
The Cuckoo Filter: It’s Better Than Bloom

Bin Fan (student author), David G. Andersen, ∗Michael Kaminsky
{binfan,dga}@cs.cmu.edu, michael.e.kaminsky@intel.com

Carnegie Mellon University, ∗Intel Labs

Approximate set-membership tests, exemplified by
Bloom filters [1], have numerous applications in net-
working and distributed systems. A Bloom filter is a
compact data structure to quickly answer if a given item
is in a set with some small false positive probability ε .
Due to its simplicity and high space efficiency, Bloom
filters become widely used in network traffic measure-
ment, packet routing, distributed caching, network intru-
sion detection, distributed joins in databases and so on.

Limitations of conventional Bloom filters One major
limitation of Bloom filters is that the existing items can-
not be removed without rebuilding the entire filter. Sev-
eral proposals have extended classic Bloom filters to sup-
port deletion, but with significant space overhead: count-
ing Bloom filters [3] are 4× larger and the recent d-left
counting Bloom filters (dl-CBFs) [2], which adopt a hash
table-based approach, are still about 2× larger than a
space-optimized Bloom filter.

Cuckoo filter overview This work shows that sup-
porting deletion for approximate set-membership tests
does not require higher space overhead than conventional
Boom filters. We propose the cuckoo filter, a practical
data structure that can replace both counting and tradi-
tional Bloom filters with three major advantages: (1) it
supports adding and removing items dynamically; (2) it
achieves higher lookup performance; and (3) it requires
less space than a space-optimized Bloom filter when the
target false positive rate ε is less than 3%. A cuckoo filter
is a compact variant of a cuckoo hash table [4] that stores
fingerprints (i.e., a short hash) for each item inserted, in-
stead of the entire item. Cuckoo hash tables can have
more than 95% occupancy, which translates into high
space efficiency when used for set membership.

Challenge and our solution Cuckoo hashing asso-
ciates each item with multiple possible locations in the
hash table by different hash functions. This flexibility in
where to store an item improves the table’s occupancy,
but also raises several challenges, the most important of
which we discuss here.

When inserting new items, cuckoo hashing often re-
fines its previous location assignment by relocating the
existing fingerprints to their alternative locations. A

straightforward but space-inefficient solution is to store
each item (perhaps external to the table) in addition to
its fingerprint; then an item’s alternate location can be
calculated by fetching and rehashing the original item.
To avoid storing all the items, we use partial-key cuckoo
hashing to find each item’s alternate location using only
its fingerprint, and thus we can add new items dynam-
ically to the cuckoo filters without storing all inserted
items somewhere.

Cuckoo filters are easy to implement—our implemen-
tation consists of only 500 lines of C++ code. The fol-
lowing table compares the space consumption achieved
by the space optimized (counting) Bloom filters and our
cuckoo filters with false positive rate ε = 1% and 0.01%.
Micro-benchmark results also show that, cuckoo filters
provide faster lookup speed than the space-optimized
Bloom filters, especially for workloads with a large frac-
tion of positive queries.

bits per item deletion
ε = 1% ε = 0.01% support

Bloom filter 9.6 19.1 no
counting Bloom filter 38.3 76.5 yes

cuckoo filter 9.1 16.1 yes

Summary Cuckoo filters provide the flexibility to add
and remove items dynamically while achieving higher
lookup performance and using less space than conven-
tional Bloom filters, for applications that require low
false positive rates (< 3%). We believe cuckoo fil-
ters could become preferable in serving approximate set-
membership queries for a broad variety of network and
distributed applications.

References
[1] B. H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7):422–426, 1970.
[2] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and

G. Varghese. An improved construction for counting bloom fil-
ters. In 14th Annual European Symposium on Algorithms, LNCS
4168, pages 684–695, 2006.

[3] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache:
A scalable wide-area Web cache sharing protocol. In Proc.
ACM SIGCOMM, pages 254–265, Vancouver, British Columbia,
Canada, Sept. 1998.

[4] R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms, 51
(2):122–144, May 2004.

1


