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Abstract
TPUv4 (Tensor Processing Unit) is Google’s 3rd genera-

tion accelerator for machine learning training, deployed as
a 4096-node supercomputer with a custom 3D torus inter-
connect. In this paper, we describe our experience designing
and operating the software infrastructure that allows TPUv4
supercomputers to operate at scale, including features for
automatic fault resiliency and hardware recovery. We adopt
a software-defined networking (SDN) approach to manage
TPUv4’s high-bandwidth inter-chip interconnect (ICI) fab-
ric, using optical circuit switching to dynamically configure
routes to work around machine, chip and link failures. Our
infrastructure detects failures and automatically triggers re-
configuration to minimize disruption to running workloads,
as well as initiating remediation and repair workflows for
the affected components. Similar techniques interface with
maintenance and upgrade workflows for both hardware and
software. Our dynamic reconfiguration approach allows our
TPUv4 supercomputers to achieve 99.98% system availability,
gracefully handling hardware outages experienced by ~1% of
the training jobs.

1 Introduction

Machine Learning (ML) models continue to grow in size and
complexity [9, 24], enabled by the massive compute capabil-
ity of heterogeneous supercomputers, where CPUs handle
runtime task coordination and I/O, and accelerators such as
TPUs [18–20] and GPUs deliver the computational perfor-
mance needed for model training. Scaling up a supercom-
puter’s node count enables more capable models because
the training process can be effectively parallelized along the
batch, tensor, and pipeline dimensions [17, 33].

The hardware/software ecosystem of ML supercomputers
faces two challenges at scale: first, effectively parallelizing
model training workloads, and secondly – and the focus of this
paper – maintaining high availability of compute resources
and consequently high goodput for ML training jobs. The lat-
ter has become increasingly difficult in recent years because:

• unlike loosely-coupled distributed applications such as
Map-Reduce [12] that can effectively tolerate dynam-
ically varying resource allocation, ML training jobs
more often use static (compile-time) sharding strategies
and gang scheduled execution, requiring all compute
resources to be healthy simultaneously;

• modern ML models such as Large Language Models
(LLMs) need an unprecedented amount of hardware
(conventional compute, accelerators, networking and
storage) [2], dropping the expected MTBF to hours or
even minutes [15];

• in a cloud or shared cluster environment, many users
contend for different subsets of supercomputer resources,
making it essential to be able to reconfigure or rebalance
resource allocations over time.

Google’s TPUv4 machine learning supercomputing infras-
tructure is designed to meet these challenges. It comprises the
following hardware and software components:

• A number of cubes: a cube is a hardware unit with 64
TPU chips arranged in a 4x4x4 3D mesh; each super-
computer or pod has 64 cubes, for a total of 4096 TPUs.

• A proprietary inter-chip interconnect (ICI): this is a
high-speed network fabric that directly interconnects
TPUs to allow direct device-to-device communication
(i.e. RDMA) without involving the CPUs.

• Optical circuit switches (OCSes) [25]: these are used
to dynamically cross-connect (xconnect) the ICI from
different cubes to form the user-requested torus topology.

• Borg [31]: a cluster management service that admits,
schedules and manages TPUv4 jobs (and others).

• Pod Manager: a cluster-level software service that man-
ages multi-cube connectivity by actuating OCS xconnect
setup in response to Borg scheduling decisions.



Figure 1: Availability of jobs size improves at scale with
TPUv’4 cube configurability and fault-tolerant ICI routing.

• libtpunet: a software library that sets up the requested
ICI network topology for each TPUv4 user job.

• healthd: a software daemon running on each host in a
pod that continuously monitors machine hardware health
and reports back to cluster-level software systems.

In TPUv4 pods, hardware and software are co-designed.
Hardware provides a configurable compute substrate (the
4x4x4 cubes) with a programmable ICI protocol stack im-
plemented by the OCS switches and on-chip ICI switches.
Software dynamically manages the hardware by configur-
ing the OCSes to combine multiple cubes into larger slices
of the pod, and by programming the ICI routing policy via
libtpunet. Connectivity is reconfigured according to the
user-requested torus topology as Borg schedules jobs onto the
various cubes. The Pod Manager mediates reconfiguration,
and monitors ICI- and OCS-related health, excluding cubes
from the resource pool as soon as faults are discovered.

In this paper, we describe how we make our TPUv4 su-
percomputers automatically resilient to faults at scale. More
specifically, we:

– explain the TPUv4 supercomputer’s configurable system
architecture based on a programmable ICI protocol with
OCS and ICI switches, optimizing for system availability
and resiliency at scale;

– describe the software infrastructure that schedules, con-
figures, and optimizes TPUv4 resources, focusing on our
design principles of configurability and modularity;

– outline our optimized strategy for accelerator-side multi-
hop RDMA routing for resilient collective operations
over regular and twisted torus topologies; and

– report on our experiences to date in operating TPUv4
supercomputers in production.

Figure 2: Static pods face resource fragmentation problems.

2 The Reconfigurable ML Supercomputer
System Architecture

The TPUv4 reconfigurable supercomputer is designed for
scalability, availability, resiliency, and cost [18]. At its core
is a reconfigurable ICI fabric topology that connects differ-
ent TPUv4 chips, backed by a set of programmable OCSes
for each pod. Without TPUv4’s OCS-based reconfigurability,
job availability quickly drops as compute resource scales up.
Figure 1 shows this effect with measured data from deployed
TPUv3 static pods and TPUv4 reconfigurable pods.

For a conventional supercomputer like TPUv3 [19] where
compute resources are statically interconnected, the overall
availability of a job drops precipitously as the required amount
of compute resources increases to 1024 chips. This is be-
cause in a static pod, all resources in a contiguous set of
nodes must be simultaneously healthy to be assigned to a
user, which becomes combinatorially less likely as the system
scales. With TPUv4’s cube-level configurability, availability
stays high through about 94%, corresponding to ~50 cubes or
3200 TPUv4 chips.

The decreasing availability beyond this point is because of
occasional machine and ICI link faults that can occur between
different cubes. As we will show in Section 4, tolerating occa-
sional OCS failures or maintenance events with fault-tolerant
routing further increases availability to 99.98% because cubes
are still accessible to users even in these rare events.

2.1 Lessons from Static Pod Architectures
Before the TPUv4 ML supercomputer, the state of the art
was the TPUv2 and TPUv3 static pods [19] – ‘static’ because
they feature a non-reconfigurable fixed ICI mesh. A TPUv2
pod has 256 TPUs connected in a 16x16 ICI torus, while
TPVv3 had 1024 TPUs connected with a 32x32 torus. There
is also a scale-up variant of TPUv3 that combines 4 pods
into a 128x32 mesh with limited ICI routing capability. This
so-called multipod version was co-designed with application
collective patterns and used to explore scaling strategies for
large models [21].

Figures 1 and 2 illustrate the availability challenges as
the model size scales in a static pod. To train a model, all
TPU processes must be simultaneously up to synchronously
update their weights via ICI collectives. A single failed, or
interrupted process will interrupt the whole training process.



Finding the appropriate compute resources for a user’s job
faces the following challenges:

1. Hardware outages: regular scheduled maintenance of
hardware, firmware, and software at the ICI link, TPU
chip and CPU host level can remove resources from
the schedulable pool [22]. For a supercomputer with
thousands of TPUs, an event affecting any one compo-
nent occurs relatively frequently, making it difficult to
find usable sets of resources. Furthermore, unexpected
faults occur more frequently as systems and applications
increase in both size and complexity. Without recon-
figurability, obtaining decent availability for a job that
requires 1024 hosts means that each individual host must
sustain 99.9% availability; introducing reconfigurable
OCS drops the host availability requirement to 99%.

2. Workload defragmentation: it is common for many jobs
to contend for different subsets of a pod’s schedulable
resources. Since these jobs come and go at unpredictable
times, sometimes Borg must move (preempt) smaller
jobs to free up contiguous TPUs for pending larger train-
ing jobs. The scheduling complexity worsens with a
mixture of user priorities. With OCS-based reconfigura-
bility, Borg does not need to worry as much about the
physical contiguity of TPU resources. Instead, any set
of vacant cubes can be cross connected via the OCS for
use by a user’s job.

3. Deployment lead time: a static pod is not usable until all
hardware is installed due to the tightly coupled nature
of compute and network resources. With reconfigurable
pods, once the OCS footprint is installed, cubes can be
deployed and used as soon as they land.

The above challenges challenges motivated us to rethink
things for the TPUv4 pod architecture.

2.2 TPUv4: OCS-based Reconfigurability
TPUv4 adopts a reconfigurable architecture which makes
use of the Palomar Optical Circuit Switch (OCS) [25] to
address the problems with static systems. By adopting this
architecture, we have been able to effectively scale to 4096
TPU nodes, and to support a per-job choice of either 3D torus
or 3D twisted-torus [7] topology.

The OCS is a dynamically configurable N×N switch based
on an array of micro-electromechanical systems (MEMS)
mirrors that can switch in milliseconds. Each OCS allows
programmable cross-connect creation (xconnect) between
any pair of ports on the (logical) north side of the switch to
the (logical) south side. Once a connection between an Ni to
S j port is made, a dedicated ICI link connection is established
such that optical signal from Ni can only be routed to S j and
vice versa, until these ports are reconfigured in some different
permutation.

Figure 3: A 4x4x4 cube consists of 16 TPUv4 machines, each
of which organizes 4 TPUs in a 2x2x1 mesh. The TPUs in a
cube are interconnected over ICIs along X /Y /Z dimensions,
with 16 optical links per cube face for OCS xconnect.

TPUv4 compute resources are organized at the granularity
of multi-machine cubes. Each individual TPU machine has a
CPU tray and a TPU tray, linked over PCIe. Each TPU tray
has 4 TPUv4 chips arranged in a 2x2x1 ICI mesh; 16 TPU
machines are grouped together as one datacenter rack; and
the ICI links within the rack are interconnected over ICI to
form a 4x4x4 mesh. This ensemble is a cube.

The optical switches interconnect multiple cubes to form
larger ICI topology shapes with one or more cubes in each
of the three dimensions. Each 3D cube exposes 16 ICIs on
each face of the X /Y /Z dimension to the optical switches,
totaling 96 ICIs per cube. A TPUv4 supercomputer consists
of 64 cubes, with a total of 6144 optical ICI links connected
to 48 distinct optical circuit switches. The lower-bandwidth
CPU-side datacenter network is managed separately [25, 29].

TPUv4’s OCS configurability greatly improves availability.
Training jobs can use any cubes even if they are not phys-
ically contiguous, which mitigates resource fragmentation
from competing jobs. Hardware failures remove the affected
cube(s) from the resource pool but allow continued operation
using healthy cubes. The 16-machine granularity for fault-
tolerance was chosen to balance convenience (per rack de-
ployment, power and networking) while retaining a relatively
small blast radius in case of failure.

Reconfigurability is managed by the accompanying soft-
ware infrastructure. Each job launch induces the software to
establish a unique OCS xconnect depending on the required
topology and cube selection. The large number of chips, links,
and switches also requires automatic fault diagnosis, recovery,
job rescheduling, and fault-tolerant ICI routing.

Using OCS scales TPUv4 pod with low cost: the OCS and
optical fiber costs are < 5% of a TPUv4 pod’s total capital
cost, and their operating power is < 3% of a pod’s total power.
The capital and operating cost of TPUv4 OCS supercomputer
is considerably lower than the alternative of scaling with
packet switches such as Infiniband [18].



Figure 4: TPUv4’s ICI switch implements layered, pro-
grammable ICI protocol.

2.3 Programmable ICI Protocol
TPUv4’s ICI protocol is designed to be programmable so that
software can tackle the operational complexity of reconfigura-
bility and resilience. A TPUv4 pod is one ICI domain, where
any pair of TPUs can RDMA to each other. Each ICI link
can carry 50GBps uni-directional bandwidth. TPUv4 adopts a
3D ICI network topology for high bisection throughput, large
system scale and low latency while maintaining low cost and
supporting workload parallelization via collectives.

As shown in Figure 4, each TPUv4 chip has some compute,
some high-bandwidth memory and an ICI switch that imple-
ments various ICI protocol layers. The ICI protocol facilitates
per-job network partitioning, where connectivity, addressing,
routing, and flow control are set up for each job, and where
user sessions do not cross job boundaries. In this way, each
job has exclusive ownership of all the links it uses, increas-
ing security and removing additional system complexity for
network sharing and congestion control. Table 1 shows the
protocol layers and their corresponding software agents. From
the bottom up, these are:

• Physical Layer: the SERDES, PCS, and link auto-
establishment modules build a high-speed link, despite
the inevitable presence of transmission errors. The Pod
Manager controls xconnect of a physical channel by ro-
tating OCS MEMS mirrors, and an on-chip manager au-
tomatically initializes and configures the physical links.
The healthd daemon running in every TPU machine’s

Layer Functionality S/W Agent ISA
Visible?

Transaction RDMA XLA yes
Routing packet forwarding libtpunet hint

Data
link enable, flow control,

retry, ordered delivery
libtpunet
healthd

no

Physical
link xconnect
port training

pod mgr,
chip mgr,
healthd

no

Table 1: ICI protocol layers.

Linux system container continuously reads link quality
and connectivity signals to track hardware health.

• Reliable Data Layer: Packets are delivered in-order
with automatic retransmit when data is lost at the physi-
cal layer, thus hiding the unreliable characteristics of the
physical layer. Link-level, credit-based flow control is
enforced. An enabled data layer signifies a ready-to-use
ICI user session; prior to becoming ready, the system
clears all data buffers to ensure we eliminate any archi-
tectural state pollution from prior ICI sessions. If one
end of an enabled data layer is down, we automatically
bring down the other end of the link to ensure a func-
tional session. The libtpunet issues session start/stop
commands, and adjusts optimal flow control buffer sizes.
The privileged healthd machine daemon can explicitly
disable a data layer link, forbidding its usage by any user
session, in the case of an online link recovery (§3.6.3).

• Routing Layer: Packet forwarding tables are pro-
grammed by libtpunet with global load balancing.
Each packet in a RDMA instruction goes from a source
to destination TPU, indexing into the forwarding tables
in each chip by the destination chip ID. The detailed
routing policies are hidden from the ISA abstraction,
although the libtpunet library can provide hints to the
compiler to help guide program optimization.

• Transaction Layer: Compiler-generated RDMA in-
structions initiate hardware-mediated transfers which
read data from memory and feed it to the ICI switch.
A transaction spanning a group of individual RDMAs
forms a collective communication operation.

Using a software-programmable ICI protocol stack allows
us to flexibly cope with the complexity of a resilient 4096-
node supercomputer, while allowing hardware to deal with
real-time control of the links and offer high-bandwidth low-
latency data transmission.

3 Automating Supercomputer Management

In the following we provide an overview of the end-to-end
software infrastructure that we use to launch TPUv4 ML



Figure 5: A TPUv4 job’s life-cycle: the Pod Manager cooperates with the Borg scheduler to ask OCS to xconnect cubes, after
which healthd preflight runs and libtpunet sets up the ICI network. XLA compiles programs with a distributed shared-memory
system abstraction. In case a failure is detected, running jobs can be automatically interrupted and rescheduled.

training jobs, and to subsequently monitor and manage their
life-cycle (see also Figure 5 for a summary).

3.1 Overview

When a user wishes to launch a large job1 on a TPUv4 super-
computer, they specify their desired 3D slice topology in the
form (4x,4y,4z), along with other metadata. The Borg cluster
scheduler [31] receives all such requests and queues them
pending resource assignment. Once a job becomes eligible
for scheduling, Borg will select a prospective set of cubes and
then publish a xconnect request.

The Pod Manager periodically polls Borg to learn about
any pending xconnect requests. For each one, it instructs the
pertinent OCS switches to rotate their MEMS mirrors to es-
tablish the optical ICI physical channels. Assuming all OCS
xconnects complete correctly, the Pod Manager sends a con-
firmation to Borg.

With Pod Manager’s approval, Borg then dispatches the
job binaries to the selected set of TPU machines. A preflight
health check is first run to guarantee full hardware health for
each TPU machine (any failures lead to Borg rescheduling
onto different cubes). Following this, the ICI network is set
up by libtpunet (i.e. validating the physical and link layers,
and programming forwarding tables).

The XLA TPU compiler [3] takes the slice topology ab-
straction built by libtpunet and generates auto-parallelized
TPU programs for distributed training. On each machine, the
compiled TPU binary will be sent over PCIe to the TPU after
which it can be executed. The above workflow is common to

1We also support smaller (sub-cube) jobs. In these cases no OCS configu-
ration is required, but the rest of the workflow is similar.

all ML frameworks, including TensorFlow [4], Jax [1] and
Pathways [5].

During training, fleet maintenance services continuously
monitor the hardware and software health of all the TPU
machines. Any detected abnormality triggers a notification
to Borg, which in turns notifies any affected running jobs so
they can write an up-to-date model checkpoint (if possible).
Once a job is rescheduled, it resumes from the latest model
checkpoint. The faulty hardware is identified and sent to a
repair workflow for diagnosis and repair.

The following sections describe this software infrastructure
in some more detail.

3.2 Supercomputer Modeling

The foundation of the supercomputer software stack is a dat-
acenter model [23] that reflects the TPUv4 machines and
all related components. The model is stored in a dedicated
database whose schema allows us to represent a graph of
entities including racks, switches, RPC endpoints, and oth-
ers. To support TPUv4 supercomputers some key entities are
the TPUv4 cubes (i.e. the 16 machines with their trays and
chips and static ICI inter-connection topology) as well as the
ICI cabling from cubes to OCS along with additonal optics
metadata. Once constructed, the model sets up the intent for
cube deployment, job scheduling, OCS xconnect, network
setup, and health checks. The model is consumed by both
Borg and Pod Manager to serve as the source of truth for a
each particular supercomputer configuration.

TPUv4 topologies are statically modelled up to cube size,
as larger shapes require dynamic cube xconnect. For example,
a single machine is a 2x2x1, two adjacent machines can be
combined to form a 2x2x2, and so on up to 4x4x4.



3.3 Cluster Scheduling

The Borg cluster scheduler [31] is responsible for assigning
appropriate machines to each TPUv4 job. There are many
Borg cells in Google’s worldwide datacenters, and each cell
may include several TPUv4 supercomputers. Each cell is
managed by N replicated Borg service instances which, in
combination, provide one logical Borg instance we call Borg
Prime which includes a cluster scheduler.

The cluster scheduler combines the intended configuration
(from the datacenter model) with its current view of the world
to organize all of the TPUv4 resources it is responsible for
into schedulable machine groups. Users generally select a cell
in which launch their jobs, and indicate which 3D topology
to use to train their model. Borg matches each user request
to a set of feasible (usable) machines and creates a proposed
assignment. In the case of multi-cube jobs, Borg publishes
the proposed set of cubes to the Pod Manager and waits for it
to signal xconnect success before proceeding.

Each TPU machine runs a borglet daemon that cooperates
with Borg Prime to handle job life-cycle management. After
Pod Manager approval, Borg Prime instructs each borglet
in the assigned cubes to create a task container with the ma-
chine’s TPUv4 devices2 exposed in the task’s container. The
borglet then launches a sequence of binaries in the container,
starting with the pre-flight check and finishing with the user
binary.

Borg Prime and borglet combine to manage the response
to events such as planned maintenance (e.g. firmware or soft-
ware upgrades) or unexpected hardware faults. These events
are aggregated from different sources, e.g. borglet is notified
about critical local machine faults by the healthd daemon,
and passes the details up to Borg Prime; the Pod Manager
similarly forwards details about any critical OCS problems.
Borg Prime also receives notification about less critical events
from the Repair Automation System and the software Pack-
age Manager. In all cases, affected TPU machines are marked
as unavailable, evicting any running jobs with notice, and ex-
cluding pending jobs from landing on them until things have
been resolved.

Borg Prime implements priority scheduling (for higher
and lower priority jobs). To help with fragmentation, Borg
Prime can also choose to preempt a running workload (e.g. to
relocate multiple sub-cube jobs to fit into a smaller number
of cubes, or to move multi-cube workloads to a different pod
so as to accommodate very large jobs). This happens in a
controlled fashion, ensuring that jobs are minimally and fairly
impacted.

2Very small jobs may use just a single TPU. In such cases, borglet will
restrict container access to one device, and disable on-host ICI links.

Figure 6: Each of the 64 cubes contributes two optical ICI
links from two opposite sides of a ring to each of the 48
OCSes. 16 OCSes are needed for each dimension.

3.4 Pod Manager

Pod Manager is a highly available service critical to a TPUv4
system. It runs on dedicated network control servers that are
independent of Borg, and interacts with clients such as Borg
and OCS switches over the Google control plane network.
The Pod Manager has two main functions: creating OCS
xconnects to configure the user-requested TPU topology, and
real-time monitoring of pod health .

The Pod Manager relies exclusively on model data (§3.2) to
configure its services. It periodically polls the network model
service for the latest information about the specific TPUv4s
that it is serving, such as OCS endpoints and machines that
are planned to be deployed. The OCS xconnect plan and
continuous health check for every job is derived from the
model. Using a model-driven Pod Manager design allows
gradual deployment of a full TPUv4 supercomputer while
having a subset of cubes available to customers early on.

The Pod Manager is replicated for high availability: a pri-
mary instance serves outside requests, while the remaining
instances operate in hot stand-by mode so that one can quickly
be elected primary if necessary. Our stand-by scheme relies
on each follower continuously receiving copies of the check-
points (also persisted externally), meaning fail-over is gen-
erally very fast. We rely on this for non-disruptive software
upgrades and to tolerate hardware and software crashes.

The Pod Manager also serves as a central hub for a TPUv4
supercomputer’s health monitoring. The service periodically
checks the hardware health of all the optical switches by
querying the OCS hardware over RPC. This telemetry is
exported to Google’s fleet-wide health management system
(§3.6) and also used in real-time to guide fault-tolerant ICI
routing optimizations (§4.2).



Figure 7: xconnect of an 8-cube 8x8x8 torus. Each OCS needs
to pair 16 north/south OCS ports. Cube faces with the same
color are interconnected to form multi-cube torus topologies.

3.4.1 Torus xconnect

Each 3D cube exposes 16 optical ICIs on each of the 6
faces of the X , Y , Z dimensions for a total of 96 ICI links.
Pod Manager assigns each of these links a unique identifier
{cube_id,dim, index, polarity}, where cube_id is a Google-
wide cube UID, index ranges from 0–15 indicating the po-
sition within a cube face, and polarity can be in or out. 48
OCSes are use to xconnect these ICIs, 16 for each of the di-
mensions. Pod Manager gives each OCS a unique identifier
{dim, index} matching the ICI optical cables.

Fig 6 illustrates this cable connection scheme. Each OCS
provides 128 ports for optical ICI connection from the cubes,
allowing full connection of a single port for all 64 cubes.
This scheme allows any (4x,4y,4z) TPU topology shape to
be formed, including a 4x4x4 single-cube full torus. Note that
since the connected ICI and OCS have the same {dim, index}
parameters, if an OCS becomes unavailable, every cube ob-
serves one broken ICI link with the same {dim, index} param-
eter.

To perform a job’s cube xconnect, Pod Manager leverages
its internal representation of the optical ICIs and OCSes. Fig 7
illustrates the process for a 8x8x8 torus:

• Step 1: Borg publishes the set of UIDs and the desired
topology. Pod Manager assigns a 3D coordinate to each
cube based on the topology; any cube can be chosen for
any coordinate since the Pod Manager can instruct the
switches to apply arbitrary port-port xconnect. For each
(4x, 4y, 4z) shape, there are x · y · z cube coordinates.

• Step 2: Pod Manager computes the inter-cube neigh-
bor information based on the assigned coordinates; e.g.
(0,0,0) is adjacent to (1,0,0) along Xout and Xin.

• Step 3: Pod Manager tells OCS to xconnect the ICIs
{cubeA,dim, index, in} and {cubeB,dim, index,out} be-
tween every pair of adjacent cubes. For any topology,
all 48 OCSes need to execute commands to xconnect

Figure 8: xconnect of (a) 2-cube 4x4x8 twisted-torus, and (b)
4-cube 4x8x8 twisted-torus. Cube faces with the same color
are interconnected by OCS to form twisted-torus wrap-around
ICIs. The twisted dimensions always have shorter ring sizes.

ICI links, as all 16 ICI ports along all 3 dimensions
and polarity must be connected to their remote neighbor.
Each OCS can execute a variable number of commands,
depending on the topology, although the OCSes for a
single dimension always execute the same number. For
8x8x8 there are 8 cubes, and each OCS along the x,y,z
dimensions must connect 8 pairs of ports to form the
torus (one per cube).

• Step 4: The required connections are compared against
the current configuration, cached inside Pod Manager,
and we filter out any connections that will remain the
same. RPCs are sent to xconnect the new connections.

During any of the steps above, if Pod Manager determines that
any port connections are infeasible, e.g., due to a hardware
problem, Pod Manager will indicate this to Borg and reject
the proposed set of cubes. Borg can then propose a new set of
cubes set for the user’s job.

3.4.2 Twisted-torus xconnect

In additional to a regular torus topology, we support the use of
a twisted torus topology [7] if requested by the user. In TPUv4
twisted-torus [18], the wrap-around links are shifted with a
vector offset, depending on the overall job shape. TPUv4
supports two families of twisted-torus topology: (4k,4k,8k)
and (4k,8k,8k). Figure 8 illustrates how they are built.

For (4k,4k,8k) shapes, the asymmetry grows along the
Z dimension, with the X and Y dimensions being identical
with the same size (i.e. half the Z dimension). The X and Y
wrap-around links are shifted by a (0,0,4k) vector offset.

For (4k,4k,8k) shapes, the asymmetry grows along both
the Y and Z dimensions, and the X dimension has the smaller
size (i.e. half of the Y and Z dimensions). The X wrap-around
links are shifted by a (0,4k,4k) vector offset.

Cube coordinates are identical in both the regular and
twisted torus case, but the latter changes which cube faces are
deemed to be adjacent, and ultimately leads the Pod Manager
to instruct each OCS to xconnect different north/south ports.



3.5 libtpunet

Once the ICI physical channels have stabilized after xconnect
completion, Borg dispatches the job binaries to the host ma-
chines. The libtpunet library runs within a user’s job to set
up the ICI network (data and routing layer).

The first step is topology discovery. Discovery is a bottom-
up process that scans each TPU’s local neighbor ICI connec-
tivity information, and runs breadth-first-search to ensure that
the configured global topology matches the user request. In
this process, each TPU in a job is assigned a unique chip
id; this id is exposed as part of the ISA interface for RDMA
instructions. The discovery process also identifies any faults
that may need to be routed around, or exposed to users in
the system abstraction. Topology discovery complements the
intent-driven modeling of the network.

libtpunet then computes and programs the forwarding
tables of each TPU based on the information curated during
topology discovery. The forwarding tables are part of a job’s
globally optimized routing solution (more details in §4).

Along with ICI routing programming, libtpunet sets up
the link-level flow-control buffer size, in proportion to the
the link RTT. libtpunet also programs the configuration
of consistent clocking on a job’s distributed TPU set. The
clock configuration is generated using a minimum spanning
tree, factoring in the longest RTT of any ICI path. Using a
consistent clock enables precise timestamps for performance
tracing and debugging.

Finally, libtpunet starts an ICI session, allowing the use
of various compiler-generated collective ops with RDMA.
This is done by synchronously enabling the data layer of each
ICI link across its two ends. An ICI handshake is performed
in hardware to confirm the reliable data link enable request is
initiated from both ends of the link.

libtpunet stays active through the job’s lifetime to mon-
itor the health of the ICI session. If any TPU observes an
error, the link layer comes down, or the driver panics, a PCIe
MSI-X interrupt is raised to libtpunet, which notifies Borg
to initiate rescheduling.

3.6 Hardware Maintenance and Recovery

At global fleet scale, disruptive maintenance events (e.g. hard-
ware repair or replacement, or critical software/firmware up-
grades) occur relatively frequently. To maximize overall main-
tenance efficiency, Google operates a fleet automation system.
Its remit covers hardware failure diagnosis, a hardware recov-
ery workflow, and system software package installation (e.g.
host kernel or device firmware).

Events generated by the fleet maintenance automation sys-
tem send notifications to Borg to evict running jobs on im-
pacted machines; any evicted jobs are queued for rescheduling.
In case of suspected failures, the impacted hardware is sent
to a repair workflow that marries automatic diagnosis with

technician input if needed. Once the hardware is recovered it
flows through an automated QA process before rejoining the
resource pool. For our TPUv4 supercomputer we extended
this system with continuous TPU hardware health telemetry,
explicit preflight checks before job launch and a scheme for
on-line ICI link repair.

3.6.1 healthd

We added a healthd daemon on every TPUv4 machine to
perform real-time monitoring of hardware parts including the
24 unidirectional ICI links, the PCIe channels between the
TPUs and CPUs, and the 4 TPU ASICs themselves. A set of
hardware symptoms are defined for each of these components
based on the telemetry data gathered by healthd. healthd
consumes the same model as Pod Manager which provides
the necessary details about monitoring endpoint, firmware,
and ICI cable metadata.

For each ICI link, the cable connection and associated link
quality are continuously checked against the modeled values
and a set of predefined thresholds. Any detected symptoms
are ranked by their criticality, with severe symptoms leading
healthd to notify Borg to evict and reschedule affected jobs.

3.6.2 Preflight Check

A preflight check runs before every user job to ensure hard-
ware is healthy. We currently include two different checkers:
an end-to-end check validates the TPU hardware by running
a mini sample workload, while an intent-driven checker vali-
dates physical-level hardware metrics against a set of golden
“within spec” thresholds. The former provides broad coverage
of both the hardware and software components including the
TPU driver, firmware and libtpunet which all interact with
the underlying chip and ICI; the latter allows detection of less
obvious issues such as substandard link quality metrics. If
the preflight checks fail, borglet will indicate to Borg Prime
that the job should be rescheduled.

3.6.3 Online ICI Link Repair

For TPUv4, ICI link repair can be carried out online, auto-
matically coordinated across the two ends of a link so that
recovery can be reliably verified. The two endpoints can span
two different machines, or a machine and an OCS switch.
The Pod Manager coordinates all ICI network maintenance
through ICI link drains. A drained ICI link is automatically
excluded from user applications, although the TPU compute
resources are not impacted (i.e. jobs can still land on the TPU
machines providing they do not use the broken ICIs).



Figure 9: Shortest-path routes from the origin (S) in a 2D 3x6
twisted torus are confined to a diamond-shaped region [7].
Destinations along the boundary are labeled with their coordi-
nates, with each destination appearing at least twice, meaning
we need tiebreaking to pick among the shortest paths. For
example, there are two possible paths to (x = 2,y = 1), shown
as dashed lines, and there are four possible paths to (0,3).

4 ICI Routing

We use multi-hop packet routing over high-bandwidth ICI
links to provide fast TPU RDMA and collectives. ICI routing
allows RDMA packets to be sent between arbitrary pairs of
TPUs in the pod, and can work around certain ICI faults. The
ICI forwarding tables are programmed once by libtpunet
at job start-up, and remain fixed over the job’s lifetime. Each
source-destination pair sends packets along a single predeter-
mined path through the ICI topology.

While simple, this approach is sufficient to achieve high
performance on the typical collective communication patterns
(e.g. all-gather, reduce-scatter, all-reduce, all-to-all) that arise
during parallel decomposition of ML models [33].

There are two cases described in this section where
libtpunet must carefully select a single path among multi-
ple candidates to satisfy the ICI forwarding table constraints:
tiebreaking and fault-tolerant wild-first routing. We perform
path selection off-line using an integer linear programming
approach and the results of this optimization are cached. This
allows libtpunet to quickly load the precomputed solution
during ICI network setup.

4.1 Fault-free Routing
When configured for regular torus topology, ICI uses
dimension-order routing (DOR) [11]: all packets route one
dimension at a time in a fixed order (e.g. X then Y then Z)
following a shortest-path from source to destination in the
torus. The dimension order is chosen so that longer dimen-

Figure 10: Example of ICI links impacted by an OCS being
unavailable along the X dimension of a 4x4x8 torus. The
unavailable OCS results in two unavailable X links along
one XZ plane of the torus; the other XZ planes are unaf-
fected. Unavailable links are emphasized with dashed red
lines. The connectivity of the OCSs creates a periodic fault
pattern, where unavailable links repeat every 4 hops along Z.
This pattern is due to the OCS connectivity (Figure 6).

sions of the torus are routed first as described in [8]. DOR
is sufficient to balance load for the common traffic patterns
of ML jobs. It can also be made deadlock-free with just two
virtual channels [10], making it inexpensive to implement.

One complication occurs when a packet needs to travel
exactly halfway around a dimension since tn this case, there
are two shortest paths to choose from. For example, in an
8x8x8 torus, routing a packet from source (x= 1,y= 0,z= 0)
to destination (x = 5,y = 0,z = 0) can travel 4 hops in either
the X+ or X− direction.

We handle this tiebreak case algorithmically: a packet takes
the positive direction when the relevant source node coordi-
nate along that dimension is even, otherwise uses the negative
direction. In our example, the source (x = 1,y = 0,z = 0) has
an odd X coordinate, so tiebreaking chooses X−. This scheme
balances load for common all-to-all traffic patterns.

Routing in the twisted torus also uses DOR and is deadlock
free with two virtual channels. However tiebreaking in the
twisted torus is more complicated because the dimensions
are not separable as in the regular torus: Figure 9 illustrates
this using two dimensions for simplicity. We decided to fold
handling tiebreaking in the twisted torus case into a more
general integer-linear programming framework that also han-
dles fault-tolerant routing (§4.3). This obviates the need to
develop an explicit tiebreaking algorithm in this case.

4.2 Fault-tolerant Routing

The reconfigurable ICI architecture is inherently resilient to
machine outages due to the ability for dynamic cube selection.
In libtpunet, further resilience against OCS unavailability
events is added by supporting fault-tolerant routing. If an
OCS is unavailable, a sparse set of links becomes unavailable.
As shown in Figure 10, the patterns of unavailable links are



Figure 11: Example routes (dashed paths) between a source S
and destination D. The XY dimension order route (A) crosses
the unavailable link (red dashed line) so cannot be used. The
two possible yXY wild-first routes (B and C) take a single
hop in Y before continuing with XY DOR, avoiding the fault.

highly symmetric with respect to the cube granularity as a
consequence of cube-OCS connectivity. With a small amount
of routing flexibility, packets can avoid the broken links. We
optimize routing algorithms for these scenarios off-line.

The path between a source-destination pair selected by
dimension-order routing (DOR) becomes unusable if it
crosses an unavailable link. In this case, alternative paths
are created using wild-first routing (WFR). In WFR, a packet
is allowed to take at most one wild hop along each dimension
before reverting to use DOR to its destination.

Fig 11 shows an example of WFR routing in a two-
dimensional torus. In this example, the dimension order is
X then Y and only wild hops along Y (either Y+ or Y−) can
help avoid unavailable links. We use the shorthand yXY to
denote a wild-first routing algorithm that takes a wild hop
along Y before continuing with XY dimension-order route.
The yXY algorithm can avoid any single unavailable link in
the X dimension.

There is a sandwich rule that captures the fault tolerance
of WFR: to avoid a fault in one dimension, hops in another
dimension must occur before and after it in the routing algo-
rithm. For the yXY , X is “sandwiched” by hops in Y , so it
avoids faults in X . Similarly, the xY X algorithm can avoid
faults in Y. Extending to three dimensions, the xyZY X algo-
rithm can avoid a single fault in both the Y and Z dimensions.

The development of WFR was influenced by the microar-
chitecture of the ICI switches. While beyond the scope of
this paper, WFR can be made deadlock-free with two virtual
channels with one restriction: the wild hop order must be
the reverse of the dimension order. For example, xyZY X is
deadlock-free with two virtual channels, but yxZY X is not.

4.3 Offline Route Optimization
The previous sections described situations where multiple can-
didate paths can be produced, either due to tiebreaking or due
to the wild-first routing algorithm. The ICI switch implemen-

Slice No faults
(GB/s)

1 fault
(GB/s)

1 fault
(% of no faults)

4x4x4 75.9 70.0 92.2%
4x4x8 twisted 62.1 63.2 101.7%
4x8x8 twisted 54.3 53.7 98.8%

Table 2: Measured all-to-all throughput with (a) all OCSs
healthly and (b) one OCS unavailable. The last column shows
the throughput of the single-fault case versus the healthy case.

tation, however, makes use of static forwarding tables, which
are programmed with a single path for each source-destination
pair. As mentioned previously, we formulate path-selection as
an integer-linear program (ILP), calculating solutions offline
and caching them for use at runtime.

The goal of the ILP is to maximize the throughput of a pre-
defined traffic pattern by solving a maximum concurrent flow
problem [27]. All-to-all is typically chosen as the traffic pat-
tern and supplemental constraints ensure other collectives (e.g.
all-reduce) perform well. Per-path variables are constrained
to Boolean values to adhere to the static routing constraints,
with exactly one path per source-destination pair.

In both the fault-free and fault-tolerant cases, the ILP is
designed to exploit translational symmetry to reduce the num-
ber of variables [30]. This makes finding optimal solutions
for practical network sizes tractable. The torus and twisted
torus are both vertex symmetric, so a single set of path vari-
ables can be used for a canonical source and then translated
to all other sources. When an OCS is unavailable, the fault
pattern is periodic with cube granularity, as was shown in Fig-
ure 10. While the resulting topology is less symmetric than
the fault-free cases, the ILP can be still restricted to a set of
canonical sources. This also enables a single canonical case
to be solved offline and cached. The canonical fault pattern,
trivially translated from the actual fault pattern, is initialized
during network setup.

Table 2 compares measured all-to-all throughput in fault-
free and single OCS failure scenarios when the forwarding
tables are optimized using this methodology. For the regular
torus networks, a single unavailable OCS reduces the ideal
all-to-all performance to 15/16≈ 93.4% of the fault-free net-
work. This corresponds to losing one of the 16 links along
one face of the 4x4x4 cubes that connect to the OCSs. In-
terestingly the twisted torus shows better resilience, with the
4x4x8 performance improving slightly in the presence of an
unavailable OCS . This is because of the flexibility offered by
tiebreaking: by balancing different tiebreaking paths, traffic
can be shifted from one dimension to another. This balancing
is not possible in the regular torus. The slight improvement in
the 4x4x8 case is a good illustration that the ILP formulation
is only a proxy for real world performance.



(a) Machine daily failure rate. (b) ICI link daily failure rate. (c) OCS daily failure rate.

Figure 12: Weekly statistics of a supercomputer’s hardware failure and recovery, including TPU machines, ICI cables, and OCS.

5 Fleet Statistics

In this section, we describe Google’s fleet experience of op-
erating TPUv4 supercomputers over the past two years. We
focus on the software stack’s automatic management of OCS
xconnect, faults, and overall system availability.

5.1 Cube Reconfigurations

Thousands of training jobs are submitted to Google’s TPUv4
supercomputers every day. Figure 13 shows a sample super-
computer’s OCS xconnect actions over two months, correlated
with the pod’s number of admitted jobs. A higher number of
jobs normally incurs more OCS xconnect changes because
the Pod Manager updates ICI port xconnect for each job on
arrival. We also see OCS xconnect changes when there are
very large and/or long running training jobs which will experi-
ence reschedules to handle maintenance and failures. Overall,
TPUv4 supercomputers function reliably with many tens of
thousands of OCS xconnect changes per pod per day.

Training jobs can vary drastically in size and system topol-
ogy, ranging from sub-cube mesh jobs for small scale experi-
ments to large jobs that use almost the entire pod for LLM pre-
training. We anecdotally observe that many embedding-heavy
recommendation models adopt the twisted-torus topology,
and some transformer-based models use model parallelism
across more irregular torus topologies.

Figure 13: The OCS xconnect actions and jobs admitted by a
TPUv4 supercomputer over two sample months.

5.2 Hardware Maintenance Automation
TPUv4’s reconfigurability and fault-tolerant routing allow for
resiliency against machine and OCS outages. Figure 12 shows
the average failure rate of different hardware components in
each supercomputer.

Faults are diagnosed at the TPU machine, ICI link, and
OCS levels. The Pod Manager and healthd automate the
repair and recovery process. In an average supercompuer,
each day, 0.08% of the TPU machines, 0.005% of the ICI
cables, and 0.04% of the OCS experience a failure. While
these values are small, the number of jobs that are impacted by
hardware outages is non-trivial because each supercomputer
has a large number of machines, ICIs, and OCS. Machine
and ICI outages are automatically tolerated by reconfiguring
jobs to use spare healthy cubes. An OCS outage has larger
blast radius as it can impact all cubes in a supercomputer.
Fault-tolerant ICI routing lets us tolerate OCS outages with
some performance impact; and we priority recovery time for
OCS components compared with others to minimize this.

5.3 Fault-tolerant Jobs
In our experience to date, 95% of all TPUv4 training jobs opt
in to fault-tolerant ICI routing so they can be resilient to OCS
outages; the remaining jobs opt-out to rule out performance
non-determinism caused by different routing strategies. Fig-
ure 14 shows the ratio of all fleet-wide jobs actively running
with fault-tolerant routing across a 8-month sample period.
In general at any time, fewer than 2% of the jobs are running
with fault-tolerant routing. This quantity is highly correlated
with OCS maintenance events and the per event recovery
time. The spike around day 60 is due to a planned fleet-wide
upgrade of OCS parts to improve reliability.

Fault-tolerant ICI routing comes with a performance
penalty due to more congested traffic around faulty links.
The load imbalance affects collective operations including all-
to-all and all-reduce. We measured the performance impact
across a range of key Google workloads spanning Recommen-
dation Models (RM), Large Language Models (LLM), and
BERT-based [13] models. Table 3 summarizes our results.



Figure 14: Percentage of jobs using fault-tolerant routing
(OCS outage resiliency) over an 8-month window.

For all-to-all heavy workloads, the step time degradation
is not significant because the offline routing optimizer has
minimized, if not improved, all-to-all performance. This is par-
ticularly true for embedding-heavy twisted-torus shapes. The
all-reduce workloads experience higher performance impact
because the nearest-neighbor communication pattern receives
50% throughput hit. The impact on all-reduce operation can
be improved by smarter overlapping between compute and
communication. Overall, all workloads experience a small
slowdown in step time.

6 Related Work

The architecture decision to use OCS for TPUv4 is discussed
in [18], while [20] and [19] evaluate the design of prior gen-
eration static TPU pods. This paper describes the software
ecosystem for TPUv4 and how it achieves resilience at scale.
The usage of OCS in production-scale data center networks
was described in [25], discussing considerations for scala-
bility, cost, and topology engineering. This paper focuses on
OCS use TPUv4 supercomputers.

Previous work has covered circuit switching for supercom-
puters [28] and proposed topology engineering for ML train-
ing [32]. Nvidia uses a 2-tier NVswitch-based fat tree network
over NVlink for inter-GPU collectives. These represent a dif-
ferent design point compared with ours: OCS simplifies the
ICI network design compared to introducing packet switches
because it establishes dedicated physical channels without
the need to control shared traffic, while the lower purchasing
price and stand-by power also reduces operating cost [20].

Twisted tori are due to [6, 26]; the specific (4k,4k,8k) and
(4k,8k,8k) twisted torus shapes supported TPUv4 conform
to those of [7]. Finally software-defined datacenter networks
have been described extensively in the literature (e.g. [14, 16,
25, 29]). To our knowledge, we are the first to describe this
approach for an exascale supercomputer.

Workload Topology Step Time Slowdown
RM-1 4x4x8 twisted 0.5%
RM-2 4x4x8 twisted 3%
RM-3 4x4x8 twisted 3.9%
RM-4 4x4x8 twisted 8.6%
RM-5 4x4x8 twisted 8.3%
RM-6 4x4x8 twisted 4.7%

LLM-1 4x4x8 2.6%
BERT-1 4x4x4 1.2%
BERT-2 4x8x8 3.2%

Table 3: Performance impact from fault-tolerant ICI routing.

7 Future Work

Our main short term priorities are improving the performance
and recovery overhead of TPU pods: ML supercomputing
hardware is in high demand, and every little helps. In future,
as well as supporting increased line rate for ICI links, we plan
to introduce a randomized routing capability to ICI switches
to enables better load balancing for both torus and twisted
torus topologies in the presence of faults, particularly for
nearest-neighbor communication patterns.

We also plan tighter integration between OCS-based con-
figurability and workload reconfiguration by allowing jobs
to continue mostly unaffected by failures. Our approach here
is to provision a hot-standby cube in response to an outage
event, and directly migrate accelerator state to the new TPUs
without ever writing a persistent checkpoint. This work in-
volves changes to the Borg scheduler (to provision on de-
mand), libtpunet (to dynamically adjust a built ICI session)
and the Pathways ML runtime [5] (to manage state transfer).

8 Conclusion

The TPUv4 supercomputer is an exascale 4096-chip com-
puting system that addresses the availability and scalability
challenges of fast-paced ML model evolution. TPUv4 of-
fers approximately 2.1× performance compared to the previ-
ous generation, but also features cube-level reconfigurability
based on optical circuit switching and uses fault-tolerant ICI
routing to allow operation if switches fail.

This paper has described the end-to-end software infras-
tructure for TPUv4 that provides flexibility for topology,
routing, scheduling, interrupting, monitoring, and hardware
health management. TPUv4’s software-defined ICI network-
ing approach enables strong fault resiliency to machine and
switch outages at scale. The software has been operating in
production since 2020, running TPUv4 supercomputers for
both Google Cloud clusters and internal users, and sustaining
99.98% system availability,
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