yanc: Yet Another Network Controller

Matthew Monaco (student), Eric Keller
University of Colorado, Boulder
{matthew.monaco, eric.keller}@colorado.edu

With the rise of software-defined networking,
there has been a great deal of focus on the design
of the centralized controller (both commercially and
academically). This controller serves the role of an
operating system for networks [2] which provides an
interface to program the entire network.

In this poster, we explore the question: Is a net-
work operating system fundamentally that different
from an operating system such that it requires a
completely new (network) operating system? The
current offerings, while extensible, are geared to-
wards single, monolithic network applications more
analogous to a single operating system process with
optional plug-ins. We argue that instead of building
custom network operating systems, we should lever-
age existing operating system technology in build-
ing a network operating system — effectively making
Linux the network operating system.

We will present yanc, a software-defined network-
ing controller in early development. The main in-
sight in yanc is that the network can be managed
by standard file I/O, and we do not need special ap-
plications which sit at some privileged point between
the network OS and hardware. Program dependen-
cies and ordering is configured through text files —
e.g., a program can be packaged with a config file in
/usr/share/yanc/conf.d/ with a default priority
and relative ordering to other applications, but can
be tweaked by an admin under /etc/yanc/conf.d/.

The yanc file system is mounted at /net. Net-
work state such as switches, ports, queues, flow ta-
bles, and counters are organized as files and direc-
tories. To expand on this, we give a few examples
here which reflect our current thinking to illustrate
the possibilities, but is sure to evolve over time.
Devices are configured by e.g., writing 100 into
/net/switches/id/queues/id/size. The data-
path is configured by writing a plain-text string e.g.,
prio=16 match=in:10,ethsrc=mac,vlan=4 pop-vlan
out=flood to /.../switchid/flows. Error num-
bers are returned indicating success or failure — e.g.,
for incorrectly overlapping another flow. Individual
flows have file representations which can be altered
and deleted. Finally, network events are exposed

through files which represent the type of event. For
example, /. ../switchid/packet_in can be used to
retrieve PACKET-IN events, which can be read and
written by applications — applications can write to it
to alter the view other applications see of that event
(as configured by the administrator, not hard coded
into the applications).

Directories represent a hierarchy of network state
(or network slices [3]). The slice will have some (con-
figurable) default form — e.g., a read-only copy of
the entire network. It is then configured by writing
plain-text strings to a file such as ipnet=10.0.0.0/24
With directories, access to portions of the network
state can be restricted using file permissions.

Confining the controller’s north-bound API to
a file system enables a rich variety of applications
which can be implemented in any language sup-
ported by the compilers and interpreters installed on
the system. The network is ultimately controlled by
daemons, cron jobs, interactive utilities, and even
ad-hoc scripts.

Yanc differs from other controllers such as
NOX [2] and Floodlight [1] in that it allows for ap-
plications to take a wide variety of forms by relying
heavily on existing operating system (Linux) fea-
tures. This results in a north-bound API with a
stable and well-understood set of semantics. With
this, a yanc network can rely on existing software
which follows the same file system semantics from
grep and mkdir to distributed file systems.

In the poster we will elaborate on the design and
discuss how yanc can be used to perform the variety
of network tasks needed by network admins.

References

[1] Floodlight. http://floodlight.openflowhub.org, 2013.

[2] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. Nox: towards an oper-
ating system for networks. ACM SIGCOMM Computer
Communication Review, 38(3):105-110, 2008.

[3] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Flowvisor:

A network virtualization layer. OpenFlow Switch Con-
sortium, Tech. Rep, 2009.



