
Self tuning data-stores for geo-distributed cloud applications
Shankaranarayanan P N (student)

Purdue University
Ashiwan Sivakumar (student)

Purdue University
Sanjay Rao

Purdue University

Mohit Tawarmalani
Purdue University

{spuzhava, asivakum, sanjay, mtawarma@purdue.edu}

Figure 1:System Design

Introduction: 1 Modern internet applications have re-
sulted in users sharing data with each other in an in-
teractive fashion. These applications have very strin-
gent service level agreements (SLAs) which place tight
constraints on the performance of the underlying geo-
distributed data-stores. Deploying these systems in the
cloud to meet such constraints is a challenging task, as
application architects have to strike an optimal balance
among different contrasting objectives such as maintain-
ing consistency between multiple replicas, minimizing
access latency and ensuring high availability. Achieving
these objectives requires carefully configuring a number
of low-level parameters of the data-stores, such as the
number of replicas, which DCs contain which data, and
the underlying consistency protocol parameters. In this
work, we adopt a systematic approach where we develop
analytical models that capture the performance of a data-
store based on application workload and build a system
that can automatically configure the data-store for opti-
mal performance.
System design: Figure1 shows the architecture of our
system. The OE takes in the workload characteristics
and data-store performance measurements from the OP
and applies the application SLA requirements, to gener-
ate optimal configuration strategies as the output. These
configurations are then pushed to the data-store by the
AT, which is a middleware library. The design makes
the system components transparent to the application as
well as the data-store, and scale in an elastic fashion in
the cloud.

The OE comprises of many analytical models that we
developed to capture the performance of the data-store.
The model objectives are to optimize the latency for dif-
ferent percentile of requests and to generate configura-

1We plan to present only a poster

0

100

200

300

400

60 120 180 240 300 360 420 480 540 600
Time in Minutes

R
ea

d 
La

te
nc

y 
(m

se
c) Los Angeles DC

Failed
Singapore DC
Recovered

Singapore DC
Failed

Normal
Operation

Los Angeles DC
Recovered

Figure 2: Box plot showing the read latency under normal
condition and failure of different replicas.

tion decisions at a lower granularity (group of data-items
rather than the entire database). Our models also exploit
the diversity in the access locations, asymmetry in access
patterns and relative priority between reads and writes to
enhance the performance of the system.

Evaluation: The models used in our initial experi-
ments are built based on Cassandra’s [2] architecture. We
conduct experiments on a Cassandra cluster (27 nodes,
each corresponding to the AWS Edge locations [1]) on
an EC2 testbed using real-world traces of Wikipedia
and Twitter. Figure2 shows the read latency observed
from one of our experiments on a Wiki article for which
reads and writes arrive from all over the world. The OE
chooses replicas in US and Asia (with a quorum of size
2). We learn from the results that failure of some replicas
can degrade the performance and thus it is very critical
to optimize for latency under failure of DCs. This insight
enable us to develop models that consider availability of
DCs when optimizing for latency.

As future work, our implementation would focus on (i)
the scalability (and overhead) of our system (ii) deciding
the right granularity of configuration decisions (iii) dy-
namically adapting to the workload shifts and (iv) ensur-
ing stability of the system by preventing oscillations. We
believe that our work is one of the first that helps geo-
distributed applications to automatically tune the data-
store for optimal performance.

References
[1] Aws edge locations. http://aws.amazon.com/about-aws/

globalinfrastructure.

[2] L AKSHMAN , A., AND MALIK , P. Cassandra:a decentralized
structured storage system.Newsletter. ACM SIGOPS Operating
Systems Review 44 (2010), 35–40.


