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1 Introduction
Traditionally, training machine learning models requires all
data to be in the same place accessible to a trusted third
party. However, privacy concerns and legislations such as
General Data Protection Regulation (GDPR) [16] and Health
Insurance Portability and Accountability Act (HIPAA) [14]
inhibit transmitting data to a central place resulting in the
impossibility of training machine learning models using this
traditional technique. Despite these limitations, in some cases
data owners would benefit from collaboratively training a
model. To address this requirement, very recently Federated
Learning (FL) has emerged as an alternative way to do col-
laborative model train models without sharing the training
data [12] [17] [18].

In FL, each data owner, party, maintains its own data locally
and engage in a collaborative learning procedure where only
model updates are shared with an aggregator. Note that the
aggregator does not have access to the data of any of the
parties. Through FL, parties with relatively small datasets can
learn more accurate models than they would if they had only
used their own data. Examples of such scenario include a
large number of individual parties providing personal data to
smart phone apps and a relatively small number of competing
companies within the same domain training a single model. A
concrete scenario where FL has been used to collaboratively
train models include Google’s key board predictive model [6].

In these scenarios, parties may be very diverse. This di-
versity largely differentiates FL from traditional distributed
learning systems such as [8,11] where a datacenter is available
for careful management. Most of the times, the data parties
involved in FL training have diversified training sets that
may vary in size, computing power, and network bandwidth.
These differences impact the FL process as we empirically
demonstrate in our experimental section.

In the following, we first overview existing FL approaches.
We show that stragglers are not considered by existing tech-
niques. Then, through a preliminary study, we demonstrate
the potential impact of stragglers on FL process and finally
conclude with a discussion of the research problems.
2 Related Work
Existing FL approaches do not account for the resource and
dataset heterogeneities [7,10,12], nor are they straggler-aware.

In particular, there are two main approaches in training a FL
model: synchronous and asynchronous FL.

In synchronous FL, a fixed number of data parties are
queried in each learning epoch to ensure performance and data
privacy. Recent synchronous FL algorithms focus on reducing
the total training time without considering the straggler parties.
For example, [12] proposes to reduce network communication
costs by performing multiple SGD (stochastic gradient de-
scent) updates locally and batching data parties. [7] reduces
communication bandwidth consumption by structured and
sketched updates. Moreover, [9] exploits randomized tech-
nique to reduce communication rounds. FedCS [13] proposes
to solve data party selection issue via a deadline-based ap-
proach that filters out slowly-responding parties. However,
FedCS does not consider how this approach effects the con-
tributing factors of straggler parties in model training. Simi-
larly, [19] proposes a FL algorithm for the use case of running
FL on resource constrained devices. However, they do not aim
to handle straggler parties and treat all parties as resource con-
strained. In contrast, we focus on scenarios where resource
constrained devices are paired with high resource devices to
perform FL.

Most asynchronous FL algorithms work only for convex
loss and do not allow parties to drop-out. For instance, [15]
provides performance guarantee only for convex loss func-
tions with bounded delay assumption. Similarly, [3, 10] allow
uniform sampling of the data parties and provide performance
guarantee for convex loss functions. Furthermore, the com-
parison of synchronous and asynchronous methods of dis-
tributed gradient descent [4] suggest that FL should use the
synchronous approach, because it is more efficient than the
asynchronous approaches [12, 13].

3 Preliminary Study
We conduct an experimental study on AWS EC2 to quantify
the impact of resource and dataset heterogeneity on training
time of FL. We use a multi-party TensorFlow [2] setup to em-
ulate a FL environment following the configuration settings
used in [5], with δ as 0.001, ε as 8, and σ in the Gaussian
mechanism as 1.0. We deploy 20 data parties to emulate a
randomly picked 100-party FL environment, where each party
is running inside of a Docker container. The training process
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Test # of Clients # of CPUs CPUs per Client
1 4 16 4
2 4 8 2
3 4 4 1
4 3 1 1/3
5 5 1 1/5

Table 1: Distribution of data parties and CPUs.
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Figure 1: Per-epoch training time different CPU resources and
different dataset sizes.

terminates until the accumulated privacy cost exceeds the pri-
vacy bound (δ). All the containerized parties are running on a
single EC2 virtual machine (VM) instance of m4.10xlarge
with 40 vCPUs and 160 GiB memory.

We train a CNN (Convolutional Neural Network) model on
the MNIST dataset [1], which contains 60,000 28 grayscale
images of ten handwritten digits. To emulate a realistic imbal-
anced party data distribution, we use Non-IID in data selec-
tion, where each party randomly selects 5 digit categories and
then performs the image sampling from these 5 categories.
The CNN model consists of two CNN layers and one Max-
Pooling layer. We use a filter size of 3 for the CNN layers and
2 for the MaxPooling layer. We also add two drop-out layers
with a dropping out rate of 0.25 and 0.5, respectively. We
use Adadelta for the optimizer, and accuracy as the training
evaluation metric. We train the model with 8 learning epoches
and measure the training time for each epoch.

Resource Heterogeneity First, we explore the impact of
CPU resource heterogeneity on training time. Table 1 sum-
marizes the parties and CPU resource distributions of 5 test
groups. We reduce the total amount of CPU resources from
Test 1 to 5, and within each test, each party gets an equal
share of the available CPU resource. For example, in Test 1,
4 parties get allocated 16 CPU cores with 4 cores per party.
Within each test group, we conduct 4 tests each with varied
dataset size (sizing from 500 – 5000 data points). Figure 1
plot the average training time of one learning epoch across all
data parties for each test. As shown, as the amount of CPU
resources allocated to each party increases, the training time
gets longer. Reducing the per-party CPU from 4 cores to 2
cores does not impact the training time much, since the CPU

bottleneck is relieved with 4 CPU cores.
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Figure 2: Per-epoch training time with different dataset sizes.

Data Heterogeneity We next quantify the impact of data
heterogeneity on training time. We deploy 14 data parties,
each owning a different dataset size (varying from 100–5000
data points) but with the same amount of CPU resources (i.e.,
1 CPU core), to concurrently training the model. As shown
in Figure 2, the training time gets linearly increased as the
dataset size gets bigger. This demonstrates that data hetero-
geneity can significantly impact the FL system’s training time.

4 Research Problems and Opportunities
Our preliminary results imply that the straggler issues can
be severe under a complicated and heterogeneous FL envi-
ronment. We believe that our paper will lead to discussions
on the following aspects, which are the focus of our ongoing
research:
P1: How to classify parties based on their response time and
then use this information for our advantage without affecting
the FL process? A naive solution can lead to misrepresenta-
tion of data, because resource constraints may be correlated
with quantity/quality of data.
P2: How to incorporate data of each party in the FL process
without worrying about stragglers? This problem is challeng-
ing because we need to make sure we do not over include
or exclude certain data parties in FL process. We should be
able to provide performance guarantee for general machine
learning models and algorithms.
P3: How to identify drop-out parties and mitigate the effect
of drop-out data parties without affecting the ML process?
Existing approaches cannot identify drop-out parties dynam-
ically during the FL process, and no effective method has
been proposed to mitigate the information loss when drop-out
happens.
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