LFGraph: Simpler is Better for Distributed Graph Analytics

Imranul Hoque and Indranil Gupta*
University of Illinois, Urbana-Champaign
{ihoque2, indy} @illinois.edu

Cloud computing frameworks today are being used to
process extremely large graphs with billions of vertices
and hundreds of billions of edges in a distributed manner.
Some examples are: Web graph, citation graphs, prod-
uct co-purchase graphs, online social networks, finan-
cial networks, etc. Graph processing frameworks (e.g.,
[1, 2]) need to produce fast results while also maintain-
ing a small memory footprint.

Concretely, depending on how servers share the graph
data for analytics, a distributed graph processing frame-
work can be classified as either message-passing or
shared memory-based. Due to the nature of graph pro-
cessing, most of these frameworks are iterative, i.e., they
operate in steps. However, today’s frameworks suffer
from three overheads: 1) intelligent graph partitioning
consumes significant up-front time, 2) push-based mes-
sage passing approaches lead to large queues and incur
significant communication overhead, and 3) memory us-
age is high because of local data stored at each server.

We elaborate briefly on these. Intelligent graph parti-
tioning can reduce the time per iteration, but often con-
stitute a major portion of the total run-time. For in-
stance, when running PageRank using PowerGraph [1]
on 8 servers, with 30 iterations (a number that Google
uses [2]), the intelligent partitioning constitutes 66% of
the total run-time. Without intelligent partitioning, each
of the iterations takes longer. Message-passing graph en-
gines like Pregel [2] 1) queue messages from the previous
iterations, which leads to queues growing rapidly and ul-
timately limits the number of vertices per server; and ii)
push data along graph edges, which causes duplicate net-
work traffic. Finally, shared memory-based graph pro-
cessing frameworks such as GraphLab [1] use a Gather-
Apply-Scatter model — they store both in- and out-links,
which increases memory requirement by 2x for directed
graphs.

Our system LFGraph (Laissez-Faire Graph process-
ing engine) addresses the above shortcomings. LFGraph
is an efficient, distributed in-memory graph analytics
framework. Its key features include:

e LFGraph uses a pull-based strategy to receive data
from immediate neighbors stored at a different server,
thus eliminating the need to store the queued mes-
sages. This increases the number of vertices processed

*This research was supported in part by NSF grant CCF-0964471.

at a single server.

o LFGraph reduces communication overhead by ex-
ploiting the fact that many vertices assigned to a single
server share their one-hop neighbors. Thus, instead of
pulling a shared neighbor’s data multiple times, LF-
Graph pulls it only once. This results in up to 3x re-
duction in network traffic compared PowerGraph. LF-
Graph batches data transfers.

o LFGraph reduces memory footprint by storing only in-
edges of vertices. This causes over 2x reduction in
memory footprint compared to GraphLab and Power-
Graph.

o LFGraph eliminates the need to intelligently partition
the graph. This means that a random partitioning suf-
fices in LFGraph to retain a factor of 3 performance

gain over existing mentioned systems.
60

LFGraph —>—
PowerGraph —#&—

50
10
30
)
)

Time (sec)

)

Number of Servers
Figure 1: PageRank run-time for 5 iterations

We evaluated our high-performance C++ implementa-
tion of LFGraph by running PageRank for 5 iterations.
We used the Twitter graph containing 41M vertices and
1.4B edges as the data-set. The experiments were con-
ducted on a 32-server Emulab cluster. Each server con-
sists of one quad-core Intel Xeon E5530 processor with
12 GB of RAM and is connected via 1 GigE. We com-
pare our performance against PowerGraph, known to
outperform existing graph processing frameworks. We
use random partitioning for PowerGraph. We present
the results in Figure 1. PowerGraph could not process
the Twitter graph using fewer than 4 servers due to the
memory requirement. We observed that LFGraph re-
duces PageRank runtime by a factor of 3 compared to
PowerGraph.

References
[1] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs. In OSDI 2012, pages 17-30.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-Scale
Graph Processing. In SIGMOD 2010, pages 135-146.



