
A Formal Framework for Secure Routing Protocols

Chen Chen? Limin Jia◦ Hao Xu ? Cheng Luo? Wenchao Zhou� Boon Thau Loo?

? University of Pennsylvania ◦ Carnegie Mellon University � Georgetown University
{chenche,haoxu,chengluo,boonloo}@cis.upenn.edu, liminjia@cmu.edu, wzhou@cs.georgetown.edu

The Internet infrastructure, as it stands today, is highly
vulnerable to attacks. The Internet runs the Border Gate-
way Protocol (BGP), where routers are grouped into Au-
tonomous Systems (ASes) administered by Internet Ser-
vice Providers (ISPs). Since route advertisements are
not authenticated, ASes can, for example, advertise non-
existent routes or claim to own arbitrary destination ad-
dresses. In response to these vulnerabilities, there has
been a considerable amount of work to design new ar-
chitectures and protocols for a more secure Internet, in-
cluding direct secure extensions (Secure-BGP, ps-BGP
and so-BGP) and “clean-slate” Internet architectural re-
designs such as SCION and ICING. However, none of
the above formally analyzed their security properties;
these protocols are typically evaluated primarily exper-
imentally, and their security properties shown via infor-
mal reasoning. To address these limitations, we present
a unified formal framework that allows a protocol devel-
oper or researcher to combine development and verifica-
tion of secure routing protocols. We introduce the major
components in our framework in the rest of the paper.
Protocol specification: Secure Network Datalog
(SeNDLog) [2], a declarative language proved effective
in implementing network protocols, is used to encode se-
cure routing protocols. As a variant of Datalog, SeND-
Log program consists of rules of the form h:-b1, ..., bn,
where h (rule head) and bis (rule body) are tuples stored
in a relational database. Informally, each SeNDLog rule
specifies that if all the body tuples are derivable, then the
head tuple is derivable. To support distributed execution,
each tuple has a location specifier indicating where the
tuple is stored. The head tuple may specify a location
that is different from the body tuples, in which case the
derived head tuple will be communicated over the net-
work. To support security operations such as asymmetric
encryption or hash function, SeNDLog extends declara-
tive networking with cryptographic libraries, which can
be used as user-defined function in the rule body.
Compilation: The compiler we design, as part of a
declarative engine for implementing and experimenting
with network protocol[1], is key to bridging implemen-
tation and verification of secure routing protocol. It con-
sists of two main parts: a code generator and a verifica-
tion condition generator. The code generator translates
SeNDLog specifications into imperative code, which can
be executed for experimental analysis. On the other

hand, the verification condition generator works on the
abstract syntax tree of the SeNDLog specification. It
syntactically extracts proof obligations, and outputs all
necessary definitions, axioms and lemmas needed for
proving user-specified security properties.
Performance evaluation: The performance evaluation
of the secure routing protocols is performed using the
RapidNet [1] declarative network toolkit. The SeNDLog
specification is disseminated to all nodes participating in
the secure routing protocol, and is compiled into imper-
ative code executable both in simulation and as deploy-
ment. The RapidNet toolkit then automatically measures
multiple performance metrics such as latency, bandwidth
utilization, and convergence time.
Formal verification: Security guarantees provided by
secure routing protocols can be conveniently verified.
We develop a trace-based semantics of SeNDLog pro-
grams along with a sound program logic deriving secu-
rity properties of programs running concurrently with ad-
versarial codes. Users only need to specify the security
properties to be verified, and the invariants of each head
tuple. The verification condition generator then automat-
ically constructs proof obligations based on the specified
invariants. These proof obligations are discharged using
a theorem prover. Currently we uses Coq, an interactive
proof assistant, to manually complete the proof. We plan
to explore possible automation in the proof generation as
our future work.
Case study and demonstration: We will provide vi-
sualized demonstration through case studies on two ex-
ample secure routing protocols, namely Secure-BGP (a
well-recognized BGP variant) and SCION (a clean-slate
new design of Internet routing infrastructure). We will
present how they are specified in SeNDLog, and empiri-
cally evaluated in emulation. We will also show the ver-
ification and comparison of the security properties pro-
vided by the two example protocols.
Student authors: Chen Chen, Hao Xu, and Cheng Luo.

References
[1] S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena, M. Oprea, and B. T.

Loo. Declarative toolkit for rapid network protocol simulation and
experimentation. In Proc. SIGCOMM (demo), 2009.

[2] W. Zhou, Y. Mao, B. T. Loo, and M. Abadi. Unified Declara-
tive Platform for Secure Networked Information Systems. In Proc.
ICDE, 2009.

1


