
Demystifying Page Load Performance with WProf
Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David Wetherall

University of Washington
{wangxiao, arunab, arvind, djw}@cs.washington.edu

Abstract
Web page load time (PLT) is a key performance met-

ric that many techniques aim to reduce. Unfortunately,
the bottlenecks of PLT are difficult to identify due to the
complexity of the page load process. We abstract a de-
pendency graph of the activities that make up a page load
and develop a lightweight in-browser profiler, WProf, to
produce this graph. Combined with critical path analy-
sis, WProf reports suggest that computation is a signif-
icant factor that makes up as much as 35% of the crit-
ical path and that synchronous JavaScript plays a sig-
nificant role by blocking HTML parsing. We plan to
demonstrate WProf that produces and visualizes the de-
pendency graph of any given Web page. 1

Problem: Numerous techniques have been developed
to reduce PLT. They range from caching and CDNs, to
more recent innovations such as the SPDY protocol that
replaces HTTP, and the mod pagespeed server extension
that enforces Web page best practices. Thus it is surpris-
ing to realize that the bottlenecks that limit PLT are still
not well understood. Part of the culprit is the complexity
of the page load process, which is further complicated by
browser implementation strategies. The result is that, for
example, we are unable to explain why a change in the
way a page is written will help or harm PLT.

Previous measurement studies have measured Web
performance in different settings, e.g., cellular versus
wired, and correlated PLT wth variables such as the num-
ber of resources and domains. However, these factors are
only coarse indicators of performance and lack the power
to explain why a page load proceeds as is.

Approach: Our position is that demystifying the compo-
sition of PLT is crucial to advance research in this area.
The challenge here is that the activities that compose PLT
are likely happen in parallel. This includes concurrently
loading Web objects which can be further parallelized by
evaluating JavaScript. Thus, extracting the dependencies
imposed by a Web page is the key.

We extract four categories of dependencies that are
caused by (i) the natural order that activities occur, (ii)
the correctness of execution when multiple processes
modify a shared resource, (iii) tradeoffs between data
downloads and page load latencies, and (iv) limited com-
putation power and network resources. Figure 1 shows
an example of the dependency graph of a simple Web

1Xiao Sophia Wang is a student. We plan to set up a demo. This
work is accepted to NSDI’13 technical program.

HTML Parsing

Rendering

Evaluation

Object
Loading

Conn 1

Conn 2

…

Network Computation Blocking Dependency

a1 load html a10 load img a4 load css

a5 load js

a13 eval js

Parse css tag Parse js tag Parse img tag

DOMContentLoaded

DOMLoad

eval css a6

a7

a8

a12

render

load js

eval js

Elapsed Time Start

a2

a3 a9

a11

load

Figure 1: An example of the dependency graph.

page below which, however, exhibits complex dependen-
cies.

<html>
<head>
<link rel="stylesheet" src="a.css">
<script src="b.js" />

</head>
<body onload="..."><!--request a JS-->

</body>
</html>

Tool and demo: We have developed WProf, a
lightweight in-browser profiler that automatically cap-
tures the dependency graph for a given Web page. By
performing critical path analysis on the dependency
graph, we find that computation is a significant factor
the makes up as much as 35% of the critical path and
that synchronous JavaScript plays a significant role by
blocking HTML parsing. More results are included in
our technical paper.

Our demo will include a WProf-instrumented Chrome
browser and a visualization of dependency graphs simi-
lar to Figure 1. A typical procedure is below. First, peo-
ple visit Web pages of their own choices using WProf-
instrumented Chrome. Second, we upload WProf logs
to our Web server to visualize the dependency graphs.
A dependency graph includes activities (in blocks) and
dependencies (in arrows). When a block is clicked, the
visualization tool will explain what its corresponding
activity means (e.g., evaluating a JavaScript) and what
its corresponding dependencies mean (e.g., evaluating a
JavaScript depends on evaluating a previously appeared
CSS). The visualization tool will also highlight the criti-
cal path. Up-to-date tool and visualization of WProf are
at http://wprof.cs.washington.edu/.

1

