of Karaoke servers.

We capture Karaoke’s goal of hiding communication
patterns using differential privacy [10], as in Vuvuzela and
Stadium. Specifically, for a pair of users (call them Alice
and Bob), Karaoke considers the probabilities of the obser-
vations that an adversary could make (e.g., observations
of network traffic and observations from compromised
servers), conditioned on Alice and Bob communicating
or not communicating. Karaoke’s differential privacy
guarantee says that the probabilities of Alice and Bob
communicating or not communicating, based on what the
adversary observed, are close, and the ϵ and δ parame-
ters control the degree of closeness (eϵ is a multiplicative
factor and δ is an additive factor). The choice of the pa-
rameters is discussed in §6.1. Using differential privacy,
Karaoke ensures that two users can always plausibly deny
that they were communicating.

Since differential privacy is composable, a user can
leverage this guarantee to reason about other plausible
“cover stories.” For example, if Alice was actually talking
to Bob, she could instead claim she was talking to Charlie:
the probability of her talking to Bob is within (ϵ, δ) of her
not talking to anyone, which in turn is within (ϵ, δ) of her
talking to Charlie, for a total of (2ϵ, 2δ).

More formally, Karaoke treats the scenarios of two
users communicating or not communicating with one
another as “neighboring databases” in the context of dif-
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ferential privacy. Since Karaoke relies on cryptography,
Karaoke achieves computational differential privacy [17],
rather than the perfect information-theoretic definition.

Karaoke’s information leakage mostly comes from sit-
uations when a user’s message is lost. This can occur
either due to an active attack, or due to a long network
outage (from which TCP cannot recover). Karaoke pro-
vides differential privacy for many rounds of message loss
(hundreds, as discussed in §6.1). We expect users to avoid
private conversations on highly unreliable networks; §7.6
provides some evaluation of network reliability.

Karaoke’s design assumes that users can initiate con-
versations out-of-band. In other words, Karaoke hides
metadata during a conversation. A complete messaging
system would use Karaoke alongside a “dialing” protocol
for one user to initiate a conversation with another user,
and to establish a shared secret that is used to agree on
a pseudorandom sequence of dead drops. The bootstrap-
ping protocol would impose additional bandwidth and
CPU costs for clients, but these costs are amortized over
many conversation rounds. Alpenhorn [15] could serve
as such a dialing protocol.

3.2 Privacy approach
Karaoke’s design reveals two potential sources of infor-
mation to the adversary: information about dead drop
access patterns and information about how many mes-
sages were sent between servers across layers. In the rest
of this section, we outline Karaoke’s approach to hiding
this information from the adversary.

Optimistic indistinguishability. To prevent the adver-
sary from learning information based on dead drop access
patterns, Karaoke’s design strives to ensure that the dead
drop access patterns look the same regardless of the com-
munication pattern between users. Specifically, Karaoke
requires that users always send two messages in a round.
This allows a user to communicate with themselves if
they are not otherwise communicating with a buddy, by
arranging for their two messages to access the same dead
drop. This gives the appearance of an active conversation
to an adversary that is observing dead drop access pat-
terns. If the user is communicating with a buddy, the user
simply arranges for each of their messages to swap with a
message from the buddy, using two different dead drops.

When the adversary is passive and there are no network
outages, dead drop access patterns reveal no metadata
about the communication of any pair of users. This is
because, for a pair of users that might be either idle or
chatting, there will be two dead drops, each of which is
accessed twice. If messages are lost, an adversary may
observe a dead drop with a single access, which may
reveal some information. Karaoke addresses this through
the use of noise messages, which we describe shortly.
However, message loss is detectable in Karaoke because

a user can simply look at the messages they receive back
from the server to determine if any of their messages (or
their buddy’s messages) were lost.

Karaoke’s “leakage-free” rounds allow it to improve
performance by reducing noise and letting a client appli-
cation decide how to handle leaky rounds. For example,
the client application could choose to:

1. Alert the user, who could ignore it if their current
conversation is not sensitive, or end the conversation
if it is.

2. Retry the conversation after waiting (i.e., stopping
the conversation but continuing to send cover traf-
fic). This limits how quickly active attacks can learn
information about the user.

3. Retry the conversation after switching to a new net-
work (hopefully, one that is not under active attack).

These policies (or combinations of them) limit the rate
at which an adversary can learn information through ac-
tive attacks. This allows Karaoke to add less noise while
still providing meaningful privacy guarantees.

Message swaps. A passive adversary in Karaoke can
observe the number of messages sent between any two
servers. To ensure that these observations do not reveal
user metadata, Karaoke’s topology is designed so that, for
any pair of messages that traverse the same honest server
in the same layer, an adversary cannot determine which
path prefixes (i.e., paths leading up to this honest server)
correspond to which path suffixes (i.e., paths taken by the
messages after this honest server). In other words, the
real scenario is indistinguishable from a scenario where
the messages swap paths after the honest server.

The swapped paths correspond to the two neighboring
databases. If Alice and Bob are communicating, then
swapping the path suffix of one of Alice’s messages with
Bob’s would mean that the two messages from Alice/Bob
actually reach the same dead drop (so they are idle). Sim-
ilarly, if Alice and Bob are idle, swapping path suffixes of
two of their messages would mean that they are commu-
nicating.

This technique keeps the number of messages on each
link identical regardless of whether message paths were
swapped, thus preventing the adversary from learning
useful information given the number of messages on every
link.

Noise messages. Karaoke uses noise for two purposes:
to protect dead drop access patterns in case messages
are lost, and to enable message swaps. The noise takes
the form of additional messages generated by the servers
themselves. Each server generates messages to random
dead drops, and routes those messages through random
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paths in Karaoke’s topology. These noise messages di-
rectly obscure the information available from the dead
drop access patterns, because accesses by real users are
now indistinguishable from accesses by noise messages.

Efficient noise verification. Some servers may be con-
trolled by the adversary. It is crucial that these adver-
sarial servers cannot subvert Karaoke’s noise, either by
generating insufficient noise in the first place, or by drop-
ping noise messages as they traverse Karaoke’s topol-
ogy. Karaoke deals with the first problem by requiring
all servers to generate enough noise to account for the
possibility of malicious servers generating no noise at all.

To deal with the possibility of noise messages being
dropped along the way, Karaoke uses Bloom filters [2] to
efficiently check for the presence of noise at each layer.
Each server at each layer in Karaoke’s topology ensures
that it has received all noise messages. It does so by com-
puting a Bloom filter of all of the messages it has received,
and sending this Bloom filter to all other servers. The
other servers check whether the noise messages they gen-
erated appear in this Bloom filter. If any server indicates
that their noise has been lost, the round is stopped.

Prior systems such as Stadium [25] deal with this prob-
lem by ensuring that no messages can be lost along the
way. This requires expensive cryptographic techniques,
such as verifiable shuffles. Karaoke’s observation is that it
suffices to ensure that noise messages are not lost. Using
Bloom filters is a good choice because they do not require
servers to reveal which messages were actually noise; the
Bloom filter includes the set of all messages.

4 Design
This section describes Karaoke’s design, starting with the
overall structure and topology, and then describing the
Karaoke client library and how Karaoke servers work.

4.1 Overall structure
Karaoke operates in rounds, which are driven by a co-
ordinator. The coordinator is not trusted for privacy (its
only job is to announce the start of a new round), but a
malicious coordinator can impact the liveness of Karaoke.
Round numbers must be strictly increasing, so the coor-
dinator cannot trick clients into sending extra messages
in a round, and if it announces a round multiple times,
honest clients and servers will ignore it. Karaoke can
distribute the user load over many coordinators (that are
synchronized among themselves) since the coordinator’s
job is untrusted.

Karaoke’s communication topology is shown in Fig-
ure 1. By using randomly chosen paths and exchanging
messages at each layer, Karaoke provides a strong degree
of mixing between all messages. Furthermore, Karaoke
scales well with the number of servers, because each mes-
sage is handled by a fixed number of servers (one per

def client_active(roundnum, myid, buddyid, buddysecret,
msg1, msg2):

c1 = encrypt(buddysecret + "msg1" + myid, msg1)
c2 = encrypt(buddysecret + "msg2" + myid, msg2)
o1 = gen_onion(roundnum, myid, buddyid,

buddysecret + "onion1", c1)
o2 = gen_onion(roundnum, myid, buddyid,

buddysecret + "onion2", c2)
r1, r2 = karaoke_run_round(o1, o2)

d1 = decrypt(buddysecret + "msg1" + buddyid, r1)
d2 = decrypt(buddysecret + "msg2" + buddyid, r2)
if d1 == None or d2 == None:
raise("Message loss")

return d1, d2

def client_idle(roundnum, myid):
secret = random.secretvalue()
c1 = random.ciphertext()
c2 = random.ciphertext()
o1 = gen_onion(roundnum, myid, myid + "dummy",

secret, c1)
o2 = gen_onion(roundnum, myid + "dummy", myid,

secret, c2)
r1, r2 = karaoke_run_round(o1, o2)
if r1 != c2 or r2 != c1:
raise("Message loss")

def gen_path(roundnum, rng):
servers = get_servers_and_keys(roundnum)
return [rng.choice(servers) for i in range(nlayers-1)]

# Choosing the last server to be one of the users’ previous
# hops leads to more efficient noise generation.
def choose_last_srv(a, b):
pair_choice = (a.id + b.id) % 2
return sorted(a, b)[pair_choice]

def gen_onion(roundnum, myid, buddyid, secret, msg):
mypath = gen_path(roundnum, prng(secret + myid))
buddypath = gen_path(roundnum, prng(secret + buddyid))
drop_srv = choose_last_srv(mypath[-1], buddypath[-1])
drop_id = prng(secret).rand128()

onion = wrap((drop_id, msg), drop_srv)
for srv in reversed(mypath):
onion = wrap(onion, srv)

return onion

Figure 2: Pseudocode for the Karaoke client.

layer). As a result, adding more servers does not cause
Karaoke to do more work overall.

4.2 Client
Figure 2 shows the pseudocode for the Karaoke client
library. There are two modes of operation for the client:
either the client is in an active conversation with a buddy,
or the client is idle. In each round, the client must call
either client_active() or client_idle().

If the client is active, it must maintain a shared secret
with the buddy, denoted buddysecret in the pseudocode.
This secret should be established through a dialing pro-
tocol, such as Alpenhorn [15], and must evolve every
round (e.g., by hashing it, or by using Alpenhorn’s key-
wheel). Furthermore, if the client is active, it must pass
two messages to client_active() that will be relayed to
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the buddy; conversely, client_active() will return the
buddy’s two messages, if successful. Each message has a
fixed size (256 bytes).

Onion generation. In each round, the client library gen-
erates two onions using gen_onion(). This function en-
capsulates a message msg in an onion encryption. The
onion is sent towards a dead drop chosen pseudorandomly
based on the shared secret, the ID of this user (myid),
and the ID of the buddy (buddyid). For example, Fig-
ure 1’s solid arrows indicate an onion sent by Alice to
dead drop B on server 2. The payload, msg, is encrypted
by the caller (specifically, by client_active()).
gen_onion() encrypts the message for each server in

turn, using the public keys of the servers. The innermost
encryption uses the key of the dead drop server, drop_srv.
The other onion layers correspond to a path chosen by
gen_path() using a pseudorandom number generator.

One subtle detail is that the dead drop server, drop_srv,
is chosen deterministically in gen_onion() to be one of
the servers from the two users’ paths in the previous layer
(either mypath[-1] or buddypath[-1]). This is an opti-
mization that reduces the degrees of freedom in Karaoke,
and thus allows Karaoke to generate noise efficiently, as
we will discuss in §4.3.

The dead drop ID, drop_id, is chosen pseudorandomly
based on the shared secret. This ensures that an ad-
versary cannot learn any information by observing the
accessed dead drop IDs (since the secret changes every
round), yet the two users agree on the same dead drops.

Active conversation. When a client is in an active con-
versation, client_active() exchanges two messages
with the user’s buddy. It does so by first encrypting the
two messages, msg1 and msg2, to produce two cipher-
texts c1 and c2. The pseudocode uses + to derive sub-
keys from the buddysecretmaster key. client_active()
then calls gen_onion() twice, with two subkeys derived
from buddysecret (appending the strings onion1 and
onion2 respectively). These onions are then passed to
karaoke_run_round(), which sends the onions through
Karaoke’s server topology and waits for responses, if any.

Once client_active() receives the responses, it must
verify that no message loss took place—that is, that the
adversary did not block either of this user’s two messages,
or the buddy’s two messages. client_active() checks
for this by ensuring that it receives two ciphertexts that
properly decrypt (using authenticated encryption). If an
adversary dropped one of the messages from this client,
karaoke_run_round will return None, causing the decryp-
tion check to fail. If an adversary dropped one of the
messages from the buddy, the last server hosting the dead
drop will observe just one message reaching the dead
drop and echo back this client’s message in response,
which will similarly cause the decryption check to fail

(because the message is not encrypted using the subkey
generated with buddyid). If no message loss took place,
client_active() returns the decrypted messages.

Sending a message back to the user in case of message
loss is important since if there is a conversation between
Alice and Bob, and an adversary drops Bob’s message,
then one naive outcome might be that now Alice receives
nothing in response in that round. This would be quite
unfortunate: the adversary will know Bob was talking to
Alice! By echoing back the message, the last server sends
at least some (fixed-size) data towards Alice, so that an
adversary cannot tell that Alice was Bob’s conversation
partner. (To be precise, a random response would also
suffice in this case.) Intermediate servers similarly enforce
that every request must receive a response, in case the last
server was malicious.

Idle client. When there is no active conversation,
Karaoke’s client library ensures that the externally observ-
able behavior, from the adversary’s perspective, remains
identical. client_idle() does so by generating random
ciphertexts, c1 and c2, which should be indistinguish-
able from ciphertexts that would have been generated
by client_active(). client_idle() chooses a random
secret, and constructs two onions, o1 and o2, simulating
a conversation between users myid and myid+"dummy".

Much like client_active(), client_idle() needs to
check for message loss. It does so by ensuring that it
receives c2 and c1 respectively in response to its onions.

Handling message loss. In Karaoke, message loss can
leak information to an adversary, and thus reduce the de-
gree of privacy that the user can expect. Karaoke detects
such events, which allows the client application built on
top of the library from Figure 2 to avoid excessive privacy
loss. Specifically, Karaoke’s client closes any active con-
versation after encountering message loss. This prevents
an adversary from dropping a user’s messages in many
rounds to learn additional information. Other policies
for dealing with message loss can be implemented that
balance usability and privacy, as outlined in §3.

Karaoke should rarely lose messages, because IP
packet loss in the network is handled by TCP (see §7.6).
Thus, the primary source of false positives are long-lived
network outages. We recommend that users stop sensi-
tive conversations when their network becomes unreliable
(regardless of whether it is the result of an attack).

4.3 Server
Figure 3 presents the pseudocode for Karaoke’s server.
The pseudocode focuses on the processing of onions from
clients to the dead drops, as well as the generation and
verification of noise messages. Not shown is the logic for
setting up per-round public keys (signed with a long-term
private key of each server), accepting inputs from users in
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def process_layer(roundnum, layer, inputs):
msgs = [decrypt(srvkey[roundnum], msg)

for msg in inputs]
msgs = dedup(msgs)
if layer == 0:
msgs += generate_noise(roundnum)

else:
bloom = bloomfilter.new(inputs)
for srv in get_servers_and_keys(roundnum):
if srv.rpc("check_bloom", roundnum,

layer, bloom) != True:
raise("Lost noise, halting round")

outgoing = collections.defaultdict(list)
for m in msgs:
outgoing[m.next_hop].append(m)

for srv, q in outgoing:
srv.rpc("enqueue_batch_for_process_layer",

roundnum, layer+1, shuffle(q))

def check_bloom(roundnum, layer, bloom):
caller = get_rpc_caller()
for m in noise msgs routed via caller at layer:
if m not in bloom:
return False

return True

Figure 3: Pseudocode for Karaoke’s server.

the first layer, exchanging the messages that are addressed
to the same dead drop in the last layer, and sending the
responses back to the clients.

Layer processing. Each server uses the
process_layer() function shown in Figure 3 to
process the set of input messages at a given layer. In the
first layer, the server collects input messages from clients
until the round coordinator kicks off the round processing.
In subsequent layers, each server waits to receive inputs
from every server in the previous layer.

Layer processing starts by decrypting the inputs and
de-duplicating them. It is important to remove duplicates
(and to ensure the ciphertexts are not malleable), because
otherwise an adversary could tag a victim’s message by
replicating it several times and looking for which message
appears to be replicated at the end of Karaoke’s topology.

Noise. The next step of layer processing involves ensur-
ing that the necessary noise is present. In the first layer,
each server generates noise; subsequent layers use Bloom
filter checking to ensure that noise has not been dropped
by malicious servers.

Noise generation. At the start of every round, each
server generates noise. The goal of noise messages is
to mask dead drop access patterns in the case of message
loss, meaning that legitimate user messages did not form
a pair of accesses to the same dead drop. In this case, an
adversary observes some number of dead drops with two
accesses, and some number with just a single access (due
to a non-paired message). This translates into the two

kinds of noise messages generated by Karaoke: “singles”
(noise message that generates a single dead drop access),
and “doubles” (a pair of noise messages that generates a
double access to the same dead drop).

Karaoke’s threat model assumes that some servers may
be malicious, but it is not known a priori which servers
are malicious. An adversary could use a malicious server
to trace back the source of a dead drop access to the
last honest server in the path. Thus, as we show in our
analysis [16], it is important that all outgoing links from
every server carry an adequate number of noise messages,
since every link could potentially be the outgoing link
from the last honest server on some message’s path.

Like Stadium [25], Karaoke uses the Poisson distribu-
tion to sample noise messages. This distribution is a good
fit for distributed noise generation for two reasons. First,
it allows precisely sampling a non-negative integer for the
number of messages, even if the distribution mean is low.
Second, the sum of many small Poisson samples is also a
Poisson distribution, simplifying the analysis.

Let N be the number of servers, and l be the length of
Karaoke paths (nlayers in the pseudocode). Our topology
provides N l possible routes, which makes it computation-
ally cumbersome to sample for every route individually,
and inefficient, since there are only (l − 1) · N2 communi-
cation links in the entire system (there are l− 1 transitions
between layers, and in each transition each server is con-
nected to all others). We would ideally like to just sample
the amount of noise on every link.

To generate the singles noise, a server begins by sam-
pling the noise for the links to the last layer of servers
(layer l), and samples how many messages go over each
of the N2 links in that phase. For each link, the server
samples from the Poisson distribution, with mean λ1. The
server then sums them up to find how many of its noise
messages need to leave each server in the previous layer.
The server then samples again, to decide how many noise
messages travel on each link to the servers in the previous
layer (l − 1). Of course, there will likely be a mismatch;
i.e., a server in layer l−1 has to distribute a different num-
ber of messages than it receives. In this case, the server
just adds incoming or outgoing noise messages to match
the other by adding extra noise messages and distributing
them uniformly among all links. Karaoke continues in
this fashion until it reaches the first layer. The number
of these extra messages is unlikely to be large, because
it is simply the difference between two samples from the
same Poisson distribution. Overall, each server samples
(l − 1) · N2 times from the noise distribution to assign
single-access noise.

To generate doubles noise, the server performs a similar
procedure to the one described above. Notice that in the
last layer we only iterate over the N2/2 possible pairs of
links that output messages to the same dead-drop hosting
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server (N2/2 is the number of possible second-to-last-hop
pairs of servers, since order does not matter). This is
because the dead-drop hosting server is chosen determin-
istically by gen_onion() based on choose_last_srv().
Similarly to the above, for each such pair, we sample
noise from the Poisson distribution with mean λ2. The
result denotes the number of pairs of messages, where
one message is routed on each link. In all layers before
the last one, the procedure for generating double-access
noise is exactly the same as the single-access noise case
described above.

Preserving noise. In layers after the first one, the servers
must ensure that noise messages have not been dropped
by a malicious server from a previous layer. Karaoke
servers do this by computing a Bloom filter [2] over all of
the messages received by that server in a particular layer.
Each server then sends its Bloom filter to all other servers
to check whether their noise appears to be present. As
long as all servers indicate that their noise is present, this
server can assume that no noise messages from honest
servers have been dropped, and proceed with processing
the layer.

The only queries that matter are an honest relay check-
ing with an honest noise-sender. A malicious noise-sender
does not matter since it can send zero noise. A malicious
relay does not matter since it can relay messages even if
noise is missing. We incorporate both of these in deter-
mining how much noise is needed (generating extra noise
to account for malicious servers that generate zero noise).

At each hop, one encryption layer of the message is de-
crypted. If an adversary does not know a server’s private
key, the adversary cannot predict the decryption result
(it looks pseudorandom, since the onion contains another
encrypted message). A malicious server that refuses to
forward a message cannot guess the decrypted version of
that message after the next honest hop. Thus, the adver-
sary cannot fill in another message that will "look like"
the dropped message in the Bloom filters of subsequent
honest servers. Karaoke’s topology and parameters en-
sure at least two honest servers in every path (with high
probability); see analysis in §5.

To check whether noise messages are present, a server
runs check_bloom(). This function must first determine
which noise messages were routed through the calling
server at a given layer, and second, determine the cipher-
text representation of the onion that would be seen by that
server at that layer. Finally, check_bloom() verifies that
all of those ciphertexts are in the Bloom filter, without
disclosing which messages are noise and which are real.

The Bloom filter has false positives, which may lead
check_bloom() to falsely conclude that a noise message
is present. In Karaoke, it is up to the server running
process_layer() to construct the Bloom filter with ade-

quate parameters to achieve suitably false positive rate. If
the server running process_layer() is malicious, it can
construct a Bloom filter with 100% false positive rate.
However, such a malicious server could also ignore the
result of check_bloom() altogether.

The probability of not detecting n discarded noise mes-
sages shrinks exponentially with n, since messages are
independently pseudorandom (see above). This allows
Karaoke to use relatively small Bloom filters (with 10%
false positive rate) and yet ensure that no more than a few
noise messages may be lost (for n = 20 the probability
of missing detection is 10−20). Karaoke generates a few
extra noise messages to account for the possibility that
several might be lost without detection (but not more).

Noise verification involves an all-to-all communication,
but does not lead to quadratic bandwidth requirements as
the number of servers grows. This is because increasing
the number of servers would proportionally reduce the
size of the Bloom filters, since the Bloom filters repre-
sent only those messages that are handled by a particular
server. Other horizontally scalable systems have similar
phases. For example, Stadium [25], which most closely
related to Karaoke, includes an all to all distribution be-
tween “input chains” to “output chains”; in Stadium, this
phase involves cryptographic computations (signature ver-
ification and NIZKs). Although in Karaoke the all-to-all
communication happens at every hop, the number of hops
is fixed so the overhead of Karaoke is expected to remain
much smaller than Stadium even for large deployments.

5 Analysis
This sections shows that Karaoke achieves its privacy goal
(§3.1), which is captured by the following theorem.

Theorem 1. Karaoke is ϵ, δ-differentially private with
respect to the following neighboring databases: (1) Alice
is talking with another user Bob, and (2) Alice is idle.

Proof sketch. We show Theorem 1 holds in the analysis
below by the following argument. We begin by show-
ing that Karaoke servers maintain noise messages in the
system (§5.1). Next, we analyze optimistic indistinguisha-
bility, showing that in the common case Karaoke leaks
no communication metadata under passive attacks (§5.2).
Optimistic indistinguishability has one caveat: the at-
tacker may launch active attacks to learn some informa-
tion about the communication patterns of some users. We
use differential privacy to reason about the amount of
information leaked to the attacker under this scenario
(§5.3).

The differential privacy parameters (ϵ and δ), the sin-
gles and doubles noise (λ1 and λ2), and the number of
rounds k for which this theorem holds are discussed in
§6.1. An extended technical report [16] provides detailed
proofs.
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5.1 Efficient noise verification
For Karaoke’s privacy guarantees to hold, it is crucial
to prevent the attacker from discarding noise messages
generated by the honest servers. Karaoke identifies when
noise messages are discarded using Bloom filter checks
(§4.3). Bloom filters, however, allow for false positives,
so a few noise messages might be dropped even if the
Bloom filter check shows they are present. With a false
positive rate p, the probability that k lost noise messages
go undetected is pk. Even with a relatively high p = 10%,
it is sufficient to increase the mean of the single- and
double-access noise distributions (λ1 and λ2, from §4.3)
by just 20

h (where h is the number of honest servers) to
ensure Karaoke keeps adequate noise with probability
> 1 − 10−20.

Adjusting the Bloom filter size allows Karaoke to con-
trol the false positive rate, but the size of the Bloom filter
reveals the number of messages processed by a server.
This is acceptable, as the rest of Karaoke’s analysis does
not rely on the total number of messages being hidden.

5.2 Optimistic indistinguishability
We continue our analysis by showing that combining
noise with Karaoke’s routing topology prevents metadata
leakage. That is, if the two messages from Alice and the
two messages from Bob route through the system, then it
is very likely to be completely indistinguishable whether
they exchange messages with each other (active mode) or
with themselves (idle mode). We begin our analysis by
explaining the conditions under which optimistic indistin-
guishability holds, and then evaluate the probability for
these conditions to hold considering a passive adversary.

5.2.1 Avoiding metadata leakage

Karaoke’s optimistic indistinguishability stems from the
following theorem:

Theorem 2. Assume that two messages a and b, from
honest senders (users or servers), route through an hon-
est server si at layer i. Denote the two message routes
by ⟨s1

a, . . . , s
i, . . . , sl

a⟩ and ⟨s1
b, . . . , s

i, . . . , sl
b⟩. Then it is

equally likely, given the attacker’s observations of the
inter-server links and malicious intermediary servers (i.e.,
observations on all but the last server), that a routes
through ⟨si+1

a . . . , s
l
a⟩ and b routes through ⟨si+1

b . . . , s
l
b⟩

or vice-versa.

Proof. Since si is honest, its shuffle permutation is un-
known to the adversary. Each message in Karaoke takes
an independent route. Denote the outgoing links from
server si that a and b take by l1, l2, and the attacker’s
observations on outgoing links from si by O. It holds
that Pr[a takes l1 | O] = Pr[b takes l1 | O] and that

Pr[a takes l2 | O] = Pr[b takes l2 | O]. Therefore,

Pr[a takes l1 ∧ b takes l2 | O] =
Pr[a takes l2 ∧ b takes l1 | O]

Furthermore, since messages are onion-encrypted, the
bit-level representations of messages a and b forwarded
by si are indistinguishable from random. As a result, an
adversary cannot distinguish whether a travels over the
link si → si+1

a and b over si → si+1
b or vice-versa.

Assume that a and b swap the suffix of their routes
following layer si. Since the two messages swap routes,
the number of messages on each following link remains
the same (and the messages themselves are indistinguish-
able from one another because they are onion-encrypted).
Therefore all of the attacker’s observations on inter-server
links remain the same, regardless of whether the two mes-
sages were swapped. □

Theorem 2 allows us to swap between two messages.
However, it requires that the two swapped messages route
through the same honest server. The next theorem, which
follows from Theorem 2, extends this observation and
shows that even messages with non-intersecting routes
can be indistinguishably swapped, with the help of noise
messages.

Theorem 3. Let a and b be two messages that route
through ⟨s1

a, . . . , s
l
a⟩ and ⟨s1

b, . . . , s
l
b⟩ respectively. Let n0

and n1 be two other messages from honest participants
that route through ⟨s1

n0
, . . . , sl

n0
⟩ and ⟨s1

n1
, . . . , sl

n1
⟩. As-

sume that there exists some i0 and j1 such that si0
n0 = si0

a

and s j1
n0 = s j1

b , where the servers si0
a and s j1

b are honest and
i0 < j1. This means that, for some layer i0, n0 and a route
through the same honest server, and for some layer j1,
n0 and b route through the same honest server. Similarly,
assume there exists some i1 and j0 such that si1

n1 = si1
b and

s j0
n1 = s j0

a , where the servers si1
b and s j0

a are honest, i1 < j0,
i0 < j0, and i1 < j1. Under these conditions, and using
observations from network links and intermediary servers,
it is indistinguishable whether the messages took their
actual routes or the following alternative routes:

a routes via ⟨s1
a, . . . , s

i0
a , s

i0+1
n0 , . . . , s

j1−1
n0 , s

j1
b , . . . , s

l
b⟩

b routes via ⟨s1
b, . . . , s

i1
b , s

i1+1
n1 , . . . , s

j0−1
n1 , s

j0
a , . . . , sl

a⟩

n0 routes via ⟨s1
n0
, . . . , si0

a , s
i0+1
a , . . . , s j0−1

a , s j0
n1 , . . . , s

l
n1
⟩

n1 routes via ⟨s1
n1
, . . . , si1

b , s
i1+1
b , . . . , s j1−1

b , s j1
n0 , . . . , s

l
n0
⟩

Proof. Applying Theorem 2 four times on the following
arguments gives the result:

1. on messages a, n0 at honest server si0
a

2. on messages b, n1 at honest server si1
b

3. on messages a, n1 at honest server s j0
a

4. on messages b, n0 at honest server s j1
b
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Figure 4 illustrates these four swaps (where message a =
a1 and message b = b0). □

Given four messages a, b and n0, n1 the attacker cannot
identify, using observations on network links and mali-
cious intermediary servers, whether the messages take
one route where a, b end up on servers sl

a, s
l
b and n0, n1

end up on servers sl
n0
, sl

n1
or they take an alternative route

where a, b reach sl
b, s

l
a and n0, n1 reach sl

n1
, sl

n0
. However,

if the last servers (sl
∗) turn out to be malicious, then the

attacker might still distinguish between the two scenarios.
To see why, consider the case where n0 is a double-access
noise message and its pair routes through an all-malicious
route. In this case, the attacker can observe the differ-
ence between the two alternative scenarios because the
last server on n0’s route would have actually received n1
instead of n0 and therefore would observe one less double
access and two more single accesses if n0 and n1 were
to swap (i.e., using the alternative routes in Theorem 3).
The next theorem describes how messages between two
honest users can be swapped without leaking information
to the attacker, when n0 and n1 are single-access noise
messages.

Theorem 4. If the premise for Theorem 3 holds
for two user-messages a and b and two single-
access noise messages n0 and n1, then it is indis-
tinguishable whether a routes through ⟨s1

a, . . . , s
l
a⟩

and b through ⟨s1
b, . . . , s

l
b⟩, or a routes through

⟨s1
a, . . . , s

i0
a , s

i0+1
n0 , . . . , s

j1−1
n0 , s

j1
b , . . . , s

l
b⟩ and b routes

through ⟨s1
b, . . . , s

i1
b , s

i1+1
n1 , . . . , s

j0−1
n1 , s

j0
a , . . . , sl

a⟩.

Proof. Applying Theorem 3 shows that given just obser-
vations from network links and intermediary servers, an
adversary cannot determine which message takes what
route. We now focus on the last servers of each message
route. Assume that they are all malicious and allow the
attacker to observe the dead-drop access patterns. The
last server on n0’s route, in the alternative routing scheme,
would have received n1 (after all four swaps); see illus-
tration in Figure 4. Since n1 and n2 are two single access
noise messages, generated by honest servers, the mali-
cious last server would observe in both cases an encrypted
message (that was encrypted by an honest server) reach-
ing a dead drop by itself. Similarly this holds for the last
server on n1’s route. The user messages a and b would
both reach encrypted to a double-access dead drop (since
the attacker is passive, the paired message reaches the
dead drop too). So both cases are indistinguishable. □

We refer to two messages a and b for which there exists
two single-access noise messages n0 and n1 that satisfy
the premise of Theorem 4 as indistinguishably swappable.
We next use Theorem 4 to analyze Karaoke’s privacy
guarantees.

si0
a1

si1
b0

a0

n0

a1

b0

n1

b1

s j0
a1

s j1
b0

X

N1

N0

Y

Alice

Bob

Users Servers Dead drops

Figure 4: An illustration of Karaoke’s optimistic indistinguishability: an
adversary cannot determine whether Alice and Bob are communicating
via dead drops X and Y. Straight lines represent links (potentially across
multiple intermediate servers) that an adversary can track. Servers si0

a1 ,
si1

b0
, s j0

a1 , and s j1
b0

are honest. Solid bold lines indicate the actual path
taken by messages a1 and b0. Dotted bold lines indicate the actual path
taken by messages n0 and n1. An adversary cannot distinguish whether
a1 and b0 took the solid or dotted bold lines. Squiggly lines indicate
users generating two messages in a round.

5.2.2 Alice talking with Bob, and claims “idle”
Consider two users, Alice and Bob, who may be talking
with each other or idle. Alice sends two messages a0, a1
and Bob sends b0, b1. If Alice and Bob communicate,
then Alice’s a0 meets Bob’s b0 at the dead drop, and a1
meets b1 at a different (and independently chosen) dead
drop. If they do not communicate, then a0 meets a1 at a
dead drop and so do b0 and b1.

Theorem 5. If one of the pairs of messages ⟨a0, b1⟩ or
⟨a1, b0⟩ is indistinguishably swappable, then it is indistin-
guishable whether Alice is talking to Bob or they are both
idle.

Proof. To understand why this theorem holds, consider
Figure 4. Assume without loss of generality that the
premise holds for the pair of messages ⟨a1, b0⟩. Applying
Theorem 4 on ⟨a1, b0⟩, it is therefore indistinguishable
whether a1 routes to dead drop X and b0 routes to dead
drop Y or vise versa. In the first scenario a0 meets b0 at
dead drop Y and a1 meets b1 at dead drop X, so Alice
and Bob are talking. In the second (indistinguishable)
scenario it is actually a0 that meets a1 at dead drop X
and b0 that meets b1 at dead drop Y so Alice and Bob
are idle. Importantly, it does not matter what route Alice
and Bob’s other messages, a0 and b1, take; the servers
handling these messages may all be malicious. □

Our technical report [16] analyzes the probability with
which optimistic indistinguishability holds. For example,
with N = 100 servers, out of which h = 80 are assumed
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honest, a chain length of l = 14, and where each honest
server generates single-access noise with mean λ1 ≥ 0.5
(so the mean of single-access noise on each link is hλ1 =

40), the probability that optimistic indistinguishability
holds is at least 1 − 5 · 10−14.

5.2.3 Alice idle, and claims “talking with Bob”
Theorem 6. If the premise for Theorem 4 holds for at
least one of the message pairs ⟨a0, b0⟩, ⟨a0, b1⟩, ⟨a1, b0⟩,
⟨a1, b1⟩, then it is indistinguishable whether Alice is talk-
ing to Bob or they are both idle.

When Alice and Bob are idle, a0, a1 and b0, b1 travel
to the same dead drop. It is therefore sufficient to indistin-
guishably swap one of four options: a0 with b0, or a0 with
b1, or a1 with b0, or a1 with b1 (rather than two options as
in §5.2.2: a0 with b1, or a1 with b0). This gives an even
higher probability of achieving indistinguishability.

5.3 Message loss and differential privacy
An active attacker can discard user messages before
Karaoke unlinks them from their senders (e.g., before
the first layer, as users submit messages to Karaoke). This
might prevent Karaoke from “indistinguishably swapping”
messages as required for our analysis in the passive case
(§5.2). We now analyze this scenario. The technical
report [16] includes the proofs for the theorems below.

Consider a user Alice and an active attacker who tries
to learn whether she is talking with Bob.

Theorem 7. The active attacker’s best strategy (leaking
the most information) is to either discard both messages
from Alice, or both messages from Bob.

Intuitively, the theorem holds since if the attacker dis-
cards both messages from Alice or both messages from
Bob, there are no messages to swap with so optimistic
indistinguishability never holds. The following theorem
holds when the attacker is active:

Theorem 8. Karaoke is ϵ, δ-differentially private in the
face of message loss (e.g., due to active attackers), if both
user messages route through at least two honest servers.

The conditional in Theorem 8 holds with overwhelming
probability in the route length parameter l. For example,
with a route length l = 14, assuming 80% of the servers
are honest, this conditional holds with probability 1 −
2 · 10−8 (which is folded into the differential privacy δ
parameter of Karaoke).

6 Implementation
Karaoke is implemented in 4000 lines of Go code, com-
piled with Go 1.11. Onion decryption dominates the CPU
costs of our prototype and is implemented in native amd64
assembly, provided by Go’s NaCl library. The servers use
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Figure 5: eϵ as a function of the number of noise messages per server
per round, for δ = 10−4, h = ⌊0.8N⌋, and l = 14.

the gRPC library over TLS for communication. We use
streaming RPCs and batching RPCs together to reduce
latency. Karaoke issues RPCs over multiple TCP connec-
tions to improve throughput.

6.1 Parameter selection
We would like Karaoke to provide good privacy guaran-
tees even after users communicate via Karaoke for a long
time. We target ϵ = ln 4 and δ = 10−4 after 108 rounds of
communication, of which 245 rounds encounter message
loss during a sensitive conversation.

Figure 5 plots the expected number of noise messages
that an honest server generates in a round, and the re-
sulting eϵ privacy guarantee (with a fixed δ = 10−4 af-
ter 108 communication rounds with 245 rounds of mes-
sage loss), for deployments of N = 50, . . . , 200 servers
where we assume h = ⌊0.8N⌋ servers are honest, and
route length l = 14. For example, in our configuration
using 100 servers, each server generates an average of
N2λ1 + N2λ2 = 25K noise messages per round. Comput-
ing the data in Figure 5 required the use of composition
over multiple rounds [10, 13].

As we evaluate in §7.6, 245 rounds of message loss is
about an order of magnitude higher than the number of
expected losses due to network outages in a year. Karaoke
could achieve the same privacy guarantee under more
active attacks by adding more noise.

7 Evaluation
We quantitatively answer the following questions:
• Can Karaoke achieve low latency for many users?

• Can Karaoke scale to more users by adding servers
while maintaining the same low latency?

• How is Karaoke’s performance affected by the frac-
tion of honest servers?

• How important are Karaoke’s techniques for achiev-
ing low latency?
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Figure 6: End-to-end latency of user messages with a varying number
of users. Vuvuzela is running with 3 servers; Karaoke and Stadium are
both running with 100 servers.

• How often would network problems cause Karaoke
users to observe message loss?

7.1 Experimental setup
To answer the above questions we ran our prototype on
Amazon EC2 using c5.9xlarge instances (36× Intel
Xeon 3.0 GHz cores with 72 GB of memory and 10 Gbps
links). We ran experiments using VMs in the same data
center to save on AWS bandwidth costs. Realistically,
Karaoke would be deployed on servers in different coun-
tries (or trust zones). For example, we envision some
fraction of the servers running in the US and the rest
running in different countries in Europe. We simulate
this topology by adding 100ms of round-trip network la-
tency (the round-trip time from the east coast of the US
to Europe) to each VM using the tc qdisc command.

We simulate millions of users by having servers gener-
ate extra messages in the first layer (to avoid the cost of
launching many more client VMs). The extra messages
are pre-generated (before the round starts) so that server
CPU costs are not muddled by what would normally be
client CPU costs.

An additional VM is used to run a coordinator server.
This server has two jobs: it starts rounds across all
Karaoke servers and injects probe messages into each
round to measure the end-to-end latency of the round.

Unless specified otherwise, our experiments assume
that 80% of the servers are honest, which translates into
a topology with 14 layers. Karaoke’s Bloom filters are
tuned for a 10% false positive rate, as discussed in §5.1.

7.2 Karaoke achieves low latency
To evaluate Karaoke’s end-to-end latency we ran an ex-
periment using 100 Karaoke servers. Figure 6 shows the
results. For comparison, we also include the latency of
Vuvuzela and Stadium as reported in their papers which
provide privacy comparable to Karaoke. The Vuvuzela
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Figure 7: End-to-end latency of user messages with 25K users per
server, with a varying number of servers.

and Stadium results used c4.8xlarge VMs, so we also
measured Karaoke’s performance on this less powerful
instance type. Stadium’s performance was achieved using
100 servers with a chain length of 9. Vuvuzela used only
3 servers because its performance does not increase with
the number of servers.

The results show that with 2M users Karaoke achieves
5× lower latency than Vuvuzela, and 8× lower latency
than Stadium (using the weaker c4 instances). Further-
more, the slope of the Karaoke line in Figure 6 shows
that Karaoke scales better with more users than either
Vuvuzela or Stadium. Karaoke’s scaling is better than
Vuvuzela because only a fraction of Karaoke servers are
involved in handling the messages from every additional
user, whereas every Vuvuzela server must handle every
additional user’s messages. Karaoke’s scaling is better
than Stadium because Stadium must perform expensive
zero-knowledge proofs for every additional user message,
whereas Karaoke’s marginal cost are just in onion de-
cryption and network bandwidth. For instance, Karaoke
achieves 10× lower latency than Stadium with 16M users.

7.3 Scaling by adding servers
The previous subsection shows that Karaoke’s latency in-
creases as more users join the system. This is unavoidable
if the number of servers is fixed. Ideally, Karaoke would
be able to support additional users without increasing la-
tency by adding a proportional number of servers. To
evaluate if this is the case, we measured the end-to-end
latency of Karaoke with a varying number of servers and
a proportional number of users (25K users per server).

Figure 7 shows the results, which indicate that Karaoke
can maintain low latency for an increasing number of
users by adding more servers to the system. Karaoke’s
latency goes down slightly as the number of servers grows
because it requires less noise, as shown in Figure 5.

7.4 Fraction of honest servers
Figure 8 shows the number of layers required to achieve
Karaoke’s privacy guarantees with a varying fraction of
honest servers, and the impact that increasing the num-
ber of layers has on end-to-end latency. The results
show Karaoke’s tradeoff between lower latency and fewer
trusted servers. When fewer servers are assumed honest,
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Figure 8: End-to-end latency for 2M user messages and 100 servers
with a varying fraction of honest servers. The right y-axis shows the
required number of layers to achieve privacy for a given fraction of
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each honest server has to create more noise to compen-
sate for the possibility of malicious servers not sending
any noise. Karaoke achieves acceptable latency for text
messaging even if only 60% of the servers are honest. On
the other hand, Karaoke would not be a good fit if only
30% of the server were honest.

7.5 Importance of techniques
To demonstrate the importance of Karaoke’s key tech-
niques (optimistic indistinguishability and using Bloom
filters for efficient noise verification), we consider the
performance of Karaoke without these techniques. In the
absence of optimistic indistinguishability, Karaoke would
need to add ∼320K noise messages per server per round
to achieve the same level of privacy. This translates into
an increase in latency from 6.8s to 31s for 2 million users.

In the absence of Bloom filters, Karaoke could use
verifiable shuffles similar to Stadium. For 6 million users
and 100 servers, each Stadium server spends 6s generating
verifiable shuffles and another 2s verifying shuffles at each
hop in the network. Karaoke, on the other hand, spends
250ms generating and checking Bloom filters at each
hop. Using verifiable shuffles in Karaoke would increase
Karaoke’s overall latency by about 2 minutes (8 seconds
for each of Karaoke’s 14 hops). This shows that both
techniques are crucial for Karaoke’s performance.

7.6 Leakage due to network issues
Karaoke’s design avoids leaking information when the
network is well-behaved, by arranging for all dead drop
access to occur in pairs. However, network issues could
result in some information being leaked if some dead drop
accesses are no longer paired. Karaoke runs over TCP so
momentary packet loss will not prevent message delivery.
On the other hand, if clients can not communicate with
the Karaoke servers for an extended period of time, they
will be unable to submit their message into a round.

To estimate how often this might happen, we per-
formed an experiment by probing a Karaoke server every
2 minutes for a day from 100 machines using RIPE AT-
LAS [22], which provided machines distributed across
the globe that communicate with our server. Each probe
consisted of 3 ping packets, spaced 1 second apart. The

experiment generated 71,194 probe results, of which
70,106 received responses to all 3 pings, 991 received
2 responses, 60 received 1 response, and 37 received no
responses (indicating a complete loss of network con-
nectivity). The complete losses of network connectivity
occurred in “bursts,” where a machine experienced com-
plete loss of connectivity for several adjacent two-minute
intervals. The complete losses were encountered by 8
machines (7 of them observing one “burst” and one ob-
serving two “bursts”).

These results suggest that a Karaoke client could en-
counter approximately 9 message loss events over 100
days, or about 33 such events per year. (Since Karaoke
clients switch to idle mode after detecting message loss,
only the first loss in a burst matters for this analysis.) This
compares favorably with the message loss that Karaoke’s
parameters can handle (245, as discussed in §6.1).

8 Conclusion
Karaoke improves the latency of metadata-private text
messaging by almost an order of magnitude compared
to prior work. Karaoke also scales well with the number
of users and the number of servers, maintaining its low
latency. To achieve its performance, Karaoke introduces a
new design, exchanging messages between each server in
multiple layers, as well as two key techniques. Optimistic
indistinguishability allows Karaoke to achieve perfect pri-
vacy with high probability in case no messages from the
user (and their peer) are lost, and allows clients to detect
message loss. Efficient noise verification allows Karaoke
to generate noise messages across many servers, and to
use efficient Bloom filter checks to prevent adversaries
from discarding the noise. We hope that Karaoke’s low
latency will bring metadata-private messaging closer to
widespread adoption.
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