
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Sharding the Shards: Managing Datastore
Locality at Scale with Akkio

Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor Zinkovsky,
Luning Pan, Tony Savor, and David Nagle, Facebook; Michael Stumm, University of Toronto

https://www.usenix.org/conference/osdi18/presentation/annamalai

Sharding the Shards:
Managing Datastore Locality at Scale with Akkio

Muthukaruppan Annamalai,† Kaushik Ravichandran,† Harish Srinivas,† Igor Zinkovsky,†

Luning Pan,† Tony Savor,† David Nagle† and Michael Stumm‡,†

†Facebook, 1 Hacker Way, Menlo Park, CA USA 94025
{muthu,kaushikr,harishs,igorzi,luningp,tsavor,dfnagle}@fb.com

‡Dept. Electrical and Computer Engineering, University of Toronto, Canada M5S 3G4
stumm@eecg.toronto.edu

Abstract
Akkio is a locality management service layered between
client applications and distributed datastore systems. It
determines how and when to migrate data to reduce re-
sponse times and resource usage. Akkio primarily tar-
gets multi-datacenter geo-distributed datastore systems.
Its design was motivated by the observation that many of
Facebook’s frequently accessed datasets have low R/W
ratios that are not well served by distributed caches or
full replication. Akkio’s unit of migration is called a µ-
shard. Each µ-shard is designed to contain related data
with some degree of access locality. At Facebook, µ-
shards have become a first-class abstraction.

Akkio went into production at Facebook in 2014, and
it currently manages ∼100PB of data. Measurements
from our production environment show that Akkio re-
duces access latencies by up to 50%, cross-datacenter
traffic by up to 50%, and storage footprint by up to 40%
compared to reasonable alternatives. Akkio is scalable:
it can support trillions of µ-shards and process many 10’s
of millions of data access requests per second. And it is
portable: it currently supports five datastore systems.

1 Introduction

This paper regards the management of data access lo-
cality in large distributed datastore systems. Our work in
this area was initially motivated by our aim to reduce ser-
vice response times and resource usage in our cloud en-
vironment which operates globally and at scale: the com-
puting and storage resources are located in multiple geo-
distributed datacenters, hundreds of petabytes of data
must be available for access, data accesses occur at the
rate of many tens of millions per second, and the location
from which any data item is accessed changes dynam-
ically over time. Many organizations are increasingly
faced with some, if not all, of these aspects, as they tar-
get a growing user base around the world. Indeed, geo-
distributed systems are becoming increasingly prevalent

and important, as witnessed by Spanner Cloud and Cock-
roachDB, two cloud-based geo-distributed datastore sys-
tems available to any organization [17, 38].

Managing data access locality1 in geo-distributed sys-
tems is important because doing so can significantly im-
prove data access latencies, given that intra-datacenter
communication latencies are two orders of magnitude
smaller than cross-datacenter communication latencies;
e.g., 1ms vs. 100ms. Locality management can also
significantly reduce cross-datacenter bandwidth usage,
which is important because the bandwidth available be-
tween datacenters is often limited (§2.1), potentially
leading to communication bottlenecks and attendantly
higher communication latencies. Managing locality is all
the more challenging when considering that access pat-
terns can change geographically over time; particularly,
when shifting workload from one datacenter operating at
high utilization (e.g., during its day) to another operating
at low utilization (e.g., its night) (§2.2).

We argue that explicit data migration is a necessary
mechanism for managing data access locality in geo-
distributed environments, because existing alternatives
have serious drawbacks in many scenarios. For instance,
distributed caches can be used to improve data read ac-
cess locality. However, because misses often incur re-
mote communications, these caches require extremely
high cache hit rates to be effective, thus demanding
significant hardware infrastructure. Further, distributed
caches do not typically offer strong consistency (§2.4).
Another alternative is to fully replicate data with a copy
in each datacenter to allow for (fast) localized read ac-
cesses. However, as the number of datacenters increases,
storage overhead becomes exorbitant with large amounts
of data, and also write overheads increase significantly,
as all replicas need to be updated on each write (§2.1).
At Facebook, many of the heavily accessed datasets have

1 Our use of the term locality should not be confounded with the
term localization; the solution we propose here is not suitable for seg-
regating data by region.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 445

relatively low read-write ratios (§2.3), so full replication
would consume excessive cross-datacenter bandwidth. A
third alternative is function shipping. But this can also
be ineffective, as it may still result in significant cross-
datacenter communications, the target datacenter may be
operating at peak capacity, or the required data may be
located in multiple datacenters.

Akkio. In this paper we present Akkio,2 a local-
ity management service for distributed datastore systems
whose aim is to improve data access response times and
to reduce cross-datacenter bandwidth usage as well as
the total amount of storage capacity needed. Akkio is
layered between client applications servicing client re-
quests and the distributed datastore systems used natively
by the client applications. It decides in which datacen-
ter to place and how and when to migrate data, and it
does so in a way that is transparent to its clients and the
underlying datastore system.3 It helps direct each data
access to where the target data is located, and it tracks
each access to be able to make appropriate placement
decisions. Akkio has been in production use at Face-
book since 2014 and thus operates at scale: it currently
manages over 100PB of data and processes many tens of
millions of data accesses per second (despite Akkio not
being suitable many of Facebook’s datasets).

µ-shards. Having migration as the basis for providing
data access locality raises the question: what is the right
granularity for migrating data? A ubiquitous method in
distributed datastore systems is to partition the data into
shards using key ranges or key hashing [26, 37]. Shards
serve as the unit for replication, failure recovery, and load
balancing (e.g., upon detection of query or storage load
imbalances, shards are migrated from one node to an-
other to rebalance the load). Each shard is on the order of
one to a few tens of gigabytes, is assigned in its entirety
to a node, and multiple shards (10s – 100s) are assigned
to a node. Shard sizes are set by the datastore administra-
tor to balance (i) the amount of metadata needed to man-
age the shards with (ii) effectiveness in load balancing
and failure recovery (§2.5). Notably, datastore systems
define shards in an application-transparent manner.

Given the ubiquity of shards, migrating data at shard
granularity is an option; in fact, a few systems that do this
have been proposed [4, 12, 29, 40]. However, this ap-
proach has a serious drawback given typical shard sizes:
the vast majority of the migrated data would likely not
belong to the working set of the accessing workload at
the new location, thus incurring unnecessary migration

2 Akkio is a play on Harry Potter’s Accio Summoning Charm that
summons an object to the caster, potentially over a significant dis-
tance [31].

3 In this paper we use the term “underlying datastore system” to
refer to the datastore system used natively by the client application. It
may be different than the datastore system used by Akkio.

10

100

1,000

10,000

100,000

1,000,000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99m
ill
is
ec
on
ds
	(l
og
	sc
al
e)

%

shards
u-shards
writes

Figure 1: Cumulative distribution of cross-datacenter transfer
times. Each curve contains data obtained from 10,000 ran-
domly sampled data points across all cross-datacenter links at
Facebook. Avg. shard size is 2GB; avg. µ-shard size is 200KB.

overhead and wasting inter-datacenter WAN communi-
cation bandwidth. At Facebook, because the working set
size of accessed data tends to be less than 1MB, migrat-
ing an entire shard (1-10GB) would be ineffective.

In this paper, by way of Akkio, we advocate for the no-
tion of finer-grained datasets to serve as the unit of migra-
tion when managing locality. We call these finer-grained
datasets µ-shards. Each µ-shard is defined to contain re-
lated data that exhibits some degree of access locality
with client applications. It is the application that deter-
mines which data is assigned to which µ-shard. At Face-
book, µ-shard sizes typically vary from a few hundred
bytes to a few megabytes in size, and a µ-shard (typi-
cally) contains multiple key-value pairs or database table
rows. Each µ-shard is assigned (by Akkio) to a unique
shard in that a µ-shard never spans multiple shards.

µ-shards are motivated by our observation that there
exist datasets that exhibit good access locality with re-
spect to a client application, but that they are best iden-
tified by the client application. Hence, µ-shards are not
simply smaller-sized shards. The primary difference be-
tween shards and µ-shards, besides size, is the way data
is assigned to them. With the former, data is assigned to
shards by key partitioning or hashing with little expec-
tation of access locality. With the later, the application
assigns data to µ-shards with high expectation of access
locality. As a result, µ-shard migration has an overhead
that is an order of magnitude lower than that of shard
migration (Fig. 1), and its utility is far higher.

µ-shards offer their best advantages in contexts where
it is unambiguous how to set the unit of migration so that
it is simultaneously as large as possible, meets the con-
straints of good access locality, and primarily contains
data belonging to the same working set of an accessing
workload. We have found that there exist many datasets
where these parameters are easily identified; see Table 1
for some examples. Because of this, we argue it is propi-
tious to make µ-shards a first class abstraction, such that
they are visible to and specified by client applications.
The motivation is that only the client applications have
the domain knowledge to best determine which data are
related and likely to be used together.

Having the application identify related data is not an

446 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

1

1,000

1,000,000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

KB
	(l
og
	s
ca
le
)

%

shards

u-shards

Figure 2: Cumulative distribution of Shard and µ-shard size for
ViewState datasets. The ViewState service keeps track of con-
tent previously shown to the end-user. ViewState µ-shard sizes
tend to be larger than the size of the typical µ-shards managed
by Akkio (500KB avg. vs. 200KB avg.).

unreasonable expectation. Many applications already
group together data by prefixing keys with a common
identifier to ensure that related data are assigned to the
same shard. This approach has been used for a long time
in practice. Similarly, some databases support the con-
cept of separate partition keys. Spanner supports “di-
rectories” although Spanner may shard directories into
multiple fragments [11]. Finally, a number of Facebook-
internally developed databases, including ZippyDB, sup-
port µ-shards as a first class abstraction in the sense that
each access request also includes a µ-shard id [3, 8, 34].

Akkio’s functionality. Akkio is implemented as a layer
between client applications and the underlying datastore
system that implements sharding. Although µ-shards are
defined by the client applications, Akkio manages them
in an application-transparent manner. Akkio is respon-
sible for: (i) tracking client-application accesses to µ-
shards so it can take access history into account in its
decision making; (ii) deciding where to place each µ-
shard; (iii) migrating µ-shards according to a given mi-
gration policy for the purpose of reducing access laten-
cies and WAN communication; and (iv) directing each
access request to the appropriate µ-shard. Akkio takes
capacity constraints and resource loads into account in
its placement and migration decisions, even in the face
of a heterogeneous environment with a constantly churn-
ing hardware fleet.

Akkio is able to support a variety of replication config-
urations and consistency requirements (including strong
consistency) as specified by each client application ser-
vice. This flexibility is provided because the client ap-
plication service owners are in the best position to make
the right tradeoffs between availability, consistency, re-
source cost-effectiveness, and performance. Akkio maps
each µ-shard with a specified replication requirement
onto a shard configured with the same replication and
consistency requirements in the underlying datastore sys-
tem. As well, it enforces the specified level of consis-
tency during µ-shard migrations.

Other applications. While this paper focuses on

– web application user profile information
– Amazon user browsing history to inform recommendations
– Spotify user listening history to inform subsequent content
– Facebook viewing history to inform subsequent content
– Slack group recent messages
– Reddit subreddits
– email folders
– messaging queues

Table 1: Example datasets conducive to µ-shards. Note that all
but the first exhibit relatively low read-write ratios.

Akkio managing locality for geo-distributed environ-
ments, Akkio and its mechanisms can be useful in other
scenarios. For example, Akkio can be used to migrate µ-
shards between cold storage media (e.g. HDDs) and hot
storage media (e.g., SSDs) on changes in data tempera-
tures, similar in spirit to CockroachDB’s archival parti-
tioning support [38]. Further, for public cloud solutions,
Akkio could migrate µ-shards when shifting application
workloads from one cloud provider to another cloud
provider that is operationally less expensive [39]. Fi-
nally, when resharding is required, Akkio could migrate
µ-shards, on first access, to newly instantiated shards, al-
lowing a more gentle, incremental form of resharding in
situations where many new nodes (e.g. a row of racks)
come online simultaneously.

Contributions. We describe the design and imple-
mentation of Akkio (§4). To the best of our knowledge,
Akkio is the first system capable of managing data lo-
cality at µ-shard granularity and at scale, while also sup-
porting strong consistency. In describing Akkio, we fo-
cus on scalability; in that sense, this paper focuses on
the “plumbing” and not on policy; i.e., specific decision-
making algorithms. For applications where Akkio is suit-
able, we show in §5 that Akkio is:

Effective along a number of dimensions: Compared to
typical alternatives, Akkio can achieve read latency re-
ductions: up to 50%; Write latency reductions: 50% and
more; Cross-datacenter traffic reductions: by up to 50%.
Further, Akkio reduces storage space requirements by up
to X −R compared to full replication with X datacenters
when a replication factor of R is required for availability.

Scalable: Statistics from production workloads servic-
ing well over a billion users demonstrate the system re-
mains efficient and effective even when processing many
tens of millions of requests per second. Akkio can sup-
port trillions of µ-shards.

Portable: Akkio’s design is simple and flexible
enough to allow it to be easily layered on top of most
backend datastore systems. Akkio currently runs on
top of ZippyDB, Cassandra, and three other internally-
developed databases at Facebook.

Limitations. Akkio’s approach to managing locality
with µ-shards will not be beneficial for all types of data,
such as those better served by distributed caches, or

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 447

0

25

50

75

100

04	Mar 05	Mar 06	Mar 07	Mar 08	Mar 09	Mar 10	Mar 11	Mar

%

Figure 3: Proportion (in %) of incoming service requests origi-
nating from Region A processed at each datacenter. Each curve
represents a datacenter. The sum over all curves is always
equal to 100%. In this case, Region A has a local datacenter.

datasets that do not exhibit sufficient access locality. For
example, Akkio would not helpful in improving locality
for data belonging to the Social Graph. Instead Akkio
focuses on workloads with datasets that have low read-
write ratios and high access locality. These workloads
are quite common and not well served by a caching tier.
Further, while Akkio can be layered on top of a vari-
ety of datastores, the datastore needs to provide partic-
ular features to Akkio as outlined in §4.2. As a result,
Akkio may not be able to accommodate all datastore sys-
tems. Finally, Akkio does not currently support inter-
µ-shard transactions, unless implemented entirely client-
side; providing this support is left for future work.

We begin the paper by substantiating our motiva-
tion underlying Akkio’s approach (§2) and present back-
ground needed to understand the rest of the paper (§3).

2 Motivation

2.1 Capital and operational costs matter

Capital and operational costs become consequential
when an organization’s infrastructure must scale to tar-
get a large number of users around the world, justifying
considerable efforts to restrain resource usage where pos-
sible. Consider an organization with ten datacenters and
many hundreds of petabytes of data that must be acces-
sible. While it is difficult to obtain transparent, publicly
available pricing information on the true cost of storage,
a lower bound for capital depreciation and operational
costs could be on the order of two cents per gigabyte
per month [9, 28]. This translates to $2 million per 100
petabytes per month. Clearly, replicating all data onto all
ten datacenters is difficult to justify from an economic
perspective when, in many cases, acceptable durability
could be achieved with three replicas.

WAN cross-datacenter links can also be costly and
need to be taken into account. For example, estimates
for the costs of a 10 Gbps subterranean link vary from
$1 to $9 per km per month, depending on route [22]. (To

0

25

50

75

100

04	Mar 05	Mar 06	Mar 07	Mar 08	Mar 09	Mar 10	Mar 11	Mar

%

Figure 4: Proportion (in %) of incoming service requests orig-
inating from Region B processed at each datacenter. In this
case, Region B does not have a local datacenter.

put this into perspective, transferring a 10 GB shard over
a 10 Gbps WAN link will consume roughly 10 seconds
of bandwidth.) As a result, cross-datacenter link band-
width will typically be constrained and therefore needs
to be used judiciously.

2.2 Service request movements
The datacenters from which data access requests origi-
nate can vary over time, even for data accessed on behalf
of a unique user. A change in the requesting datacen-
ter can arise, for example, because the user travels from
one region to another, or, more likely, because service
workload is shifted from a datacenter with high loads to
another with lower loads in order to lower service request
response latencies. The alternative to shifting workload
to other datacenters at peak times would be to increase
the capacity of the overloaded datacenter to deal with
peak influx of service requests. But this comes with sig-
nificant operational overheads, which are hard to justify
when other datacenters are mostly idle at the same time,
given diurnal request patterns.

Figure 3 shows that shifts in traffic occur on a daily ba-
sis at Facebook. The figure shows which datacenters pro-
cessed incoming service requests originating from one
particular region over a week. Each curve represents a
different datacenter to which the service requests orig-
inating from one region were forwarded. The figure
shows that during busy periods, as many as 50% of the
requests originating from the given region were shifted to
remote datacenters (most often located in an adjacent re-
gion). The figure also shows that during non-peak times
all of the requests are processed by the local datacenter.

Figure 4 shows the same type of information, but for
a region with no local datacenter. Because there is no
local datacenter, the service requests are distributed to a
number of different datacenters. During non-peak times,
we see that almost all traffic is serviced from a single,
non-local, but nearby datacenter.

We also measured, for each individual end-user, how
many datacenters processed service requests issued on
behalf of that user over a period of a week (Table 2): over

448 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Num regions: 1 2 3 4
% of users: 46% 42% 10% 2%

Table 2: The percentage of users for which Num regions were
contacted to service requests on behalf of the user.

54% of users have their data accessed from two or more
regions. Bottom line: there is a reasonable likelihood
that requests issued on behalf of one end-user will be
processed by multiple distinct datacenters.

2.3 Low read-write ratios

Many important datasets exhibit low read-write ratios
(Table 1). As a Facebook-specific example, dataset
ViewState (§5.2.1) keeps track of content previously
shown to the end-user and has a read-write ratio of 1.
Overall, Facebook has on the order of 100PB of period-
ically accessed data that has a read-write ratio below 5.
Note that with low read-write ratios, fully-replicated data
would incur significant cross-datacenter communication,
as all replicas would have to be updated on writes.

2.4 Ineffectiveness of distributed caches

A common strategy to obtain localized data accesses is
to deploy a distributed cache at each datacenter [2, 5, 13,
14, 15, 27, 32]. In practice this alternative is ineffective
for most of the workloads important to Facebook. First,
unless the cache hit rate in the cache is extremely high,
average read latencies will be high if the target data is not
located in the local datacenter. Because of this, caching
will demand significant hardware infrastructure, as the
caches at each datacenter would have to be large enough
to hold the working set of the data being accessed from
the datacenter.

Second, low read-write ratios lead to excessive com-
munication over cross-datacenter links, because the data
being written will, in the common case, be remote.

Finally, many of the datasets accessed by our services
require strong consistency. While providing strongly
consistent caches is possible, it significantly increases
the complexity of the solution, and it incurs a large
amount of extra cross-datacenter communication, fur-
ther exacerbating WAN latency overheads. It is notable
that the widely popular distributed caching systems that
are scalable, such as Memcached or Redis, do not offer
strong consistency. And for good reason.

2.5 Separate locality management layer

Akkio is implemented as a layer between the application
service and the underlying distributed datastore system.
This raises the question of whether it would make more
sense to implement Akkio’s functionality directly within

the datastore system. Technically, it would be possible,
but we argue that this is not a good idea for two reasons.

First, the size of shards are carefully selected by the
datastore architects for the purpose of managing load
balancing and failure recovery, taking into account the
configuration and other metadata needed to manage the
shards. Maintaining this data at µ-shard cardinality
would come at high storage overheads with 100’s of bil-
lions of µ-shards vs. 10,000’s of shards. Restructuring a
datastore system to achieve the level of scale required to
support µ-shards across each of its layers would require
non-trivial changes.

Second, many application services use data that are
not well-served by Akkio-style locality management;
e.g., Google search or Facebook’s social graph. Hence, it
would only make sense to incorporate Akkio’s function-
ality into specialized datastore systems; given that data-
store system designers optimize for the common case,
they would be reluctant to incorporate the additional
complexities associated with µ-shards. However, even
with a specialized datastore system, legacy issues come
into play; in our experiences, application service owners
are reluctant to switch away from the underlying data-
store system for which their service was tuned and on
which they rely for special features or behaviors.

We believe that Akkio bridges the functionality of-
fered by various distributed datastore systems and the
application services’ desire for (transparent) data local-
ity management to improve response times and reduce
WAN datalink overheads.

3 Background

In this section, we briefly review several aspects of shard
replication in distributed datastore systems so we can
explain Akkio’s architecture in §4. In doing so, we in-
troduce some vocabulary we use in subsequent sections.
Without loss of generality, we specifically describe how
shard replication is handled in ZippyDB, an internally
developed scalable key-value store system.4

ZippyDB’s data is partitioned horizontally, with each
partition assigned to a different shard. Each shard may
be configured to have multiple replicas, with one desig-
nated to be the primary and the others referred to as sec-
ondaries. (See Fig. 5.) We refer to all of the replicas of a
shard as a shard replica set, and each replica participates
in a shard-specific Paxos group [21, 24, 25]. A write to a
shard is directed to its primary replica, which then repli-
cates the write to the secondary replicas, using Paxos to
ensure that writes are processed in the same order at each

4 ZippyDB is used as the database service for hundreds of use cases
at Facebook including news products, Instagram services and Whats-
App components. An increasing number of services are being moved
onto ZippyDB at Facebook.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 449

A

B

CD
at
ac
en

te
rs

...

...

...

...

1prim

1repl-1

345repl-8

1repl-2

2repl-1

2prim

2repl-2

345prim

78prim

345repl-4

29repl-2

29prim

Sh
ar
ds

i

ii

iii

iv

v

i

i

ii
ii

iii

iv

iv

v

v

write

Sh
ar
ds

Sh
ar
ds

x

x

x

m
ig
ra
te

x

Figure 5: Shards with different replication configurations dis-
tributed across datacenters. The shaded rectangles represent
shards. Shard 1 has the primary replica in Datacenter A and
two secondary replicas in Datacenter B. Shard 2 is replicated
across A, B, and C with the primary in B. The smaller boxes
represent µ-shards. µ-shard v is assigned to replica set 2; a
write that modifies µ-shard v is directed to replica set 2’s pri-
mary replica and the underlying datastore system replicates the
write to the secondary replicas. Akkio is migrating µ-shard x
from replica set 78 to replica set 1, and the datastore system
replicates x onto 1’s secondary.

replica. Reads that need to be strongly consistent are di-
rected to the primary replica. If eventual consistency is
acceptable then reads can be directed to a secondary.

A shard’s replication configuration identifies the
number of replicas of the shard and how the replicas are
distributed over datacenters, clusters, and racks. Shard
replication configurations are customizable given that the
data owners are in the best position to make the right
tradeoffs between availability, consistency, resource-
effectiveness, and performance. For example, a service
may specify that it requires three replicas, with two repli-
cas (representing a quorum) in one datacenter for im-
proved write latencies and a third in different datacen-
ter for durability. Another service may specify that it re-
quires three replicas located in three different datacenters
but that eventual consistency is sufficient. A third might
require only one copy, perhaps because the infrastructure
overhead of having multiple copies may be deemed to be
too high relative to the value of the data.

We use the term replica set collection to refer to the
group of all replica sets that have the same replication
configuration. Each such collection is assigned a unique
id we call a location handle. When running on top of
ZippyDB, Akkio places µ-shards on, and migrates µ-
shards between different such replica set collections.

Fig. 5 depicts several shard replica sets and a number

of µ-shards within the replica sets. It also shows how a
write to a µ-shard is propagated to all secondaries.

Replica sets collections are provisioned and made
available to a client application service by a utility that
takes input from the client application service owners
to help them make the right tradeoffs between avail-
ability, consistency, resource-effectiveness, and perfor-
mance. For example, it inputs application-service param-
eters that include expected data size, expected access rate
(i.e., QPS), R/W-ratios, etc. It also inputs policy param-
eters that include replication factor, availability require-
ments, consistency requirements and constraints with re-
spect to where the replicas can be placed.

In general, all possible configurations are included
that minimize the replication factor (within the specified
constraints). However, some configurations may be ex-
cluded. For example, for ViewState, all replica set con-
figurations with three replicas in three different datacen-
ters are excluded so that two replicas will always be lo-
cated in the same datacenter so that writes have lower
latency (given the applications low R/W-ratio).

Once shards have been provisioned, then ZippyDB’s
Shard Manager assigns each shard replica to a specific
ZippyDB server while obeying the specified policy rules.
The assignment is registered with a Directory Service
so that the ZippyDB client library embedded in the ap-
plication service can identify the server to send its ac-
cess requests to. Shard Manager is also responsible for:
(i) load balancing, by migrating shards if necessary; and
(ii) monitoring the liveliness of ZippyDB servers, taking
appropriate action when a server failure is detected.

As a final comment, we observe that ZippyDB is able
to manage multiple different replication configurations
inside a single ZippyDB deployment. Other datastore
systems may not be able to support multiple configura-
tions inside a single deployment. However, in that case
one can usually implement different replication configu-
rations in a straight-forward way by using multiple data-
store deployments.

4 Akkio Design and Implementation

For clarity, we describe Akkio’s design and implemen-
tation in the context of a single client application ser-
vice, ViewState, which uses ZippyDB as its its underly-
ing datastore system. This is without loss of generality,
because the underlying database is unaware of Akkio’s
presence beyond a small portion of code in the database
client library.

4.1 Design guidelines
Akkio’s design is informed by three primary guidelines.
First, Akkio uses an additional level of indirection: it

450 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

maps µ-shards onto shard replica set collections whose
shards are in turn mapped to datastore storage servers.
This allows Akkio to rely on ZippyDB functionality to
provide replication, consistency, and intra-cluster load
balancing. Secondly, Akkio is structured so as to keep
most operations asynchronous and not on any critical
path — the only operation in the critical path is the µ-
shard location lookup needed for each data access to
identify in which replica set collection the target µ-shard
is located. Thirdly, Akkio minimizes the intersection
with the underlying application datastore tier (e.g., Zip-
pyDB), which makes it more portable. The only two
points where the datastore system and Akkio meet are
in the datastore client libraries and in Akkio’s migration
logic which is specific to the datastore.

4.2 Requirements

Akkio imposes three requirements on client application
services that wish to use it. First, the client applica-
tion service must partition data into µ-shards, which are
expected to exhibit a fair degree of access locality for
Akkio to be effective. Second, the client application
service must establish its own µ-shard-id scheme that
identifies its µ-shards. µ-shard-ids can be any arbitrary
string, but must be globally unique. Finally, to access
data in the underlying application database, the client
application service must specify the µ-shard the data be-
longs to in the call to the database client library. For
databases that do not support µ-shards natively as Zip-
pyDB does, the function used to access data is mod-
ified to include a µ-shard-id as an argument to each
access request; e.g., read(key) must be modified to
read(µ-shard-id,key).

Akkio imposes two requirements on the underlying
database. First, the database must ensure µ-shards do
not span shards. Because ZippyDB understands the no-
tion of µ-shards, it will never partition µ-shards. Many
databases support explicit partition keys that inform the
database how to partition data (e.g., MySQL, Cassan-
dra). Yet other databases may recognize key prefixes
when partitioning data (e.g., HBase, CockroachDB).

Second, the underlying application database must pro-
vide a minimal amount of support so that Akkio can im-
plement migration while maintaining strong consistency.
Because the specific features supported by different data-
store systems will vary, the µ-shard migration logic that
Akkio implements must be specific to the underlying
datastore system being supported. For example, some
databases, including ZippyDB, offer access control lists
(ACLs) and transactions, which are sufficient for imple-
menting µ-shard migration. Other databases, including
Cassandra, offer timestamp support for ordering writes,
which is also sufficient.

ViewState	Service	

ZippyDB	Client	Library	

Akkio	Client	Library		

Akkio	
Location	

DB	

Akkio	
Access	
DB	

ViewState	
ZippyDB	

	

Akkio	Data	
Placement	Service	

Lo
ca

tio
n?

	

Query	

Update	

Figure 6: Akkio System Design

4.3 Architectural overview

Akkio’s general architecture is depicted in Figure 6. A
portion of Akkio’s logic is located in the Akkio Client
Library, which is embedded into the database client li-
brary; i.e., ZippyDB client library, in this case. The client
application service makes data access requests by calling
the ZippyDB client library, which in turn may make calls
to the Akkio Client Library. Beyond the Akkio Client Li-
brary, Akkio is made up of three services, which are de-
picted at the bottom of the figure and described in more
detail in the subsections that follow.

The Akkio Location Service (ALS) maintains a lo-
cation database. The location database is used on each
data access to look up the location of the target µ-
shard: the ZippyDB client library makes a call to the
Akkio client library getLocation(µ-shard-id) function
which returns a ZippyDB location handle (represent-
ing a replica set collection) obtained from the location
database. The location handle enables ZippyDB’s client
library to direct the access request to the appropriate stor-
age server. The location database is updated when a µ-
shard is migrated.

An Access Counter Service (ACS) maintains an ac-
cess counter database, which is used to track all accesses
so that proper µ-shard placement and migration decisions
can be made. Each time the client service accesses a
µ-shard, the Akkio client library requests the ACS to
record the access, the type of access, and the location
from which the access was made. This request is issued
asynchronously so that it is not in the critical path.

The ACS is primarily used by Akkio’s third ser-
vice, the Data Placement Service (DPS), which decides
where to place each µ-shard so as to minimize access
latencies and reduce resource usage. The DPS also initi-
ates and manages µ-shard migrations. The Akkio Client
Library asynchronously notifies the DPS that a µ-shard
placement may be suboptimal whenever a data access re-
quest needs to be directed to a remote datacenter. The
DPS re-evaluates the placement of a µ-shard only when
it receives such a notification. This ensures the DPS
triggers migrations only when needed, thus effectively
prioritizing migrations and preventing unnecessary mi-
grations for µ-shards that are not being accessed. Note,

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 451

however, that a µ-shard access never waits for a poten-
tial migration to be evaluated or complete, but proceeds
directly with the remote access.

We now discuss these services in more detail.

4.4 Akkio Location Service (ALS)
The Akkio Location Service maintains a database that
stores the location handle of each µ-shard. In principle,
most any database could be used for storing this infor-
mation; here we use ZippyDB (without Akkio layered
on top of it).5 The location information is configured to
have an eventually consistent replica at every datacenter
to ensure low read latencies and high availability, with
the primary replicas evenly distributed across all data-
centers. This configuration is justified, given the high
read-write ratio (> 500) of the database. Moreover, dis-
tributed in-memory caches are used at every datacenter
to cache the location information so as to reduce the read
load on the database, considering that the database needs
to be queried on every access request.

It is possible that the distributed cache will serve a
stale location mapping, causing the access request to be
sent to the wrong server. The target ZippyDB server will
determine that the µ-shard is not present from the missing
ACL, and will respond accordingly. When that happens,
the ZippyDB client library queries the Akkio Location
Service again, this time requesting that the cache be by-
passed. The client library subsequently re-populates the
cache with the latest mapping (making the cache a typi-
cal demand-filled look aside cache).

The amount of storage space needed for the ALS is
relatively small: each µ-shard requires at most a few hun-
dred bytes of storage, so the size of the dataset for typi-
cal client application services will be a few hundred GB.
The overhead of maintaining a database for this amount
of data in every datacenter is trivial. Similarly, the in-
memory caches require no more than a handful of servers
per datacenter, since a single machine can service mil-
lions of requests per second. The service can easily scale
by increasing the number of caching servers.

4.5 Access Counter Service
Access counters are used to keep track of where µ-shards
are accessed from and how frequently. To maintain this
information, we use the time-windowed counters [7] pro-
vided natively by ZippyDB. The counter database uses
a separate, dedicated ZippyDB instance, configured to

5 If the application service uses a different underlying datastore sys-
tem, we use a separate instance of that datastore system for the location
database. We do this because the product owners of the underlying
datastores were hesitant to allow another system to be in the critical
path of data accesses to their system. The two other Akkio services use
ZippyDB regardless.

c o n s i s t e n c y r e q u i r e m e n t s = STRONG;
r e p l i c a t i o n c o n f i g u r a t i o n s = {

” l o c a t i o n h a n d l e a ” : <A, B , C>
” l o c a t i o n h a n d l e b ” : <D, E , F>
. . . .

} ;
a c c e s s c o u n t e r s e r v i c e = A c c e s s S t a t e ;
m i g r a t i o n p o l i c y = M i g r a t i o n P o l i c y (

m i c r o s h a r d l i m i t =6 h o u r s) ;

Listing 1: Akkio Configuration for Sample Service

use 3X replication. For each client application service,
Akkio stores a single counter per µ-shard per datacenter.

The amount of storage needed for the counters is on
the order of 10’s of bytes per µ-shard and datacenter; in
our environment less than 200GB per datacenter, which
is again trivial. The counter service can easily scale by
spreading the counters over a larger number of servers.
As an optimization, the number of counters needed and
the overhead of incrementing them can be reduced sub-
stantially by observing that many of the client applica-
tion services have identical access patterns. For exam-
ple, Facebook’s AccessState service, which records ac-
tions taken in relation to displayed content, has very sim-
ilar access traffic patterns as ViewState, which records
which content was displayed; the traffic of both services
is driven by Facebook user traffic. For this reason, Akkio
allows a client application service to specify that the
counters of another service should be used as a proxy for
its own access pattern, in which case the application ser-
vice does not need a separate set of counters. Moreover,
the requests are batched and send-optimized, so the extra
communication traffic generated is marginal. (With our
workload, ACS adds 0.001% in networking bandwidth.)

4.6 Akkio Data Placement Service (DPS)

Akkio’s Data Placement Service is responsible for map-
ping µ-shards to location handles and for migrating µ-
shards in order to improve locality. There is one DPS per
Akkio-supported backend datastore system that is shared
among all of the application services using instances of
that same datastore system. It is implemented as a dis-
tributed service with a presence in every datacenter.

The two main interfaces exported by DPS are
createUshard() and evaluatePlacement(). New
µ-shards are provisioned on demand when a µ-shard is
accessed for the first time; in that case, the Akkio client
library receives an UNKNOWN ID response from ALS, so it
invokes createUshard() (§4.6.1). EvaluatePlace-

ment() is invoked by the Akkio client library asyn-
chronously. It first checks whether initiating a migra-
tion is permissible, by checking whether the policy al-
lows the target µ-shard to be migrated at that time, and
whether the µ-shard is not already in the process of being

452 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

migrated. If migration is permissible, it determines the
optimal placement for the µ-shard (§4.6.2) and starts the
migration (§4.6.3).

DPS stores various information in its datastore sys-
tem for each µ-shard migration, including locks to pre-
vent multiple concurrent migrations of the same µ-shard,
and sufficient information needed to recover the migra-
tion should a DPS server fail during the migration (e.g.,
from and to location handles, lock owners, etc). As well
it maintains historical migration data: e.g., time of last
migration to limit migration frequency (to allow the pre-
vention of µ-shards ping-ponging).

4.6.1 Provisioning new µ-shards

When a new µ-shard is being created, DPS must decide
where to initially place the µ-shard. Our typical strategy
is to select a replica set collection with a primary replica
local to the requesting client and secondary replica(s) in
one of the more lightly loaded datacenters. But, in prin-
ciple, any available shard replica set collection could be
chosen, so using a hash function to distribute initial µ-
shard assignments is also a viable strategy.

The primary reason µ-shard provisioning is delegated
to DPS is that if any Akkio client library instance were to
do this directly, then a race condition might ensue if two
or more client instances decide to create the same new
µ-shard concurrently. A further advantage of leveraging
DPS is that current resource usage can be taken into ac-
count when placing the µ-shard.

4.6.2 Determining optimal µ-shard placement

The default policy for selecting a target replica set col-
lection for an existing µ-shard is to choose the one with
the highest score from among the available replica set
collections, excluding those with replicas in datacenters
with exceptionally high disk usage or exceptionally high
computing loads.6 Our implementation computes the
score in two steps. First, we compute a per-datacenter
score by summing the number of times the µ-shard was
accessed from that datacenter over the last X days (where
X is configurable), weighting more recent accesses more
strongly. The per-datacenter scores for the datacenters
on which the replica set collection has replicas are then
summed to generate a replica set collection score. If
there is a clear winner, we pick that winner.

If multiple replica set collections have the same high-
est score, we take this set of replica set collections and
generate, for each, another score using resource usage
data. A per-datacenter score is again generated first,

6 Policies can be configured to include specific thresholds that
shouldn’t be breached; e.g. to not consider datacenters with over n%
CPU usage.

A t o m i c a l l y :
a . a c q u i r e l o c k on u−s h a r d
b . add m i g r a t i o n t o ongoing m i g r a t i o n s l i s t

S e t s r c u−s h a r d ACL t o R /O;
Read u−s h a r d from t h e s r c
A t o m i c a l l y :
− w r i t e u−s h a r d t o d e s t
− s e t d e s t u−s h a r d ACL t o R /O

Update l o c a t i o n−DB wi th new u−s h a r d mapping
D e l e t e s o u r c e u−s h a r d and ACL
S e t d e s t i n a t i o n u−s h a r d ACL t o R /W
A t o m i c a l l y :

a . r e l e a s e l o c k on u−s h a r d
b . remove m i g r a t i o n from ongoing migr . l i s t

Listing 2: µ-shard migration for ZippyDB using ACLs and
transactions. Writes are blocked during the migration.

which is proportional to the amount of available re-
sources in the datacenter, taking into account, for ex-
ample, CPU utilization, storage space usage, and IOPS.
The per-replica set collection score is then generated by
summing the individual datacenter scores on which the
replica set collection has a presence. The replica set col-
lection with the highest score is then selected for placing
the target µ-shard, or a random one in case of a tie.

Information on which replica set collections are avail-
able is obtained from Configurator [35], a Facebook
configuration service that each client application ser-
vice keeps up to date. Listing 1 shows a simpli-
fied Akkio configuration for a sample application ser-
vice. Replication configurations provides a map-
ping between location handles and lists of datacenters
in which the shard replicas are located. While location
handles are opaque to Akkio, it does understand the list
of datacenters and uses that information when deciding
where to place µ-shards. Consistency requirements

specifies that this application service requires strong con-
sistency. Access counter service specifies which
data to use for the access counters. Migration policy

specifies a limit on the number of migrations for each µ-
shard to once every 6 hours. Migrations may be limited
to prevent µ-shard migration ping-ponging.

4.6.3 µ-shard migration

Once the DPS has identified a destination replica set
collection for a given µ-shard, it migrates the µ-shard
from the source to a destination. Different µ-shard mi-
gration methods are used, depending on the functional-
ity of the application service’s underlying database. We
first describe µ-shard migration for ZippyDB, which of-
fers access control lists (ACL’s) and transactions. Other
databases are considered further below. In these descrip-
tions, we assume strong consistency of µ-shard data. We
also assume the systems run reliably during migration;
migration failure handling is described in (§4.6.5).

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 453

A t o m i c a l l y :
a . a c q u i r e l o c k on u−s h a r d
b . add m i g r a t i o n t o ongoing m i g r a t i o n s l i s t

S t a r t double−w r i t i n g t o s r c & d e s t
Wait f o r l o c a t i o n i n f o cache TTL t o e x p i r e
Copy d a t a from s o u r c e t o d e s t
Swi tch r e a d i n g t o d e s t
Wait f o r l o c a t i o n i n f o cache TTL t o e x p i r e
Swi tch w r i t i n g t o d e s t (e nd i ng dbl−w r i t e s)
Wait f o r l o c a t i o n i n f o cache TTL t o e x p i r e
Remove s r c
A t o m i c a l l y :

a . r e l e a s e l o c k on u−s h a r d
b . remove m i g r a t i o n from ongoing migr . l i s t

Listing 3: µ-shard migration for Cassandra using timestamps
and double-writes. Writes are not blocked during the migra-
tion. The timestamps are used to merge data when copying

Listing 2 lists the method we first used for ZippyDB.
First, a lock is acquired on the µ-shard to prevent other
DPS instances from migrating the same µ-shard. (The
lock does not prevent the client from reading and writ-
ing µ-shard data.) The source µ-shard ACL is then set
to read only (R/O). This effectively blocks writes for the
duration of the migration; however, the ZippyDB client
library embedded in the application will automatically
retry the write if the previous attempt was blocked, thus
hiding blocked writes from the client application ser-
vice.7 The source µ-shard is then read and subsequently
written to the destination µ-shard and the destination µ-
shard ACL is set to R/O. The location database is updated
with the new µ-shard mapping. The source µ-shard and
its ACL is deleted, the destination µ-shard ACL is set to
R/W, and the migration lock is released.

Not all underlying databases support ACLs. For ex-
ample, the variant of Cassandra currently used at Face-
book does not offer ACLs. Hence, a different migration
method is needed. (See Listing 3.) In this case, the mi-
gration method takes advantage of the fact that Cassan-
dra offers timestamps natively and can thus allow writes
during ongoing migrations. After first acquiring a lock
on the µ-shard, the location database information associ-
ated with the µ-shard is modified so that client writes are
double written to both the source and destination, while
reads continue to be directed to the source. The µ-shard
data (from before the start of the double-writing) is then
copied from the source to the destination. The times-
tamps associated with each write are used to merge data
appropriately. Once the copy is complete, the location
database is modified to have reads go to the destination,
while continuing double-writing. The location database
is modified to have writes only go to the destination. Fi-
nally, the data at the source can be deleted at the source,
the µ-shard lock can be released, and the migration can

7 With our ViewState workload, which has a very low read-write
ratio, writes are retried in 0.007% of all accesses.

be removed from the list of ongoing migrations.
With this method, each time the location database is

updated, which occurs three times, it is necessary to wait
for the location database TTL to expire to ensure no stale
accesses go to the wrong destination. This delay could
be avoided if the underlying database supports ACLs (as,
e.g., open source Cassandra does), or if cache entries
could be reliably invalidated, then the wait times could
be reduced substantially. Also note that a potential race
condition could occur with double-writes: if a write on
the source succeeds, but not on the destination, then the
write is observable when reading from the source, but not
when later reading from the destination. We address this
by always first writing to the destination, before writing
to the source, on double writes.

4.6.4 Replica set collection changes

The replica set collections available to the client ap-
plication service, and in particular the set of replica-
tion topologies they represent, will change over time;
e.g., to account for shifts in request traffic or because of
changes in underlying hardware availability. Adding a
new replica set collection is straightforward: it is simply
added to the configuration state and the DPS can begin to
use it, migrating µ-shards to it when beneficial. Remov-
ing a replica set collection is, however, more involved.
The replica set collection to be removed is first disabled
in the configuration, preventing the DPS from selecting
this shard replica set collection from future placement
decisions. Then, in an off-line process, a DPS evaluat-

ePlacement() call is made for each µ-shard in the dis-
abled shard, which will cause the DPS to migrate the
µ-shard to another shard replica set collection using the
processes described above.

4.6.5 DPS fault recovery

When any of the servers running Akkio’s location or
counter services ceases to execute (say, due to a hard-
ware or software failure), they can simply be restarted
since their data is reliably persisted. The situation is dif-
ferent with a DPS server, since it may have been in the
middle of migrating µ-shards.

To deal with this case, every DPS server instance
is assigned a monotonically increasing sequence num-
ber (which is obtained from a global Zookeeper deploy-
ment [19]). This sequence number is persisted with all
state related to pending migrations; e.g., in the per µ-
shard lock that is acquired prior to beginning of a mi-
gration. When a DPS server instance fails, it will be
restarted, potentially on a different server, with a higher
sequence number. The newly restarted DPS instance will
then go through a recovery process where it queries the

454 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Changes to datastore Datastore-specific
Database client library migration logic

ZippyDB C++ 100 1,000ZippyDB PHP 150
Cassandra 500 700
Queue datastore 100 250
Datastore-X 100 250

Table 3: Lines of code implementing the two touch points be-
tween Akkio and underlying databases.

location database to identify any ongoing migrations that
were initiated by the failed DPS server instance but did
not complete. The sequence number for any recovered
migration is updated in order to avoid any conflicts with
a stale, failed DPS server instance.

For each recovered migration, the DPS servers identi-
fies which state to continue the migration on. This is a
custom piece of code that is different for each underly-
ing datastore system and migration approach used. For
example, in our ACL based approach, the DPS scans the
state of the µ-shard in the source backend and the desti-
nation backend to identify which steps of the migration
had been completed. It then resumes the migration from
that point on. In case of errors during a single migration
step, we restart the migration. Migrations are typically
retried until they succeed (although this is configurable).

5 Evaluation

5.1 Implementation metrics

A benefit of Akkio’s design that enhances portability is
how lightweight the touchpoints are between Akkio and
the underlying databases. Table 3 lists the lines of code
(LoC) required for each of the two touchpoints: e.g., the
ZippyDB client library only required 100-150 new or
modified LoC to accommodate Akkio, and Akkio only
required 1,000 or fewer LoC of datastore-specific code
for µ-shard migrations in ZippyDB.

5.2 Use cases analysis

We describe the effect Akkio had on 4 different client
application services. All of the metrics we present were
gathered from our live production systems running at
scale, driven by live user traffic. This limits our abil-
ity to experiment, so we primarily compare against the
systems that were in place before Akkio was introduced.

5.2.1 ViewState

Description: ViewState stores a history of content pre-
viously shown to a user. Each time a user is shown some
content, an additional snapshot is appended to the View-
State data. The data is used to prioritize subsequent con-

tent each time it is displayed to the user. ViewState stores
this history, with an average size of 500KB, in ZippyDB.

Requirements: ViewState data is read on the criti-
cal path when displaying content, so minimizing read la-
tencies is important. Writes are not on the critical path,
but low write latencies are important for the application,
as user engagement tends to drops if the content is not
“fresh”. The data needs to be replicated three ways for
durability. Strong consistency is a requirement.

Setup: ViewState uses replica set collections config-
ured with two replicas in one (local) datacenter and a
third in a nearby datacenter with the primary preferen-
tially located in the local datacenter. Akkio migrates µ-
shards aggressively for ViewState. Having the primary
replica be local ensures reads are fast. Having two repli-
cas locally ensures writes are fast given that a quorum
exists locally. Having two replicas locally has the further
advantage that, should the primary fail, then the other
can become primary. In aggregate, 6 different replica set
collections are available for Akkio to migrate ViewState
µ-shards across when using 6 datacenters.

Having the primary plus a replica in the same datacen-
ter could, however, cause some writes to get lost should
an entire datacenter go down: writes that have reached
the primary and the other replica in the same datacenter,
but have not reached the third replica, will get lost. The
ViewState owners were willing to make this tradeoff for
this rare scenario.

Result: Originally, ViewState data was fully repli-
cated across six datacenters. Using Akkio with the setup
described above led to a 40% smaller storage footprint,8

a 50% reduction of cross-datacenter traffic, and about a
60% reduction in read and write latencies compared to
the original non-Akkio setup. Each remote access noti-
fies the DPS, resulting in approximately 20,000 migra-
tions a second. See Fig. 7. Using Akkio, roughly 5% of
the ViewState reads and writes go to a remote datacenter.

5.2.2 AccessState

Description: AccessState stores information with re-
spect to user actions taken in response to content dis-
played to the user. The information includes the ac-
tion taken, what content it was related to, a timestamp
of when the action was taken, and so on. AccessState
data is appended to by a number of different services,
but read mostly by the dynamic content display system.
AccessState stores the action history, with an average
size of 200KB, in ZippyDB. The read-write ratio for Ac-
cessState is far lower than it is for ViewState.

Requirements: Reads are on the critical path when
deciding what content to display, and hence low read la-

8 Only 40% because the number of servers couldn’t be further re-
duced due to the CPU becoming the bottleneck.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 455

Figure 7: ViewState (top); AccessState (bottom): per-
centage of accesses to remote data, the number of
evaluatePlacement() calls to DPS per second, and the
number of ensuing µ-shard migrations per second. For View-
State the number of calls to DPS per second and the number of
migrations per second are the same.

avg p90 p95 p99
With Akkio: 10ms 23ms 26ms 34ms
Without Akkio 76ms 151ms 237ms 371ms
Table 4: AccessState client service access latencies.

tencies are needed. However, writes are not on the criti-
cal path and moderate write latency is acceptable (unlike
ViewState). The data needs to be replicated three ways
but only needs to be eventually consistent.

Setup: AccessState uses replica set collections config-
ured to have three replicas, each one in a different data-
center. Overall, 20 such replica set collections, each with
a different topology configuration, plus one replica set
collection configured to have a replica in each datacenter,
are available for Akkio to migrate AccessState µ-shards.
Akkio is configured to not migrate µ-shards aggressively
if, based on the access history, it believes the remote pro-
cessing may be transient. Moreover, it does not migrate
the primary replica to the datacenter from which the ac-
cess was made even though it would lead to lower write
latencies, mainly because not doing so significantly re-
duces the number of migrations needed. (Note that the
read-write ratio for AccessState is far higher than it is for
ViewState.)

Result: Originally, AccessState data was configured
to be fully replicated across six datacenters. Using Akkio
with the setup described above led to a 40% decrease

in storage footprint, a roughly 50% reduction of cross-
datacenter traffic, negligible increase in read latency
(0.4%) and a 60% reduction in write latency. Roughly
0.4% of the reads go remote, resulting in about 1,000 mi-
grations a second. Figure 7 shows that there are roughly
half as many migrations as there are calls to the DPS.

We also compared AccessState read latencies for a
configuration with 3X replication, with and without
Akkio. For the configuration without Akkio, the replicas
were spread evenly across all datacenters. The results
are shown in Table. 4: without Akkio, access latencies
are 7X–10X higher.

5.2.3 Instagram Connection-Info

Description: Connection-Info stores data for each user,
including when and from where they were online, as
well as other status and connection endpoint information.
This data is stored on Cassandra. There are roughly 30
billion µ-shards.

Requirements: This application service requires
strong consistency, for which it uses Cassandra’s quo-
rum read and write features [18]. Intra-continental quo-
rum read and write latencies are important. Originally,
this service stored its data using full replication across
five datacenters on one continent, but as usage in a sec-
ond continent increased substantially, some of the data
had to be stored on that continent.

Setup: This service uses two replica configurations.
One has 5X replication, with a replica in each of five
datacenters (as its original setup). The second has 3X
replication with two in the second continent and one in
the first. Having two replicas together ensures a quorum
stays within the same continent in the steady state.

Result: With Akkio it was possible to keep both read
and write latencies lower than 50ms which was important
to its operation, compared to greater than 100ms which
would have been incurred if quorums went across data-
centers. This service could not have expanded into the
second continent without Akkio.

5.2.4 Instagram Direct

Description: This is a traditional messaging application
service that supports group messaging. Each message
queue contains the sent messages as well as “cursors”
that track the position in the queue for each subscriber.
There are roughly 15 billion such queues, but with most
queues having a small footprint of a few hundred bytes.
The messaging application relies on Iris, a specialized
Facebook-internal queuing datastore service that guaran-
tees in-order delivery. (Underneath, Iris uses MySQL for
persistent storage.)

456 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 8: Distribution of client-side latencies for accessing the
Akkio location and counter databases, (not taking the cache
into account). Read latencies are shown in the top graph; write
latencies in the bottom graph.

Requirements: Iris is on the critical path for Insta-
gram Direct end-to-end message delivery. Both low
write and low read latencies are thus important. Strong
consistency is required.

Setup: Currently, three datacenters are used to store
Instagram Direct data. The database is configured to
have replica configurations with a primary in each dat-
acenter. Further, each replica set has a secondary replica
in the same datacenter as the primary and two additional
replica in another datacenter, for a total of four replicas.
User access history information is used to decide where
to place µ-shards; for message queues that are accessed
by multiple users (i.e., group messaging) placement is
determined by using each user’s access history weighted
by rate of user actions.

Result: With Akkio, on average, roughly 3,000 mi-
grations occur per second, resulting in a reduction in
end-to-end message delivery latency by 90ms at p90 and
150ms at p95. This, in turn, resulted in user engagement
improvements, where the number of message sends in-
creased by 0.9% overall and the number of text message
sends increased by 1.1%.

5.3 Analysis of Akkio services
Location Service Using AccessState as an example,
the location database uses roughly 200GB storage space
(unreplicated) to keep track of the location of each µ-
shard, with one µ-shard for each of Facebook’s billion+
users. The location database is itself one of the use
cases that shares a multi-tenant ZippyDB deployment. It
consumes 1,200 fully replicated shards with the primary
replicas spread evenly across all regions.

The hit rate of the distributed front-end cache is 98%

Step Time (avg.)
Acquire Lock 151ms
Set Source ACL To Read Only 315ms
Read µ-shard from Source 184ms
Write µ-shard to Destination 130ms
Update Location in DB 151ms
Delete µ-shard From Source 160ms
Set Destination ACL to Read Write 120ms
Release Lock 151ms

Table 5: Breakdown for AccessState µ-shard migration times.

on average. Read latency on the cache averages to around
1 ms. Figure 8 show the distributions of Akkio client
library-side read and write latencies after a miss in the
cache. Writes take considerably longer because a quo-
rum needs to be achieved across datacenters before a
write is acknowledged.

Access Counter Service We present various metrics
from the Access Counter DB for AccessState as an ex-
ample. The amount of storage required for storing one
counter for each of the billion+ users and datacenter is
about 400GB in total (unreplicated). The Access Counter
database also lives in our ZippyDB multi-tenant deploy-
ment with 1,100 dedicated shards. Figure 8 depicts the
counter database read and write latencies. Neither the
reads nor the writes on this database are on any critical
path. The read-write ratio is about 1:500. In a typical
day, the Access Counter DB for ViewState processes be-
tween 300,000 and 550,000 writes per second.

Data Placement Service The DPS receives about
100,000 evaluatePlacement() calls per second.
However, these calls are asynchronous and not on any
critical path. Migrations are the heavy-weight operations
executed by the DPS. Table 5 shows the elapsed time
breakdown of an AccessState µ-shard migration. The
sum of all the individual latencies is relatively high; how-
ever, some of the operations can be executed in parallel,
different migrations can proceed in parallel, and migra-
tion itself is not on the critical path. These latencies have
not been an issue for the client application services using
Akkio today; optimizing them is left for future work.

6 Related Work

Almost all datastore systems have some form of sharding
in order to be scalable, and offer replication to provide
high availability; e.g., [6, 10, 16, 30, 33]. However, these
systems offer little in terms of locality management. For
example, while Cassandra supports fine-grained control
of cross-datacenter replication, the control is static and
not based on access patterns [23].

A number of systems manage data locality at shard
granularity [4, 12, 29, 40]. Given their typical size, we
argue that it is challenging to place shards so that most
data accesses are local if the number of replicas is lim-
ited. Moreover, the overhead of migrating entire shards

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 457

is high, and hence these systems tend to be slow to react
to shifts in workload.

A few systems manage data locality at a granularity
finer than shards. Spanner supports µ-shards in the form
of directories [11], its unit of data placement. Applica-
tions control the contents of a directory using common-
ality in key prefixes. However, [11] makes no mention of
directory-level locality management.

Kadambi et al. extend Yahoo! PNUTs [10] with a
per-record selective replication policy [20] but only of-
fer eventual consistency. PNUTs behaves similarly to
a distributed cache in that some replicas of records are
transient and created on reads and removed when stale;
however data resides on disk and a (configurable) min-
imum number of replicas are kept up to date by prop-
agating updates. The authors argue that collecting and
maintaining access statistics of individual records is too
complex and incurs too much overhead. Akkio’s design
shows this need not be. Not tracking these fine grained
statistics can lead to sub-optimal decisions.

Volley determines where to place data based on logs
that must capture each access [1]. It does this at object
granularity. It generates placement and migration recom-
mendations, but leaves the coordination and execution of
any resulting migrations to the application, thus making
it cumbersome for an application to integrate it. Volley’s
design to process access logs offline makes it slow to re-
act to shifts in workload and to other real-time events.

Nomad is a prototype distributed key-value store that
supports overlays as an abstraction [36] designed to hide
the protocols needed to coordinate access to data as it is
migrated across datacenters. The unit of data manage-
ment is a container, which corresponds to an Akkio µ-
shard. However, Nomad does not track access histories
or take capacities, loads, and resource-effectiveness into
account as Akkio does.

7 Concluding Remarks

This paper makes two key contributions. First, we in-
troduce Akkio, a dynamic locality management service.
Second, we introduce and advocate for a finer-grained
notion of datasets called µ-shards. To our knowledge,
Akkio is the first dynamic data locality system for geo-
distributed datastore systems that migrates data at µ-
shard granularity, that can offer strong consistency, and
that can operate at scale. The system demonstrates that
it is possible, and advantageous, to capture data access
statistics at fine granularity for making data placement
decisions.

Akkio’s design is reasonably simple and largely based
on techniques well-established in the distributed systems
community. Yet we have found it to be effective (§5.2).
So far, several hundred application services at Facebook

use Akkio, and Akkio manages over 100PB of data. We
believe that our choice to implement Akkio as a separate
layer between the application services and their underly-
ing databases has worked out well. Separating the con-
cerns of locality management on the one hand, and repli-
cation, load-balancing and failure recovery on the other
hand, led to a much simpler design and made Akkio vi-
able to a larger set of application services.

With our experiences deploying Akkio, we learned a
number of lessons, most of which center around having
to make Akkio far more configurable than we had antic-
ipated. (1) we initially planned on storing all of Akkio’s
metadata in Akkio’s own datastore system (ZippyDB).
However, we found that application service owners were
not willing to add an extra cross-datastore dependency
in their critical path (and not willing to change the un-
derlying datastore system they were already using). This
forced us to make the location metadata store logic plug-
gable so that the location metadata could be stored on
the application’s underlying datastore system. (2) We
initially assumed all application services would follow
the same migration strategy. However, we found that we
had to create a separate migration strategy for each un-
derlying datastore system so as to play to its strengths.
(3) We learned that migrations didn’t need to be real-
time in all cases; e.g., moving messenger conversations
to their center of gravity once a day lead to more ef-
ficient resource usage, in part because smarter, off-line
placement decisions became feasible. More generally,
we found that the decision of when to migrate had to be
customizable: many application services wanted to de-
lay having their µ-shards migrated by several hundred
milliseconds after the first sub-optimal access in order
to decrease the chances of the migration interfering with
subsequent write accesses (especially if the migration
strategy involved taking the µ-shard offline to writes for
a small duration). (4) We expected to only need a few
different scoring policies when making placement deci-
sions, but ultimately had to support quite a variety of spe-
cific scoring policies; e.g., taking recent activity of indi-
vidual end-users into account when making messaging
µ-shard placement decisions. (5) We found that Akkio
made capacity planning (growth projections for different
datacenters) significantly more difficult with the added
dimension of locality, requiring finer-grained estimates
of datacenter resource growth.

Going forward, more applications are being moved to
run on Akkio, and more datastore systems are being sup-
ported (e.g., MySQL). Further, work has started using
Akkio (i) to migrate data between hot and cold storage,
and (ii) to migrate data more gracefully onto newly cre-
ated shards when resharding is required to accommodate
(many) new nodes.

458 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Acknowledgements

Many helped contribute to the Akkio system; in particu-
lar Victoria Dudin, Harsh Poddar, Dmitry Guyvoronsky;
from the ZippyDB team: Sanketh Indarapu, Sumeet Un-
gratwar, Benjamin Renard, Daniel Pereira, Prateek Jain,
Renato Ferreira, Joanna Bujnowska, Igor Pozgaj, Charlie
Pisuraj, Tim Mulhern; from the Cassandra team: Dikang
Gu, Andrew Whang, Xiangzhou Xia, Abhishek Maloo;
from the Generic Iris team: Changle Wang, Jeremy Fein,
Kristina Shia; From the Instagram team: Colin Chang,
Jingsong Wang; from the Messaging Iris team: Rafal
Szymanski, Jeffrey Bahr, Phil Lopreiato, Adrian Wang.
We also thank the reviewers, and our shepherd Kang
Chen, for their constructive comments that led to a far
better paper.

References
[1] AGARWAL, S., DUNAGAN, J., JAIN, N., SAROIU, S., WOL-

MAN, A., AND BHOGAN, H. Volley: Automated data placement
for geo-distributed cloud services. In Proc. 7th USENIX Conf. on
Networked Systems Design and Implementation (NSDI’10) (San
Jose, California, April 2010), pp. 17–32.

[2] AMIRI, K., PARK, S., TEWARI, R., AND PADMANABHAN, S.
DBProxy: A dynamic data cache for web applications. In Proc.
19th Intl. Conf. on Data Engineering (ICDE’03) (Bangalore, In-
dia, March 2003), pp. 821–831.

[3] ANNAMALAI, M. ZippyDB: A distributed key-value store.
Talk at Data @ Scale: https://code.facebook.com/posts/
371721473024046/inside-data-scale-2015, June 2015.

[4] ARDEKANI, M. S., AND TERRY, D. B. A self-configurable geo-
replicated cloud storage system. In Proc 11th USENIX Symp.
on Operating Systems Design and Implementation (OSDI’14)
(Broomfield, CO, October 2014), pp. 367–381.

[5] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DI-
MOV, P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI,
S., LI, H. C., ET AL. TAO: Facebook’s distributed data store for
the social graph. In Proc. USENIX Annual Technical Conference
(USENIXATC’13) (San Jose, CA, June 2013), pp. 49–60.

[6] CATTELL, R. Scalable SQL and NoSQL data stores. SIGMOD
Rec. 39, 4 (May 2011), 12–27.

[7] CHABCHOUB, Y., AND HEBRAIL, G. Sliding HyperLogLog:
Estimating cardinality in a data stream over a sliding window.
In Proc. IEEE Intl. Conf. on Data Mining Workshops (Sydney,
Australia, Dec 2010), pp. 1297–1303.

[8] CHEN, G. J., WIENER, J. L., IYER, S., JAISWAL, A., LEI,
R., SIMHA, N., WANG, W., WILFONG, K., WILLIAMSON, T.,
AND YILMAZ, S. Realtime data processing at Facebook. In
Proc. 2016 Intl. Conf. on Management of Data (SIGMOD’16)
(San Francisco, California, 2016), pp. 1087–1098.

[9] CHESTER, D. Considering the real cost of public cloud storage
vs. on-premises object storage, June 2017. [Online; posted 23-
June-2017].

[10] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U., SIL-
BERSTEIN, A., BOHANNON, P., JACOBSEN, H.-A., PUZ, N.,
WEAVER, D., AND YERNENI, R. PNUTS: Yahoo!’s hosted data
serving platform. Proc. of the VLDB Endowment 1, 2 (2008),
1277–1288.

[11] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN,
E., LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE,
D., QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMA-
NIAK, M., TAYLOR, C., WANG, R., AND WOODFORD, D.
Spanner: Google’s globally-distributed database. In Proc. 10th
USENIX Symp. on Operating Systems Design and Implementa-
tion (OSDI’12) (Hollywood, CA, Oct 2012), pp. 261–264.

[12] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN, S.
Schism: A workload-driven approach to database replication and
partitioning. Proc. VLDB Endowment 3, 1-2 (Sept. 2010), 48–57.

[13] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s highly
available key-value store. In Proc. 21st ACM Symp. on Operating
Systems Principles (SOSP’07) (Stevenson, Washington, 2007),
pp. 205–220.

[14] FITZPATRICK, B. Distributed caching with Memcached. Linux
Journal 2004, 124 (2004), 5.

[15] GARROD, C., MANJHI, A., AILAMAKI, A., MAGGS, B.,
MOWRY, T., OLSTON, C., AND TOMASIC, A. Scalable query
result caching for web applications. Proc. VLDB Endow. (Aug.
2008), 550–561.

[16] GEORGE, L. HBase: The Definitive Guide, 2nd ed. O’Reilly
Media, Inc., 2017.

[17] GOOGLE. Cloud locations. https://cloud.google.com/

about/locations/. [Online; retrieved 12-April-2018].

[18] HEWITT, E., AND CARPENTER, J. Cassandra: The Definitive
Guide, 2 ed. O’Reilly Media, 2016.

[19] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
ZooKeeper: Wait-free coordination for Internet-scale systems. In
Proc. USENIX Annual Technical Conference (USENIXATC’10)
(Boston, MA, 2010), pp. 145–158.

[20] KADAMBI, S., CHEN, J., COOPER, B. F., LOMAX, D., RA-
MAKRISHNAN, R., SILBERSTEIN, A., TAM, E., AND GARCIA-
MOLINA, H. Where in the world is my data. In Proc. 34th Intl.
Conf. on Very Large Data Bases (VLDB’11) (Seattle, Washing-
ton, August 2011), pp. 1040–1050.

[21] KIRSCH, J., AND AMIR, Y. Paxos for system builders: An
overview. In Proc. 2nd Workshop on Large-Scale Distributed Sys-
tems and Middleware (LADIS’08) (Yorktown Heights, NY, 2008),
ACM, pp. 3:1–3:6.

[22] KREIFELDT, E. Myriad factors conspire to lower subma-
rine bandwidth prices. http://www.lightwaveonline.

com/articles/2016/08/myriad-factors-conspire-

to-lower-submarine-bandwidth-prices.html, August
2016. [Online; posted 31-August-2016 — original source:
TeleGeography https://www.telegeography.com].

[23] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentralized
structured storage system. SIGOPS Operating Systems Review
44, 2 (Apr. 2010), 35–40.

[24] LAMPORT, L. The part-time parliament. ACM Transactions on
Computer Systems 16, 2 (May 1998), 133–169.

[25] LAMPORT, L. Paxos made simple. ACM SIGACT News (Dis-
tributed Computing Column) 32, 4 (Dec 2001), 51–58.

[26] MARZ, N., AND WARREN, J. Big Data: Principles and Best
Practices of Scalable Realtime Data Systems. Manning Publica-
tions Co., Greenwich, CT, USA, 2015.

[27] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 459

https://code.facebook.com/posts/371721473024046/inside-data-scale-2015
https://code.facebook.com/posts/371721473024046/inside-data-scale-2015
https://cloud.google.com/about/locations/
https://cloud.google.com/about/locations/
http://www.lightwaveonline.com/articles/2016/08/myriad-factors-conspire-to-lower-submarine-bandwidth-prices.html
http://www.lightwaveonline.com/articles/2016/08/myriad-factors-conspire-to-lower-submarine-bandwidth-prices.html
http://www.lightwaveonline.com/articles/2016/08/myriad-factors-conspire-to-lower-submarine-bandwidth-prices.html
https://www.telegeography.com

V. Scaling Memcache at Facebook. In Proc. 10th USENIX Conf.
on Networked Systems Design and Implementation (NSDI’13)
(Lombard, IL, 2013), pp. 385–398.

[28] NUFIRE, T. The cost of cloud storage. https://

www.backblaze.com/blog/cost-of-cloud-storage, June
2017. [Online; posted 29-June-2017].

[29] P N, S., SIVAKUMAR, A., RAO, S., AND TAWARMALANI, M.
D-tunes: Self tuning datastores for geo-distributed interactive ap-
plications. In Proc. of the ACM SIGCOMM 2013 Conference on
SIGCOMM (SIGCOMM’13) (Hong Kong, 2013), pp. 483–484.

[30] PLUGGE, E., HOWS, D., MEMBREY, P., AND HAWKINS, T.
The Definitive Guide to MongoDB: A complete guide to dealing
with Big Data using MongoDB, 3rd ed. Apress, 2015.

[31] ROWLING, J. K. Harry Potter and the Goblet of Fire. Thorndike
Press, 2000.

[32] SHAROV, A., SHRAER, A., MERCHANT, A., AND STOKELY,
M. Take me to your leader!: Online optimization of distributed
storage configurations. Proc. of the VLDB Endowment 8, 12
(2015), 1490–1501.

[33] STRICKLAND, R. Cassandra 3.x High Availability, 2nd ed. Packt
Publishing Ltd, 2016.

[34] TAI, A., KRYCZKA, A., KANAUJIA, S., PETERSEN, C.,
ANTONOV, M., WALIJI, M., JAMIESON, K., FREEDMAN,
M. J., AND CIDON, A. Live recovery of bit corruptions in data-
center storage systems. CoRR abs/1805.02790 (2018).

[35] TANG, C., KOOBURAT, T., VENKATACHALAM, P., CHANDER,
A., WEN, Z., NARAYANAN, A., DOWELL, P., AND KARL, R.
Holistic configuration management at Facebook. In Proc. 25th
Symp. on Operating Systems Principles (SOSP’15) (Monterey,
California, 2015), pp. 328–343.

[36] TRAN, N., AGUILERA, M. K., AND BALAKRISHNAN, M. On-
line migration for geo-distributed storage systems. In Proc.
USENIX Annual Technical Conference (USENICATC’11) (Port-
land, Oregon, June 2011), pp. 201–215.

[37] WIKIPEDIA CONTRIBUTORS. Shard (database architecture)
— Wikipedia. https://en.wikipedia.org/w/index.

php?title=Shard_(database_architecture)&oldid=

845931919, 2018. [Online; accessed 14-September-2018].

[38] WOODS, A., AND HARRISON, D. How to leverage geo-
partitioning. https://www.cockroachlabs.com/blog/geo-
partitioning-two/, April 2018. [Online; retrieved 12-April-
2018].

[39] WU, Z., BUTKIEWICZ, M., PERKINS, D., KATZ-BASSETT, E.,
AND MADHYASTHA, H. V. SPANStore: Cost-effective geo-
replicated storage spanning multiple cloud services. In Proc.
24th ACM Symp. on Operating Systems Principles (SOSP’13)
(Farminton, Pennsylvania, November 2013), pp. 292–308.

[40] YU, H., AND VAHDAT, A. Minimal replication cost for availabil-
ity. In Proc. 21st Annual Symp. on Principles of Distributed Com-
puting (PODC’02) (Monterey, California, July 2002), pp. 98–
107.

460 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.backblaze.com/blog/cost-of-cloud-storage
https://www.backblaze.com/blog/cost-of-cloud-storage
https://en.wikipedia.org/w/index.php?title=Shard_(database_architecture)&oldid=845931919
https://en.wikipedia.org/w/index.php?title=Shard_(database_architecture)&oldid=845931919
https://en.wikipedia.org/w/index.php?title=Shard_(database_architecture)&oldid=845931919
https://www.cockroachlabs.com/blog/geo-partitioning-two/
https://www.cockroachlabs.com/blog/geo-partitioning-two/

	Introduction
	Motivation
	Capital and operational costs matter
	Service request movements
	Low read-write ratios
	Ineffectiveness of distributed caches
	Separate locality management layer

	Background
	Akkio Design and Implementation
	Design guidelines
	Requirements
	Architectural overview
	Akkio Location Service (ALS)
	Access Counter Service
	Akkio Data Placement Service (DPS)
	Provisioning new µ-shards
	Determining optimal µ-shard placement
	µ-shard migration
	Replica set collection changes
	DPS fault recovery

	Evaluation
	Implementation metrics
	Use cases analysis
	ViewState
	AccessState
	Instagram Connection-Info
	Instagram Direct

	Analysis of Akkio services

	Related Work
	Concluding Remarks

