
Syndicate: A Scalable, Read/Write File Store for Edge Applications

Jude Nelson (student)

Princeton University

jcnelson@cs.princeton.edu

Larry Peterson

Princeton University

llp@cs.princeton.edu

Applications in middle and last mile networks (the

“edge”) that make use of local storage, network caches,

and datacenter storage must consider availability, dura-

bility, performance, cost, and consistency requirements

in their design. We present Syndicate, a wide-area

read/write file store that addresses these concerns.

To illustrate them, suppose a physicist PI and her col-

laborators host experimental data on her university’s file

server. As research progresses, she discovers she needs

higher data availability and durability, so she uploads the

important datasets to cloud storage. While her collab-

orators may still read and edit them, she now pays for

hosting and data transfer.

Later, the group starts to use off-site grid computers to

regularly download and process the data. To decrease

latency and transfer costs and increase bandwidth and

availability, the PI employs network caches to scale up

the number of concurrent downloads. However, depend-

ing on caching policy, remote readers may get stale data

well after a modification, causing the collaborators to

suffer invalid results.

This example offers four key insights. First, using net-

work caches for remote reads improves availability and

amortized performance regardless of where the data is

hosted. By using network caches, the collaborators may

store their data wherever is best for them; only cache

misses affect read performance.

Second, durability only needs to be considered on

writes. When a collaborator commits new experimental

data, he chooses how many replicas to make, and where

to put them, to achieve a desired durability. This choice

is specific to the dataset, and is a matter of policy (e.g.

durability, cost, etc.), not implementation.

Third, remote readers cannot rely on caches for consis-

tency. Even though many caches today offer support for

object TTLs and refresh requests (i.e. via HTTP direc-

tives), the cache has its own cost and performance objec-

tives, and may choose to ignore directives to meet them.

For example, a cache could keep an object resident be-

yond its TTL to reduce the cost and performance penal-

ties of frequent revalidation. Moreover, because caches

can be transparent, the collaborators and grid computers

can neither reliably control nor predict caching policy.

Fourth, widely-deployed storage and caching infras-

tructure are almost good enough. Rather than modifying

the infrastructure, the collaborators address these con-

cerns out-of-band (e.g. storage conventions on a wiki).

From these insights, we derive Syndicate. Syndicate

organizes data into a filesystem (a Volume) and addresses

consistency by treating each version of each block of

each file as a read-only cacheable object with a version-

specific URL. Applications control how often to check

for new versions on reads, and how often to publish new

versions on writes. Readers and writers contact a scal-

able Metadata Service (MS) in the cloud to synchronize

Volume metadata and version records. In doing so, Syn-

dicate decouples caching from consistency, whereby ap-

plications, not caches, pay for freshness.

Applications access data through local User Gateways

(UGs). The UG performs the aforementioned metadata

synchronization, and reads remote data for applications

via network caches. It hosts written data on local storage,

and synchronously replicates it to an application-defined

quorum of Replica Gateways (RGs), which mediate ac-

cess to cloud storage. This decouples performance and

read availability from durability. Volume administrators

(i.e. the PI) enforce replication and access control pol-

icy by binding UGs and RGs to Volumes, thereby decou-

pling storage policy from implementation.

With sufficient permission, any application may read

or write any file. The UGs and MS coordinate to enforce

access control and ensure that any reads after a write re-

turn the latest data after an application-given deadline.

We implemented the UG as a FUSE filesystem, the RG

as a cloud-hosted process, and the MS as a Google Ap-

pEngine service. We will present a demo, where the RG

leverages Amazon S3 for cloud storage and the UG lever-

ages the CoBlitz CDN and Squid for network caches.


