Scalable, High Performance Ethernet Forwarding Lookup

Dong Zhou!, Bin Fan!f, Hyeontaek Lim”', David G. Andersen!, Michael Kaminsky2

1Carnegie Mellon University, 2Intel Labs, TStudent Author
{dongz,binfan,hl,dga} @cs.cmu.edu, michael.e.kaminsky @intel.com

This poster will describe a new Ethernet forwarding
lookup architecture that enables the simple construction
of switches that can contain tens of millions of forward-
ing entries. The core design is based upon recent work
on concurrent multi-reader cuckoo hashing [1] to create
fast and memory-efficient lookup tables. This work has
two primary benefits: First, it suggests that were a need
for such scale to arise—whether for flat addressing or for
more extreme uses such as content-based networking—
such huge-scale tables could be practically constructed.
Second, as a pragmatic byproduct, the technique allows
storing several hundred thousand forwarding entries en-
tirely in fast L3 CPU cache, facilitating the construction
of high-throughput software-based switches.

Why Big, Fast Tables? Recent technology advances,
such as scalable enterprise networks [3] and data center
networks [2, 5], have made much larger layer-2 networks
a reality. Such ever-larger flat networks require Ethernet
switches to store an increasing number of entries in the
forwarding tables. At the same time, line speeds are in-
creasing to 10G and 40G.

Current Techniques won’t do High-speed memories
(e.g. TCAM) are widely used by hardware switches to
implement high performance forwarding tables. How-
ever, their small size severely limits scalability. For
example, the Mellanox SX1016 64-Port 10GbE Switch
can only support 48K layer-2 forwarding entries. Some
approximate solutions are very memory efficient, e.g.
BUFFALO [6], but we seek instead a solution that pro-
vides exact matching, thus inducing no path stretch.

MAC addresses can also be mapped to outging port
using a hash table. However, prior hashing schemes suf-
fer from either memory inefficiency and/or unacceptable
lookup performance to handle collisons, which makes
them much less attractive.

Solution Overview To address the aforementioned chal-
lenges, we use optimistic cuckoo hashing [1] to achieve
high memory efficiency (94% table occupancy [4]) and
concurrent access to the hash table with read-intensive
workloads.

The high performance of our cuckoo hash table comes

180

dense hash map =%+ (6x space) v
160 - cuckoo hash table -+ (baseline) _/,/
hash map —4— (3.75x space) .
— 140 - sparse hash map —#-- (2 space) '_,..fv
& concurrent hash map =B~ (5x space) »,-"
O 120+ -
= v_./‘
< B
o 100 - L
2 -
£ 80 e 4
= 2
>
e Sl s Y
- i N e
L . =
20

I
5

Threads
Figure 1: Lookup performance in a table of 1.5M entries

in part from that each forwarding lookup issues only
2 parallel cacheline-sized reads. Each read fetches a
bucket consisting of four 64-bit slots, where each slot
contains the full 48-bit MAC address along with a corre-
sponding 16-bit outgoing port identifier.

Preliminary Results Figure 1 compares the space con-
sumption (listed next to the key) and throughput of our
hash table with four other popular hash tables: three non-
thread-safe hash tables (the STL hash map and Google’s
sparse and dense hash maps) and one thread-safe (Intel
TBB concurrent hash map). Our implementation uses
substantially less memory than any other scheme, and is
faster than all but the non-thread-safe dense_hash_map
(used read-only with multiple threads).

References

[1] B. Fan, D. G. Andersen, M. Kaminsky. MemC3: Compat and Concurrent
MemCache with Dumber Caching and Smarter Hashing. In Proceedings of
the 10th USENIX conference on Networked Systems Design and Implemen-
tation. 2013.

[2] A.Greenberg, et al. VL2: a scalable and flexible data center network. In Pro-
ceedings of the ACM SIGCOMM 2009 conference on Data communication.
2009.

[3] C.Kim, M. Caesar, J. Rexford. Floodless in SEATTLE: A Scalable Ethernet
Architecture for Large Enterprises. In Proceedings of the ACM SIGCOMM
2008 conference on Data communication. 2008.

[4] H. Lim, et al. SILT: A Memory-Efficient, High-Performance Key-Value
Store. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP). 2011.

[5] R. Niranjan Mysore, et al. PortLand: A Scalable Fault-tolerant Layer 2
Data Center Network Fabric. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication. 2009.

[6] M. Yu, A. Fabrikant, J. Rexford. BUFFALO: Bloom Filter Forwarding Ar-
chitecture for Large Organizations. In Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies. 2009.

