Egalitarian Paxos

Iulian Moraru (student author), David G. Andersen, Michael Kaminsky
{imoraru, dga} @cs.cmu.edu, michael.e.kaminsky @intel.com
Carnegie Mellon University, Intel Labs

Abstract

We introduce Egalitarian Paxos, a new distributed con-
sensus algorithm that achieves three goals: (1) optimal
commit latency in the wide-area when tolerating one and
two failures, under realistic conditions; (2) uniform load
balancing across all replicas (thus achieving high through-
put); and (3) graceful performance degradation and unin-
terrupted availability when replicas are slow or crash.

1 Problem Statement

Distributed computing today places two main demands
on replication protocols: (1) high throughput for replica-
tion inside a computing cluster and (2) low latency for
replication across data centers. Today’s clusters use fault-
tolerant, highly available coordination engines such as
Chubby [2], Boxwood [6], or ZooKeeper [5] for activi-
ties including operation sequencing, coordination, leader
election, and resource discovery. Modern databases are
accessed simultaneously from different continents, requir-
ing geo-replication [1, 4].

An important limitation in these systems is that during
efficient, failure-free operation, all clients communicate
with a single master (or leader) server at all times. This
optimization, sometimes termed “Multi-Paxos,” is impor-
tant to achieving high throughput in practical systems [3].
Changing the leader requires invoking additional consen-
sus mechanisms that substantially reduce throughput.

This algorithmic limitation has several important conse-
quences. First, when performing geo-replication, clients
will incur additional latency for communicating with a re-
mote master. Second, it can impair scalability by placing
a disproportionally high load on the master, which must
process more messages than the other replicas [7]. Third,
traditional Paxos variants are sensitive to both long-term
and transient load spikes and network delays that increase
latency at the master. Finally, this single-master optimiza-
tion can harm availability: if the master fails, the system
cannot service requests until a new master is elected. Pre-
viously proposed solutions such as partitioning or using
proxy servers are undesirable because they restrict the
type of operations the cluster can perform. For example,
a partitioned cluster cannot perform atomic operations

across partitions without using additional techniques.

2 Contribution

Egalitarian Paxos (EPaxos) has no designated leader pro-
cess. Instead, clients can choose, at every step, which
replica to submit a command to, and in most cases the
command will be committed without interfering with
other concurrent commands. This allows the system
to evenly distribute the load to all replicas, eliminating
the first bottleneck identified above (having one server
that must be on the critical path for all communication).
EPaxos’s flexible load distribution is better able to han-
dle permanently or transiently slow nodes than previous
Paxos variants, as well as the latency heterogeneity caused
by geographical distribution of replicas, substantially re-
ducing both the median and tail commit latency (EPaxos
has optimal median commit latency in the wide-area).
Finally, the system can provide higher availability and
higher performance under failures because there is no
transient interruption because of leader election: there is
no leader, and hence, no need for leader election, as long
as more than half of the replicas are available.

References

[1] J. Baker, et al. Megastore: Providing scalable, highly avail-
able storage for interactive services. In Proc. of CIDR, pp.
223-234.2011.

[2] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proc. 7th USENIX OSDI. Nov. 2006.

[3] T. D. Chandra, R. Griesemer, J. Redstone. Paxos made
live: an engineering perspective. In Proc. 26th ACM SOSP,
PODC ’07, pp. 398-407. 2007.

[4] J. C. Corbett, et al. Spanner: Google’s globally-distributed
database. In Proc. 10th USENIX OSDI. 2012.

[5] P. Hunt, et al. ZooKeeper: wait-free coordination for
internet-scale systems. In Proc. USENIX ATC, USENIX-
ATC’10. 2010.

[6] J. MacCormick, et al. Boxwood: abstractions as the founda-
tion for storage infrastructure. In Proc. 6th USENIX OSDI.
Dec. 2004.

[7] Y. Mao, F. P. Junqueira, K. Marzullo. Mencius: building
efficient replicated state machines for WANSs. In Proc. 8th
USENIX OSDI, pp. 369-384. Dec. 2008.



	Problem Statement
	Contribution

