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This poster will describe a new Ethernet forwarding
lookup architecture that enables the simple construction
of switches that can contain tens of millions of forward-
ing entries. The core design is based upon recent work
on concurrent multi-reader cuckoo hashing [1] to create
fast and memory-efficient lookup tables. This work has
two primary benefits: First, it suggests that were a need
for such scale to arise—whether for flat addressing or for
more extreme uses such as content-based networking—
such huge-scale tables could be practically constructed.
Second, as a pragmatic byproduct, the technique allows
storing several hundred thousand forwarding entries en-
tirely in fast L3 CPU cache, facilitating the construction
of high-throughput software-based switches.

Why Big, Fast Tables? Recent technology advances,
such as scalable enterprise networks [3] and data center
networks [2, 5], have made much larger layer-2 networks
a reality. Such ever-larger flat networks require Ethernet
switches to store an increasing number of entries in the
forwarding tables. At the same time, line speeds are in-
creasing to 10G and 40G.

Current Techniques won’t do High-speed memories
(e.g. TCAM) are widely used by hardware switches to
implement high performance forwarding tables. How-
ever, their small size severely limits scalability. For
example, the Mellanox SX1016 64-Port 10GbE Switch
can only support 48K layer-2 forwarding entries. Some
approximate solutions are very memory efficient, e.g.
BUFFALO [6], but we seek instead a solution that pro-
vides exact matching, thus inducing no path stretch.

MAC addresses can also be mapped to outging port
using a hash table. However, prior hashing schemes suf-
fer from either memory inefficiency and/or unacceptable
lookup performance to handle collisons, which makes
them much less attractive.

Solution Overview To address the aforementioned chal-
lenges, we use optimistic cuckoo hashing [1] to achieve
high memory efficiency (94% table occupancy [4]) and
concurrent access to the hash table with read-intensive
workloads.

The high performance of our cuckoo hash table comes
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Figure 1: Lookup performance in a table of 1.5M entries

in part from that each forwarding lookup issues only
2 parallel cacheline-sized reads. Each read fetches a
bucket consisting of four 64-bit slots, where each slot
contains the full 48-bit MAC address along with a corre-
sponding 16-bit outgoing port identifier.

Preliminary Results Figure 1 compares the space con-
sumption (listed next to the key) and throughput of our
hash table with four other popular hash tables: three non-
thread-safe hash tables (the STL hash map and Google’s
sparse and dense hash maps) and one thread-safe (Intel
TBB concurrent hash map). Our implementation uses
substantially less memory than any other scheme, and is
faster than all but the non-thread-safe dense_hash_map
(used read-only with multiple threads).
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