Embassies: Radically Refactoring the Web

Jon Howell, Bryan Parno, John R. Douceur, Microsoft Research
{howell,parno,johndo} @microsoft.com

This work is accepted for presentation at NSDI; we
propose to present a poster and demo of the system.
None of the authors are students.

A defining feature of the web application model is its
ostensibly strong notion of isolation. On the desktop, a
user must accept responsibility for installing apps, and
if an app misbehaves, the consequences are unbounded.
On the web, if the user clicks on a link and doesn’t like
what she sees, she clicks the ‘close’ button, and web app
isolation promises that the closed app has no lasting ef-
fect on the user’s experience.

Sadly, the promise of isolation is routinely broken, and
o0 in practice, we caution users to avoid clicking on “dan-
gerous links”. Isolation fails because the web’s API, re-
sponsible for application isolation, has simultaneously
pursued application richness, accreting HTTP, MIME,
HTML, DOM, CSS, JavaScript, JPG, PNG, Java, Flash,
Silverlight, SVG, Canvas, and more. This richness intro-
duces so much complexity that any precise specification
of the web APl is virtually impossible. Yet we can’t hope
for correct application isolation until we can specify the
API’s semantics. Thus, the current web API is a battle
between isolation and richness, and isolation is losing.

The same battle was fought—and lost—on the desk-
top. The initially-simple conventional OS evolved into a
rich, complex desktop API, an unmanageable disaster of
complexity. Is there hope? Or do isolation (via simple
specification) and richness inevitably conflict?

There is, in fact, a context in which mutually-
untrusting participants interact in near-perfect auton-
omy, maintaining arbitrarily strong isolation in the face
of evolving complexity. On the Internet, application
providers, or vendors, run server-side applications over
which they exercise total control, from the app down
to the network stack, firewall, and OS. Even when ven-
dors are tenants of a shared datacenter, each tenant au-
tonomously controls its software stack down to the ma-
chine code, and each tenant is accessible only via IP.
The strong isolation among virtualized Infrastructure-as-
a-Service datacenter tenants derives not from physical
separation but from the simplicity of the execution in-
terface.

This paper extends the semantics of datacenter rela-
tionships to the client’s web experience. Suspending dis-
belief momentarily, suppose every client had ubiquitous
high-performance Internet connectivity. In such a world,
exploiting datacenter semantics is easy: The client is

merely a screencast (VNC) viewer; every app runs on
its vendor’s servers and streams a video of its display to
the client. The client bears only a few responsibilities,
primarily around providing a trusted path, i.e., enabling
the user to select which vendor to interact with and pro-
viding user input authenticity and privacy.

We can restore reality by moving the vendors’ code
down to the client, with the client acting as a notional
pico-datacenter. On the client, apps enjoy fast, reliable
access to the display, but the semantics of isolation re-
main identical to the server model: Each vendor has au-
tonomous control over its software stack, and each ven-
dor interacts with other vendors (remote and local) only
through opt-in network protocols.

The pico-datacenter abstraction offers an escape from
the battle between isolation and richness, by deconflating
the goals into two levels of interface. The client imple-
ments the client execution interface (CEI), which is dedi-
cated to isolating applications and defines how a vendor’s
bag of bits is interpreted by the client. Different ven-
dors may employ, inside their isolated containers, differ-
ent developer programming interfaces (DPIs). Today’s
web API is stuck in a painful battle because it conflates
these goals into a single interface: The API is simultane-
ously a collection of rich, expressive DPI functions, and
also a CEI that separates vendors. The conflated result is
a poor CEI: neither simple nor well-defined. Indeed, this
conflation explains why it took a decade to prevent text
coloring from leaking privacy information, and why to-
day’s web allows cross-site fetches of JPGs or JavaScript
but not XML. The semantics of web app isolation wind
through a teetering stack of rich software layers.

We deconflate the CEI and DPI by following the pico-
datacenter analogy, arriving at a concrete client architec-
ture called Embassies. We pare the web CEI down to
isolated native code picoprocesses, IP for communica-
tion beyond the process, and minimal low-level UI prim-
itives to support the new display responsibilities identi-
fied above. The rich DPI, on the other hand, becomes
part of the web app itself, giving developers unparalleled
freedom.



