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Abstract

Delivering immersive content such as volumetric videos and
virtual/mixed reality requires tremendous network bandwidth.
Millimeter Wave (mmWave) radios such as 802.11ad/ay and
mmWave 5G can provide multi-Gbps peak bandwidth, mak-
ing them good candidates. However, mmWave is vulnerable
to blockage/mobility and its signal attenuates very fast, pos-
ing a major challenge to mobile immersive content delivery
systems where viewers are in constant motion and the human
body may easily block the line-of-sight.

To overcome this challenge, in this paper, we investigate
two under-explored dimensions. First, we use the combina-
tion of a viewer’s full-body pose and the network information
to predict mmWave performance as the viewer exercises six-
degree-of-freedom (6-DoF) motion. We apply both offline
and online transfer learning to enable the prediction models
to react to unseen changes. Second, we jointly use the omni-
directional radio and mmWave radio available on commodity
mobile devices to deliver immersive data. We integrate the
above two features into a user-space software framework
called Habitus, and demonstrate how it can be easily inte-
grated into existing immersive content delivery systems to
boost their network performance, which leads to up to 72%
of quality-of-experience (QoE) improvement.

1 Introduction

Immersive content, such as virtual/mixed reality (VR/MR)
and volumetric videos, allows viewers wearing VR/MR
headsets to exercise six-degree-of-freedom (6-DoF) motion
(yaw, pitch, roll, X, Y, Z), offering a truly engaging expe-
rience [12, 47, 56, 62]. Networked immersive content de-
livery systems require tremendous network resources (e.g.,
hundreds Mbps or even Gpbs for high-quality volumetric
videos [47,55,88]). This poses a major challenge for mobile
immersive content delivery systems, which use wireless radios
instead of HDMI/USB cables [20, 21] for content delivery.

Recent advances in millimeter wave (mmWave) radio
technologies make it feasible to transmit immersive con-
tent at a multi-Gbps data rate. mmWave protocols such as
802.11ad [65] (802.11ay [43] in the future) and mmWave
5G [49] have been commercialized on commodity mobile
devices. Despite its high data rate, compared to omnidirec-
tional radio, mmWave radio is much more vulnerable to block-
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age/mobility and its signal attenuates much faster [65]. This
creates a major issue for immersive applications where view-
ers are in constant motion and the human body may easily
block the line-of-sight. To overcome this issue, existing sys-
tems take three categories of approaches.
o Improving the PHY layer. Numerous studies have been con-
ducted on the mmWave radio in general, such as improving
MIMO [42] and beamforming [79, 81].
e Enhancing line-of-sight (LoS). Some off-the-shelf commer-
cial products [23] mount the mmWave radio on top of a VR
headset to avoid blockages.
o Using specialized equipment. Some prior research [27] pro-
poses to deploy multiple reflectors paired with a custom PHY
protocol design to improve VR performance over mmWave.
The above approaches help but all have limitations. En-
gineering the PHY layer alone is inadequate to handle, e.g.,
the throughput fluctuation incurred by viewers’ fast motion.
Mounting the radio overhead may still incur frequent non-
line-of-sight (NLoS) blockages (e.g., when the viewer looks
up/down, raises arms, or passes through an obstacle). Adding
reflectors to combat NLoS raises the deployment bar and is in-
compatible with commodity mmWave protocols. Even in the
absence of blockage, highly dynamic user mobility can still
cause significant performance drops of mmWave [28,71,74].
In this paper, we investigate two complementary, under-
explored dimensions to improve the performance of mmWave-
based immersive content delivery systems: (1) full-body-pose
guided mmWave throughput prediction and (2) joint use of
mmWave and omnidirectional radios. We then integrate them
into a holistic middleware framework called Habitus. At a
high level, Habitus features a judicious cross-layer design
that considers the interplay among viewers’ motion, wire-
less networks, and immersive applications. It creatively lever-
ages features on cheap commodity mobile devices (e.g., dual
802.11ac/ad radios and multi-lens cameras capable of produc-
ing stereo images) for affordable high-quality immersive con-
tent delivery. Habitus is readily deployable without requiring
any change to the existing wireless protocol stack, hardware,
or driver. It is orthogonal to and can co-exist with the three
categories of solutions described above. The key challenges
we face include: (1) the dynamics of viewers’ motion and
mmWave channel incur complex interplay, making accurate
throughput prediction difficult; (2) diverse locations and hu-
man viewers add more complexity in developing a robust
prediction model; even at the same location, the environment



may change (e.g., a moved chair or a walking spectator); (3)
the heterogeneous characteristics of mmWave and omnidirec-
tional radios make their duet difficult.

Full-body-pose Guided mmWave Throughput Predic-
tion (§4). Over a mmWave link, although the throughput fluc-
tuations cannot be completely avoided, they can potentially
be predicted to improve the quality-of-experience (QoE) of
immersive applications. Habitus utilizes not only the network
information, but also viewers’ motion to predict mmWave
performance. The rationale is that by continuously tracking
the 6-DoF motion, an immersive content delivery system can
estimate the viewer’s future motion trajectory [47, 66, 86],
which can then be mapped to the future mmWave perfor-
mance given the sensitivity of mmWave signal to the physical
environment. In particular, we make a new discovery that
using the viewer’s full-body pose (how a person stands, sits,
or moves as represented by a set of key points associated with
body parts/joints) as features can significantly improve the
throughput prediction accuracy, due to the spatial correla-
tion among body parts during typical human motion [30].
Motivated by the above, we develop a first-of-its-kind frame-
work that predicts mmWave throughput by jointly leveraging
a headset’s 6-DoF motion, the viewer’s body pose, and net-
work information, through a unified machine learning model.
The full-body pose can be captured by a commodity stereo
camera conveniently placed, e.g., next to the WiFi AP.

Reacting to Unseen Changes (§5). Using a pre-trained
model to predict throughput suffers from a key limitation: it
cannot adapt to changes deviating from the training data. We
systematically investigate how various types of changes in
the immersive streaming context impact the prediction accu-
racy of a pre-trained model. Based on the insights, we design
three orthogonal mechanisms for reacting to different types
of unseen changes: (1) offline transfer learning handles large
changes such as switching to a new location/user; (2) on-
line transfer learning updates the model at runtime to tackle
smaller changes such as new motion patterns and environmen-
tal perturbations; (3) we also leverage the stereo camera to
proactively detect/respond to moving objects (e.g., a passing
person) that affect the mmWave performance.

Joint Use of mmWave and Omnidirectional Radios (§6).
Multi-band radio access is a common feature on both mobile
devices and WiFi APs. For example, the Asus ROG Phone
Series [16] support both 802.11ac and ad. Strategically com-
bining them can boost the network performance for metaverse.
We design a lightweight yet effective multipath scheduler for
immersive content delivery over mmWave and omnidirec-
tional radios (802.11ad and ac in our prototype). It employs
two core design ideas. First, it prioritizes the (low-bandwidth
but stable) ac path to guarantee the basic user experience,
and opportunistically leverages (high-bandwidth but fluctuat-
ing) ad whenever possible. Second, it enhances the mmWave
throughput prediction through robust statistical trend analy-
sis [39] to facilitate longer-term throughput forecast.

Implementation (§7). Instead of building a monolithic
application, we develop the above features as a generic, user-
space middleware framework called Habitus. It offers simple
interfaces and data-handling paradigms that are compatible
with a wide range of existing immersive applications. It also
addresses practical system-level challenges, such as accurate
throughput measurement of the highly bursty traffic of immer-
sive content delivery. Habitus consists of 3,541 lines of code
(LoC). To demonstrate its efficacy, we develop two immersive
apps using its API: one is built from scratch in 5.2K LoC; the
other is adapted from a state-of-the-art volumetric streaming
system [47] by only modifying 47 LoC.

Datasets (§4, §5) and Evaluation (§8). We thoroughly
evaluate Habitus through real-world data and deployment.

e We conduct IRB-approved data collection involving 10
representative motion patterns at 4 representative indoor loca-
tions from 3 users. This results in a 21-hour dataset that was
used to evaluate Habitus’s prediction framework.

e We enhance the above dataset with both static and dynamic
environmental changes in a reproducible manner (e.g., using
a robotic arm to programmatically inject NLoS, see our demo
video [2]), to evaluate Habitus’s reaction to changes.

o Using full-body poses reduces 802.11ad throughput predic-
tion error by up to 29% (25%) in MAE (RMSE), compared to
using only 6-DoF head motions. This translates to an average
QoE improvement of 29% for volumetric content delivery.

e Habitus effectively responds to unseen changes. The of-
fline transfer learning reduces the model training time by
36% to 55% compared to building the model from scratch
when switching to a new location or user. The online transfer
learning can adapt to a new motion pattern or a typical static
environmental change in 32 secs and 15 secs, respectively.
By proactively detecting and responding to moving objects,
Habitus reduces the volumetric streaming stall by 7%.

o Our multipath solution boosts the average volumetric video
quality by 67%, reduces the stall by 64%, and improves the
QoE by 72%, compared to using 802.11ad alone. Compared
to a recent multipath solution for 802.11ac/ad [71], Habitus
reduces the stall by 58% and boosts the quality by 19%.

e We conduct another IRB-approved user trial where we col-
lect 12 viewers’ subjective feedback when watching volu-
metric content. The average ratings for 802.11ad only (basic
prediction), 802.11ac+ad (no ad prediction), 802.11ad+ac (ba-
sic ad performance prediction), and the full Habitus system
(with multipath and full-fledged ad prediction) are 2.67, 2.75,
3.08, and 3.50, respectively (in a 1-5 scale).

Habitus represents to our knowledge a first software frame-
work aiming at optimizing the upper-layer network protocol
stack for immersive content delivery (and metaverse applica-
tions in general). This paper makes three-fold contributions:
the design of the Habitus framework; its implementation, eval-
uation, and integration into two volumetric content delivery
systems; and the release of data [6] (802.11ac/ad performance
correlated with full-body motion) and source code [5].
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Figure 1: Spatial heatmap of 802.11ac/ad throughput in a room.

2 Background and Motivation

Despite their great potentials on boosting immersive content
delivery [47,55], mmWave signals suffer from increased at-
tenuation, mobility, and blockages [65]. In contrast, 802.11ac
operates at the SGHz band with omnidirectional signal prop-
agation, providing lower but more stable throughput than
802.11ad. In a case study conducted in a personal office (Fig-
ure 3), we investigate how the PHY properties of ac and
ad affect the QoE of immersive content delivery. Using a
smartphone [16] mounted on the user’s head and a volumet-
ric video streaming application [47], we measure the QoE
while the user walks around the room. Results show that us-
ing 802.11ad greatly improves the content quality by 113%,
but also hugely increases the video stall by 502% due to its
fluctuating throughput under user mobility (Figure 1). Our
case study reveals that ac and ad have distinct network per-
formance due to their complementary PHY properties, and
motivates us to strategically combine them to enhance the
QoF of immersive content delivery.

Many studies focus on improving the communication qual-
ity of mmWave on the PHY layer [42,79, 81], while ignoring
contextual information for immersive content delivery where
a viewer’s full body is constantly in motion. On the other
side, although solutions with application domain knowledge
(e.g., [23,27]) have shown some effectiveness, they are ei-
ther incompatible with existing PHY-layer protocols [27] or
still suffer from significant LoS blockages [23]. Such a gap
motivates us to propose solutions that judiciously leverage
viewer’s full-body motion to facilitate mmWave performance
forecast, while being compatible to commercial mmWave pro-
tocols (802.11ad, mmWave 5G/6G, etc.) and easily integrable
into diverse immersive applications.

3 Habitus Overview

Habitus is a software framework enabling immersive content
delivery applications to better interact with heterogeneous
off-the-shelf wireless networks. It offers two essential fea-
tures: accurate runtime mmWave throughput prediction and
multipath networking over mmWave (e.g., 802.11 ad) and
omnidirectional radio (e.g., 802.11 ac). We assume that the
bottleneck is the last-mile radio link(s). Figure 2 shows the
workflow of Habitus. As the viewer is watching immersive
content, Habitus collects various features in real-time and
sends them to an edge node. The edge employs a machine
learning model to perform accurate mmWave throughput pre-
dictions. The prediction results are then utilized by the ap-
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Figure 2: The system architecture of Habitus.

plication and Habitus’s multipath scheduler to determine the
appropriate content quality level and how to distribute the
content over diverse radio links, respectively. Habitus works
on top of the transport layer as a middleware. It is ready for
deployment without requiring any changes to the existing
wireless protocol stack, hardware, or drivers.

Developing Habitus brings us several challenges: (1) How
to accurately predict mmWave throughput at runtime?
Due to its sensitivity to blockage and mobility, mmWave
throughput is difficult to predict, especially under user mobil-
ity. (2) How to ensure the robustness of the prediction mod-
els? A pre-trained model may not be able to handle various
unseen changes such as moving to a new location, switching
to a different user, or even smaller environmental perturba-
tions. (3) How to make multipath scheduling efficient and
intelligent? mmWave and omnidirectional radios have their
unique natures. How to strategically use these properties to
facilitate multipath scheduling is another critical problem.

Habitus tackles the above challenges with 3 core designs.
¢ Full-body-pose Guided mmWave Throughput Predic-
tion (§4). Habitus enhances mmWave throughput prediction
by exploiting the viewer’s full-body pose, along with the head-
set’s 6-DoF motion and network information, as the features.
It employs a cheap stereo camera with off-the-shelf computer
vision techniques to capture viewers’ poses. We systemati-
cally demonstrate the benefit of leveraging body pose through
a 21-hour dataset collected at 4 diverse locations.
¢ Reacting to Unseen Changes (§5). Habitus reacts to unseen
changes in training data via three orthogonal approaches: of-
fline transfer learning for location/user changes, online trans-
fer learning for new motion patterns and small environmental
changes, and proactively detecting/responding to moving ob-
jects (e.g., a passing person) affecting mmWave performance.
¢ Joint Use of mmWave and Omnidirectional Radio (§6).
Habitus employs the omnidirectional radio that provides sta-
ble throughput as a basis. It then opportunistically takes ad-
vantage of the fluctuating mmWave radio. It exposes simple,
generic interfaces to a wide range of immersive applications.

4 Full-body-pose Guided mmWave
Throughput Prediction

Habitus utilizes not only the network information, but also
viewers’ motion as features for mmWave throughput predic-



tion. It is based on our two observations. (1) The fast signal at-
tenuation and vulnerability to LoS blockages make mmWave
throughput highly correlated with the headset’s physical posi-
tion and orientation [65, 83]. Both of them can be predicted
from the viewer’s historical 6-DoF motion trajectory [47]. (2)
Various body parts exhibit spatial correlation [30]. It provides
opportunities to enhance the headset motion prediction, which
can facilitate mmWave throughput prediction.

4.1 Full-body Pose Estimation

Full-body Pose Representation and Retrieval. Typically, a
full-body pose can be represented by a set of key points where
each key point corresponds to a joint/part of the human body.
We represent the viewer’s full-body pose with 15 key points,
covering the nose, neck, shoulders, elbows, wrists, hips, knees,
and ankles. More details can be found in Appendix A.1.
Some commercial products (e.g., smart suit [17] and body-
mounted sensors [22]) allow tracking the full-body pose, but
they are expensive and uncomfortable to wear. Habitus instead
employs a cheap and easy-to-deploy approach to capture/track
the viewer’s full-body pose through a stereo camera. It first
applies a machine learning model [29, 31,33, 34, 60, 68] to
the RGB frame to estimate the 2D key points of the full-body
pose, each comprised of a 2D coordinate and a confidence
value w (0 < w < 1). Habitus then maps the 2D key points to
3D space using the depth map [45] that is generated from
stereo images, and keeps their confidence values unchanged.
Estimating Missing Key Points. In some cases, for ex-
ample, when some parts of the body are outside the stereo
camera’s viewport, we are not able to capture their key points.
We observe from our dataset in §4.2 that for 86% of time, the
ML model can retrieve at least 10 (out of 15) key points. The
90-th percentile, mean, and median duration of a key point’s
missing time are 1s, 0.43s, and 0.07s, respectively. This indi-
cates that in most cases, a key point misses for a very short
duration. We estimate a missing key point’s 3D coordinate on
the fly using a combination two approaches: reusing its most
recently captured 3D coordinate (when the missing period
is short), and linearly extrapolating its coordinate using its
historical trajectory (when the missing period is long). The
detailed design and evaluation can be found in Appendix A.2.

4.2 Data Collection

We perform a first-of-its-kind study on full-body-pose assisted
throughput prediction in real-world settings. We conduct an
IRB-approved data collection involving 10 motion patterns at
4 indoor locations from 3 users, resulting in a 21-hour dataset
consisting of both the network data and viewers” motion data.
This unique dataset is used to evaluate mmWave throughput
prediction (§4.3), techniques for tackling unseen changes (§5),
and the Habitus system (§8).

4 Indoor Locations. We investigate 4 representative indoor
locations with diverse environments (Figure 3). More details
can be found in Appendix A.3. 3 Users. We recruit 3 users

Patterns Description
s1 The user stands in ﬁhe ce.:nterA of the room, turning
around in a clockwise direction.
S The user stands in the center of the room, turning

around in a counterclockwise direction.

S3 The user walks around in a clockwise direction.

The user walks around in a counterclockwise

S4 direction in a normal speed.

S5 The same as S4, but in a slow speed.

S6 The same as S4, but in a fast speed.

S7 A chair occupies the front place of the access point.
The user walks around in a counterclockwise direction.

S8 The same as S3, but the user does not change the
orientation of his/her head.

9 The same as S4, but the user does not change the
orientation of his/her head.

s10 The user walks around following the walking trace

in S7, but there is no chair.
Table 1: User motion patterns.

with different heights (1.6m, 1.7m, and 1.8m) and genders (1
female and 2 males) to collect data in all the four locations.
10 Motion Patterns. We consider 10 representative motion
patterns when watching immersive contents [47] and summa-
rize them in Table 1. For each motion pattern, we repeat data
collection three times.

Dataset Overview. Our dataset consists of 12 {Location,
User }-specific sub-datasets, each having 30 (10 motion pat-
ternsx3 repeats) data traces. The duration of each data trace
is 120 secs and the time granularity of each data point is 1/60
secs. Our dataset consists of not only the network informa-
tion (throughput and signal strength of both 802.11ac and
802.11ad), but also users’ motion information (i.e., 6-DoF
motion of users’ headsets and users’ full-body pose, see §4.1).
Across all data traces, the average 802.11ad throughput varies
from 275 to 886 Mbps, with the standard deviation rang-
ing from 85 to 358 Mbps. Meanwhile, the average 802.11ac
throughput varies from 175 to 378 Mbps, with the standard
deviation ranging from 26 to 86 Mbps. The highest through-
put of 802.11ad only achieves 2.34x of 802.11ac due to the
limitation of our hardware setup.

Hardware Setup. We take Personal Office in Figure 3 as
an example. For the edge, we set up a desktop PC with two
network interfaces (NICs) at the corner of the room. It has an
Intel Core 19-10900X CPU @ 3.70GHz, an NVIDIA 2080Ti
GPU, and 32GB memory. Each NIC is connected to an access
point by a 1-Gbps Ethernet cable, one [19] for 802.11ac and
the other [13] for 802.11ad. The two' APs reside on the floor
side-by-side. A stereo camera [24] is installed on the wall and
connected to the PC via a USB 3.0 cable. It captures users’
motion as RGB-D videos at up to 100 FPS. For the client
device, users wear a headset [11] for collecting 6-DoF motion
of their heads. We mount a smartphone [16] that supports both
802.11ac/ad on the headset to collect network information.

IIdeally one access point is able to handle both ac and ad. We use two
access points due to the 1-Gbps speed limitation of our Ethernet cables.



Figure 3: Data collection locations (from left to right: Personal Office, Living Room, University Office, and Meeting Room).

We use the same hardware setup for all four locations.

Data Collection Methodology. On the client side, the
smartphone establishes two TCP connections with the edge
over 802.11ac and 802.11ad, respectively. It performs bulk
download from the edge through both paths, and measures
the throughput and signal strength (in terms of RSSI). The
headset keeps sending the 6-DoF to the smartphone by UDP
over 802.11ac. Meanwhile, on the edge side, the desktop
PC keeps sending the most recent RGB-D frame ID captured
by the stereo camera to the smartphone through UDP over
802.11ac for data synchronization purpose (see next).

Data Synchronization and Post-processing. During data
collection, the smartphone logs all the information (generated
by itself or received from the headset/edge) except the RGB-D
video that is recorded at the edge. Since all the devices are in
close proximity, the UDP one-way delay is negligible (< 2ms)
so different pieces of data are properly synchronized. We use
zed-openpose [26] (which consumes the RGB-D video) to es-
timate the user’s body pose offline. The pose is synchronized
with other information through the RGB-D frame ID, which
is recorded by the client at runtime. For key point extraction,
we set the input resolution to 320x240 and keep it consistent
in our implementation (§7).

4.3 Prediction Methodology and Evaluation

We first formulate our prediction task. Let x; denote the
feature vector at time ¢, y; denote the predicted through-
put at time ¢, At denote the time granularity, and M de-
note the prediction model. Assuming that we perform pre-
diction at time o, we have Yy, ,, = M(X,, ,) where where
Xign = [xto—(n—l)xAta-xto—(n—Z)XAt’ <2 X1g—1xAt> X1 ] 18 the fea-
ture sequence within a history window (hw) n, and
[yto+m><At] or

[Vig+1xArs Vigt2xArs ++os y:0+(m—1)xAz,ym+mxAt]
can be either a single predicted value after a prediction
window (pw) m or a predicted sequence within the pw m
where y; 1ixar (1 <i <m) corresponds to a future timestamp
to+ix At. The hw (pw) in secs is computed as n x At (m x At).
Habitus uses the full-body pose by taking the coordinates
and confidence values (§4.1) of its key points as important
features to the mmWave throughput prediction models. We in-
vestigate 5 different models from recent studies on mmWave
throughput prediction [28,63]. We customize them to our pre-
diction task by tuning the model architecture and the parame-
ters. We list them as follows. (1) Gradient Boosting Decision
Tree (GBDT) [63]. Our GBDT model has 100 estimators,
bounded by a depth of size 3. It takes X, as the input and

Yto,m =

predicts a single throughput value Y . (2) Fully-connected
Neural Network (BP) and Recurrent Neural Network
(RNN) [28]. BPS is a fully-connected neural network with
3 hidden layers, each with 40 neurons. It takes X;, g as the
input and predicts a single throughput value Y;, 1. RNNS and
RNNZ20 have the same network architecture, i.e., a recurrent
neural network with 3 hidden layers, each with 8 or 20 neu-
rons. They take X;, g and X;, 20 as the input, respectively, and
both predict a single throughput value Y;, 1. (3) Sequence-to-
sequence Learning (Seq2Seq) [37,63,75,77]. Our Seq2Seq
model has a single-layer LSTM encoder-decoder architecture
with 128 hidden units. It takes X, , as the input and predicts
future throughput sequence Yy, ,, where m =2 x n.

We use our dataset (§4.2) to train/evaluate the above models
{w/, w/o} the full-body pose as extra features. We perform
10-fold cross-validation for each model on each {Location,
User}’s dataset, and quantify their prediction errors by mean
absolute error (MAE) and root mean square error (RMSE).
For Seg2Seq, to fairly compare it with the other models, we
only use the value y;p\ in its predicted sequence. We use
three prediction windows (pw) of {0.5, 1, 2} secs.

Figure 4 shows the average MSE and RMSE for different
models across all {Location, User}’s datasets when pw=1 sec.
The model trained with (without) full-body pose is denoted
as Model w/ Pose (Model) in Figure 4. We also normalize
the prediction error by the average 802.11ad throughput (493
Mbps) of our dataset. We have four observations here. (1)
Seq2Seq w/ Pose achieves the lowest prediction error: 31 (47)
Mbps in MAE (RMSE). (2) Leveraging full-body pose as
extra features effectively reduces the prediction error for all
the models. The reduction ranges from 5% (GBDT) to 29%
(RNN20) in MAE and 5% (GBDT) to 25% (RNN20) in RMSE.
This quantitatively confirms that leveraging spatial correla-
tion among body parts helps boost the throughput prediction
accuracy under viewers’ constant motion. (3) Although not
shown, the benefit of leveraging full-body pose is similar in
both simple (i.e., Personal Office and Living Room) and com-
plex (i.e., University Office and Meeting Room) environments.
(4) Deep learning models of prior work [28] (RNN20, RNNS,
BP8) do not necessarily outperform the non-deep-learning
model (GBDT). This is likely because those in [28] are de-
signed for limited motion (2-DoF) as opposed to the complex
6-DoF motion in real-world settings. We confirm that the
above findings also hold for pw=0.5s and pw=2.0s.

5 Reacting to Unseen Changes

In this section, we investigate how the throughput prediction
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models developed in §4 react to changes unseen in the training
data. This is an important aspect we must consider since the
changes are common in practice (e.g., new motion patterns, a
chair being moved in the room, another person passing by).
We then develop solutions to tackle these changes.

5.1 Measurement Methodology

Recall from §4.3 that we train a model for a particular user’s
motion patterns in the environment of a particular location.
Therefore, a change to any of the above factors may degrade
the model’s prediction accuracy. We first define these changes.
C1: New Location. The dimensions, interior design, and fur-
nishings of locations differ vastly, as do the locations of the
AP and camera. These variations can significantly impact the
behavior of mmWave signal propagation [67,72,81,91]. C2:
New User. Users differ in their shape and height, resulting in
variations of their body poses used by the model. C3: New
Motion Patterns. Even for the same user at the same location,
a new motion pattern may lead to unseen trajectories of the
head’s motion or the body’s pose. C4: Static Environmen-
tal Changes such as furniture being moved and even small
objects being manipulated can affect the mmWave signal
propagation [81,91]. CS: Dynamic Environmental Changes
are similar to C4 except that the object(s) that perturb the
environment are in motion. A representative scenario is that,
people as passerby(s) or spectator(s) can temporarily block
the LoS and henceforth cause a throughput drop.

We next describe how to measure the impact of the above
changes. For a given change C, we construct three datasets Tp,
T4, and EA. T and T4 contain the training data before and
after C, respectively; E4 contains the testing data collected
after C for evaluating the impact. We use Tp and T4 to train
two models Mp and M 4, respectively, using Seq2seq w/ Pose
with the same hyper-parameters. Next, we test Mp and M4
using E4, and calculate the corresponding MAE as MAE/;
and MAEf\ respectively. Then the impact of C on the through-
put prediction accuracy is calculated as MAEg - MAEQ. The
tradeoff here is accuracy vs. training overhead: MAE? gives
the best accuracy but requires retraining the model; MAEg
reuses the old model at the cost of degraded accuracy.

We now describe how to construct Tg, T4, and E# for C1
to C5. Recall from §4.2 that our dataset is divided into (3
users) x (4 locations) = 12 groups (i.e., sub-datasets), and
each group contains traces of 10 motion patterns. Also, each

Normalized Value (%)

group’s traces are randomly split into training (70%) and
testing (30%). Since a model is created for a given (user u,
location /) pair, we measure the impact on a per-group basis,
and then average the impact across all groups. For C1, for a
given group (u,l), Ty consists of the training data of (u,1);
T and E4 contain the training and testing data of Uy (u,1"),
respectively. For C2, it is similar to C1 except that T4 and E4
belonging to U, 4, (u’,1). For C3, the three sets all belong to
the same (u,[) pair but they contain different motion patterns:
T4 contains all 10 motion patterns; we remove one motion
pattern e from Tg, and only keep e in EA. We repeat the
above measurement 10 times, each time using one of the
10 motion patterns as e. For C4 and CS5, the three sets all
belong to the same (u,[) pair, but we physically introduce the
environmental changes and then recollect data for T4 and EA,
as elaborated next.

We inject two static environmental changes (C4) and study
them separately: (1) move four chairs in the room to fixed
places (Figure 6 Left), and (2) put four large packages on
designated spots. Then we ask the same users to exercise
the same motion patterns (as those in Tp) as if there were
no environmental change (we ensure that the changes do not
block any motion pattern). Injecting a dynamic change (CS5)
in a reproducible manner requires a more sophisticated setup.
We use a robotic arm to move a box covered by aluminum foil
back and forth between two designated spots to periodically
introduce NLoS (Figure 6 Right). The box size and aluminum
foil thickness are determined through a separate controlled
experiment (details in Appendix §B) to mimic real humans
in terms of NLoS-incurred throughput degradation. In this
way, we programmatically emulate a passerby intermittently
causing NLoS (demo video [2]). We study C4 and CS5 only at
University Olffice due to setup complexity.

5.2 Measurement Results and Insights

Figure 5 plots the impact of C1 to CS on the mmWave
throughput prediction accuracy. The two Y axes show both
the absolute MAE growth (MAEg —MAE‘:) and the relative
growth (normalized by the average 802.11ad throughput in
our dataset). We highlight our findings next.

A new location incurs the highest impact. C1 degrades
the model’s accuracy by 19% (93 Mbps) on average. It reveals
that the physical property of mmWave and its throughput dis-
tribution in a location is the fundamental knowledge learned
by our model. Since the indoor location, characterized by
its room layout, surface materials, furniture arrangement, etc.
plays a dominant role in determining the mmWave propa-
gation, changing the location will reshape the throughput
distribution at different 3D coordinates.

A new user incurs a moderate impact. C2 increases the
average MAE by 8% (38 Mbps). The impact is lower than
that of C1, but still non-negligible. This suggests that our
model also learns how a user’s motion affects the throughput
received by the headset. Changing the user alters the relative
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Figure 5: Impact of changes on the model pre- Figure 6: Static (left) and dynamic (right) Figure 7: mmWave throughput drop caused

diction accuracy (Seq2seq w/ Pose, pw = 1 sec).

positions among the key points used by our model; it also
changes the trajectory that the headset can reach even with the
same motion pattern. Both degrade the model’s accuracy. Nev-
ertheless, the impact is lower than C1 because the throughput
distribution, mostly shaped by the surrounding environment,
largely remains consistent.

New motion patterns and static/dynamic environmental
changes may incur a small impact. Upon C3, C4, and CS,
our model’s prediction accuracy only drops marginally, by
4%, 3%, 4% (20, 17, 19 Mbps) on average, respectively. The
primary reason is that the changes are spatially small (C3
and C4) or temporarily short (C5). For C3, a new motion
pattern oftentimes has positions overlapped with old ones,
making the previously learned knowledge relevant. For our
C4 instances, the moved chairs and packages usually do not
incur additional NLoS. Our C5 instance does incur NLoS, but
the overall impact is small due to its short duration (Figure 7).
Note that, however, an environmental change may cause a
big mmWave performance impact (e.g., there are apparent
blockages near the mmWave AP). Users of Habitus (and any
mmWave system in general) should avoid such scenarios.

5.3 Methods of Handling Changes

The results in §5.2 suggest that besides taking the time-
consuming approach of retraining a model from scratch,
Habitus may adopt different strategies to tackle changes. We
next introduce three orthogonal mechanisms. The first two
(offline/online transfer learning) adopt the concept of homo-
geneous transfer learning [51,59,93] that transfers the knowl-
edge learned from a past experience to a new setting. The
two properties below make transfer learning a desirable so-
lution. (1) Before and after the change, the feature space
(i.e., mmWave signal strength and throughput, 6-DoF mo-
tion, full-body pose) remains the same but their distributions
(or domains) may differ [93]; (2) before and after a change,
there is invariant knowledge (e.g., the physical property of
mmWave and the throughput distribution in certain positions)
that can be reused. The third mechanism promptly handles
CS5 by fusing real-time computer vision into Habitus.
Offline Transfer Learning. For C1 and C2, given their
infrequency and non-negligible impact on the model’s perfor-
mance, collecting data under the new setting to update old the
model before using it helps mitigate large prediction accuracy
drops. Specifically, when switching to a new location or a new
user, Habitus asks the (new) user to exercise motion patterns

environmental changes, from AP’s view.

by dynamic changes (CS5) in our demo [2].

(e.g., those in Table 1) in the (new) location while measur-
ing the mmWave bandwidth and collecting input features. A
typical data collection only needs 1 to 2 minutes (see §8.5).
Habitus then uses the collected training data to update the old
model before starting streaming for the new user or location.

Online Transfer Learning. To handle C3 to C5 (and also
C1, C2), since they occur much more frequently with usually
a much smaller accuracy impact, Habitus can collect data
under the new setting and update the model on-the-fly. Unlike
offline transfer learning, online transfer learning does not
incur additional data collection overhead and is transparent
to users. Specifically, during a streaming session, Habitus
updates the model in consecutive epochs. Epoch i produces
a new model M; and a set of training data samples D; (input
features and the measured ground truth mmWave throughput).
Habitus also maintains a global training dataset D . At the
beginning of Epoch 7, Habitus (1) sets the current model for
throughput prediction to M;_1; (2) appends D;_; to D, and
start using D¢ to update M;_;; (3) start collecting D; that
will be used to update M; in Epoch i + 1. To bootstrap the
above process, Epoch 0 only collects D for a fixed period
of 10 secs. To avoid D becoming too large, Habitus limits
D to contain only data collected in the recent 5 minutes. We
tune the batch size (64) to balance each epoch’s convergence
speed and the total model copy overhead after epochs. We
also apply a small learning rate (0.001) given that we are
fine-tuning the model rather than training it from scratch.

Vision-based Dynamic Change Handling. We find that
even online transfer learning is too slow to react to C5. We
thus devise a heuristic-based design to improve the respon-
siveness. The idea is to leverage the stereo camera, which
already belongs to Habitus’s infrastructure, to visually cap-
ture dynamic changes and penalize the predicted mmWave
throughput accordingly. Specifically, we focus on the most
common dynamic change: a person temporarily blocks the
LoS between the viewer and mmWave AP. During a stream-
ing session, the edge performs continuous human detec-
tion [25, 32, 78]. If a passerby is detected (we know the
viewer’s position so the viewer will not be confused with
the passerby), Habitus uses the detected 3D bounding box,
the known position of the mmWave AP, and 6-DoF motion re-
ported by the headset, to determine if the passerby is causing
NLoS or may cause NLoS in the near future by examining
the distance from the bounding box center to the LoS be-
tween the viewer and AP. If so, Habitus adds an empirical



penalty to the mmWave throughput B,y predicted by the
model: B! , = —ﬁ x B,g where s is the observed sig-
nal strength; s,,;, and s,,4x denote the typical indoor signal
strength range (empirically set to -70 and -30 dBm, respec-

tively). We evaluate the above three methods in §8.6.

6 System Design of Habitus

We now detail the system design of Habitus that leverages the
functionalities introduced in §4 and §5 as building blocks.

As shown in Figure 2, except the client-side feature collec-
tor, all the other components of Habitus reside on the edge.
This helps minimize the energy consumption and heat dissi-
pation on client devices.” The choice of the edge is flexible.
It can be either a user’s own desktop PC, or an edge node
co-located with a mmWave 5G base station (e.g., AWS wave-
length [1]). The edge also acts as a proxy by forwarding the
client’s requests to the server and the server’s streamed con-
tent to the client. Habitus supports both client request and
server push. Our prototype uses the former.

6.1 Application Interface

Habitus jointly utilizes mmWave and omnidirectional radios
(802.11ad and 802.11ac in our prototype) to deliver immersive
content. It exposes simple interfaces to applications.

o Through a callback, Habitus keeps informing the application
of the two radio links’ aggregated bandwidth. The application
should ensure that its actual streaming bitrate does not over-
shoot the aggregated bandwidth. The bandwidth update is at
a fast pace (e.g., 30 FPS) to match the viewer’s fast motion.
o The application streams immersive contents on a per data
block basis, which can be flexibly defined by the application
based on its semantics. Each block can be independently de-
coded. We use examples in 6.4 to show that our block-based
paradigm is aligned with the design of many existing im-
mersive apps (e.g., 360° videos, volumetric videos, and VR).
When the client requests for (or the server pushes) a block, it
uses Habitus API to attach two parameters: the block’s prior-
ity and playback deadline. Habitus forwards the blocks based
on their playback deadline in a FIFO manner, and distributes
high-priority and low-priority blocks over the omnidirectional
and mmWave radios, respectively. The rationale is that the
omnidirectional radio is more reliable, so high-priority blocks
get a higher chance of being delivered (and hence decoded
and rendered) before its deadline than low-priority blocks.

6.2 Utilizing mmWave Throughput Prediction

Habitus exercises multipath content delivery in two steps. It
first estimates the aggregated network bandwidth by treating
the multipath ac/ad connections as one logical connection.
Second, it splits the block stream over ac and ad paths. We
now detail the first step, and describe the second step in §6.3.

2For example, in our experiment, running our Seq2Seq model (§4.3) on
the ROG phone II [16] for only two minutes will trigger an overheating issue.

Recall that the predicted throughput of 802.11ad, denoted
as Bgg, can be obtained from our mmWave throughput predic-
tion model (§4, §5). The 802.11ac throughput, B,., is much
more stable and largely not affected by the environment. We
therefore simply use the harmonic mean of a past window of
5 secs to predict B,.. Then Habitus predicts the aggregated
capacity as By +c¢ x Bgq. We use ¢, which we call the trend-
aware coefficient, to further enhance the 802.11ad throughput
prediction by considering the trend of a finite horizon in the
future as produced by our model (§4.3). The idea is to analyze
the monotonic trend of the predicted throughput sequence. If
the trend is increasing (decreasing), we can use the 802.11ad
link aggressively (conservatively).

To derive ¢, Habitus first uses Cox-Stuart Test [39,70], a
lightweight, non-parametric approach, to determine the trend
(increase, decrease, or neither). Its details are in Appendix C.

n
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Next, Habitus uses the above formula to compute ¢ by averag-
ing the future changes in the predicted throughput sequence
{zi}. I(x) = 1 iff x is true (otherwise 0), and n is the length
of the predicted throughput sequence. The formula splits the
sequence into two sub-sequences in the middle, and com-
putes the normalized increase (decrease) of the second sub-
sequence compared to the first one, on a per-element basis.
The normalized changes are then averaged. We empirically set
the lower and upper bound of ¢ to 0.5 and 1.25, respectively.

6.3 Multipath Scheduling

Upon receiving the block stream from the server, Habitus
splits it over 802.11ac and ad paths. Regarding the splitting
mechanism, a straightforward solution is MPTCP [41] or its
variants for wireless networks [48, 71, 82]. We reject this
design due to three reasons. First, MPTCP exposes to the
upper layer a single logical connection whose byte stream is
delivered in-order; Habitus instead decouples the two paths
that independently deliver blocks. Second, adapting MPTCP’s
scheduler to Habitus requires kernel modifications. Third,
MPTCEP is known to cause issues on ad/ac (e.g., throughput
drops over ad due to periodical network scans on ac [71]).
To avoid the above issues, Habitus establishes two single-
path connections® and performs scheduling in the user space.
The scheduling logic is straightforward: transmitting high-
priority and low-priority blocks over 802.11ac and ad, respec-
tively, with the reason explained in §6.1. Specifically, the
server sends to Habitus’s edge node the metadata (headers)

30ur prototype uses TCP. A better design would be using QUIC [54] to
avoid head-of-line blocking across blocks within a path under packet losses.



of multiple blocks with the same playback deadline in a sin-
gle bundle, followed by parallel streams of individual blocks’
content. As the blocks’ content arrives, the edge distributes
them over the two paths according to their priority fields in
the metadata and each path’s estimated bandwidth. A block
only usually uses one path, but a small number of blocks
may be split over both paths if one path’s bandwidth budget
is insufficient. Once a block arrives at the client, it will be
immediately passed to the application for decoding and ren-
dering. The server-side transmission, edge-side forwarding,
and client-side reception are pipelined.

6.4 Example Use Cases of Immersive Apps

Habitus can be easily integrated with a wide range of immer-
sive applications and content formats as exemplified below.
360° Videos. State-of-the-art 360° video systems [46, 80,
90] spatially segment each panoramic video chunk into tiles.
Tiles are selectively transmitted based on the viewport. Each
tile naturally maps to a block in Habitus, and its priority can be
set to the probability that it will appear in the viewport. Many
existing systems already have this metric calculated [35, 66].
Volumetric Videos. The above viewport adaptation tech-
nique and henceforth the block/priority assignment also ap-
plies to volumetric videos, where a 2D tile becomes a 3D cube
consisting of 3D points. Alternatively, since each volumetric
frame consists of unstructured points, it can be arbitrarily split
into multiple layers each constituting a block in Habitus. A
“base layer” with a low-density point cloud can be assigned a
high priority; one or more “enhancement layers” each encom-
passing additional details can be assigned lower priorities.”*
Generic VR. Networked VR systems either stream raw
3D models [55, 57, 88, 89] or rendered 2D scenes [36, 58].
Depending on the content format, a block can be either a 3D
model (or part of it) or a rendered 2D patch. The are several
studies/systems on determining the priority of VR content,
such as those based on foreground/background [53,57, 85],
the viewing distance [44,61], and user gaze behaviors [36].

7 Implementation

Our implementation consists of three parts: (1) the main
Habitus middleware in 3.5K LoC; (2) a 802.11 throughput
measurement module plugged into Habitus; (3) two sample
applications using the Habitus API (5.2K LoC, 4.4K LoC).
The Main Habitus System is implemented in C++ and
Python. We use ROG Phone II [16] and plug it into a low-end
VR headset [7] (costs $26) as the client-side device and the
same server used in §4.2 as the edge node. On the client side,
we use Linux iw [10] to monitor 802.11 signal strength; we
use ARCore [3] for 6-DoF motion tracking (based on IMU
and camera data [4]). On the edge side, we use PyTorch-
1.10.0 [15] for training and transferring our models. For in-
ference, we save the models in TorchScript [18] for C++ ex-

4A similar concept called Scalable Video Encoding (SVC [73]) can be
applied to 2D content, albeit at a higher encoding overhead.

ecution. We implement the body pose estimator over zed-
openpose [26], using a pre-trained model [14, 34] to detect
2D poses. We pipeline the body pose estimation stages (cap-
ture, 2D detection, 2D-to-3D mapping). We use the object
detection module in ZED SDK 3.8.2 [25] to detect passersby.

802.11 Throughput Measurement Module. Compared to
traditional 2D video traffic, immersive content traffic is highly
bursty [36,47,55]. This poses several challenges for 802.11
(in particular, mmWave) throughput measurement. We thus
implement an 802.11 throughput measurement module using
Libpcap-1.10.1 [8]. We detail its design in Appendix D.1.

Two Volumetric Streaming Applications using Habitus.
To demonstrate how Habitus can benefit real immersive ap-
plications, we build two volumetric (point cloud) streaming
systems with different logic and complexity using the Habitus
API. The first app (Appl) employs layered encoding of point
clouds (§6.4) so each data block corresponds to a (frame,
layer) pair. The second app (App2) performs viewport adap-
tation (§6.4) by spatially segmenting each frame (i.e., point
cloud) into cubical cells, so each data block constitutes a
(frame, cell) pair. We build the first app from scratch in 5.2K
LoC, and the second app replicating ViVo [47], a state-of-the-
art, visibility-aware volumetric streaming system. For ViVo,
we only change 47 LoC for Habitus integration. Both apps are
equipped with the same bitrate adaptation algorithm whose
details can be found in Appendix D.2.

8 Evaluation
8.1 Experimental Setup

Dataset, Devices, and Models. We use the dataset collected
in §4.2 for our controlled experiments. The devices are the
same as those used in §7 and §4.2. In §8.2, we use { GBDT,
BPS8, RNNS, RNN20, Seq2Seq} {w/, w/o} Pose models, and
three prediction windows (pw): {0.5, 1, 2} secs. Experiments
in other sections use Seq2Seq {w/, w/o} Pose with pw=1 sec.
Controlled Experiments. To ensure the reproducibility,
during our controlled experiments, we replay the headset’s 6-
DoF motion traces and the signal strength traces on the smart-
phone, which is connected to the edge via real 802.11ac/ad
links. On the edge side, we replay the RGB-D videos for
online full-body pose estimation. We emulate ac/ad through-
put traces by Linux te [9]. We fix the smartphone static in
LoS to the 802.11ad AP to keep a gopod mmWave signal for
throughput emulation. We do not add additional RTT since
the client already connects to the edge via real wireless links.
Volumetric Videos. We use three point-cloud-based vol-
umetric videos (denoted as VI, V2, and V3, respectively)
throughout our evaluation. {V1, V2, V3} has {2612, 2700,
3000} frames ({~87, 90, 100} secs), respectively. Each frame
of them is split into 64 data blocks (§6.1) and details can
be found in §7 and Appendix D.2. All the videos are at 30
FPS, encoded into ten quality levels. The highest bitrates are
{570, 687, 738} Mbps for {VI, V2, V3}, respectively. Unless
otherwise mentioned, the results reported in the remainder of
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from [88]. It is a linear combination of frame quality, inter-
frame & intra-frame quality switch, and stall. §8.4 and §8.7
evaluate the end-to-end performance (quality and stall) of
Habitus. §8.5 conducts a user study to examine real users’
QoE. §8.6 evaluates how our design handles unseen changes.
§8.8 provides additional micro benchmarks. Except for §8.7,
we use Appl in §7 (details in Appendix D.2) for evaluation.

8.2 802.11ad Throughput Prediction Error

Recall that in §4.3, we perform 10-fold cross validation for
{GBDT, BP8, RNNS, RNN20, Seq2Seq} {w/, w/o} Pose models
on each {Location, User}’s dataset, with three pws {0.5, 1, 2}
secs. As Figure 4 shows, leveraging full-body pose effectively
reduces mmWave throughput prediction error for all these
models, ranging from 5% (GBDT) to 29% (RNN20) in MAE
and 5% (GBDT) to 25% (RNN20) in RMSE, respectively.

8.3 QOoE over 802.11ad Network

We evaluate how full-body pose guided mmWave throughput
prediction improves App1’s QoE through controlled experi-
ments. First, for each {Location, User}, we train a Seq2Seq
w/ Pose and a Seq2Seq w/o Pose model, respectively. We
then run Appl1 over a single-path 802.11ad network. For each
data trace, we run the experiment twice, using Seg2Seq {w/,
w/o} Pose model, respectively. We log the quality for each
data block (§8.1) and the stall for each frame to assess the
QoE. Figure 8 shows the QoE improvement by leveraging
full-body pose for each motion pattern across all data traces.
We have two findings. First, leveraging full-body pose ef-
fectively improves the QoE by 29% on average for all our
motion patterns. Second, the QoE improvement varies across
different motion patterns, from 13.30% (S1) to 45.82% (S6).
The full-body pose does not help much for S1, S2, S8, and
S9. This is due to two reasons. First, in S1 and S2, the user
does not make translational movement; this reduces the effec-
tiveness of the pose. Second, in S8 and S9, the LoS between
the smartphone and the 802.11ad AP is well maintained; this
makes the throughput prediction easier compared to other
motion patterns. Figure 9 presents the QoE improvement for
each location in Figure 3. The QoE improvement remains

Table 2: Habitus variants.
similar between simple (Personal Office and Living Room)
and complex locations (University Office and Meeting Room).

8.4 End-to-end Performance of Habitus

We evaluate the end-to-end performance, including the con-
tent quality and stall, of diverse Habitus variants using all
{Location, User}’s data and App1 in §7.

Habitus Variants. Table 2 summarizes 5 Habitus variants.
We consider two single-path variants, ac and ad, that only
schedule data to ac and ad, respectively, without ad through-
put prediction. We also consider three multipath variants, all
using the multipath scheduler from §6.3: the Simple variant
does not utilize 802.11ad throughput prediction; the Pro and
Full variant apply the Seq2Seq w/o Pose and Seq2Seq w/ Pose
model, respectively, for ad throughput prediction. Both Pro
and Full enable the trend-aware feature (§6.2). As shown in
Figure 10, compared to ac and ad, Simple boosts the quality
(normalized by the highest quality level) by 127.88% and
40.36%, respectively. Simple incurs a much higher stall com-
pared to ac because the ad network is highly fluctuating and
Simple blindly uses it without predicting its future condition.
Compared to Simple, Pro boosts the quality by 7.75% and
reduces the stall by 44.25%, thanks to the ad throughput pre-
diction and the trend-aware multipath scheduler. Compared
to Pro, Full enhances the ad throughput prediction accuracy
by using full-body poses, leading to a further stall reduction
of 20.55% and video quality improvement of 10.58%.

Habitus vs. Existing Approaches. We compare Habitus
with MuSher [71], a recently proposed MPTCP scheduler
for ac/ad networks. Musher periodically probes the ratio be-
tween the current ad and ac throughput, and splits the traffic
accordingly. In each probe, it tries to increase and decrease
the radio, and greedily selects the direction to move based on
the aggregated ac/ad throughput measurement. It also has a
SCAN component to mitigate the negative impact of network
scanning and a BLOCKAGE component to accelerate TCP
congestion window recovery after an ad blockage event.

We implement MuSher’s scheduling algorithm in the appli-



cation layer. We plug it into Habitus and denote it as MuSher-
VR. We do not implement the SCAN component because we
use establish separate TCP connections over ac/ad links so
network scans on one interface do not affect the other one.
We repeat the same experiment on MuSher-VR.As shown in
Figure 10, compared to MuSher-VR, Habitus (Full) signifi-
cantly reduces the stall by 58.24% and boosts the quality by
18.52%. Habitus outperforms MuSher-VR due to two reasons.
First, MuSher-VR incurs stalls when it aggressively probes
the scheduling ratio by scheduling more data to one path than
its actual capacity. Habitus instead takes a prediction-based
approach to avoid the stall caused by aggressive probing. Sec-
ond, Habitus prioritizes using the ac path and opportunisti-
cally uses the ad path if possible. In contrast, MuSher-VR
lacks such prioritization. It schedules the data to the ac/ad
paths based on a calculated ratio that ideally should converge
to the ratio between ac/ad throughput. However, under the
constant movement of the viewer, the actual instantaneous ra-
tio may significantly deviate from the calculated ratio, leading
to stalls or under-utilizing the ad path.

8.5 User Study

We conduct an IRB-approved user study at University Office
(Figure 3) to assess real users’ QoE when using App1 (§7).
We recruit 12 users with various demographics.” We let each
user watch a video randomly selected from our test videos
and then subjectively rate the watching experience through 5
choices { 1=very bad, 2=bad, 3=fair, 4=good, 5=very good}.
Each user performs the above assessment four times. Each
time, we randomly plug a Habitus variant into Appl. We
consider four variants: ad, Simple, Pro, and Full as listed in
Table 2. Before each user’s trial begins, we collect 2 minutes’
worth of data from the user to transfer a pre-trained model to
the user. We let the user wear a low-end VR headset [7] with
a ROG Phone II plugged into it. The user can freely make
6-DoF motions in the room during the study. As shown
in Figure 11, compared to {ad, Simple, Pro}, Full improves
the average subjective rating by {0.83, 0.67, 0.42} (in the
scale of 1 to 5), respectively. Note that the best scheme (Full)
has an average rating of 3.50 (between fair and good), likely
because of the hardware limitation of the VR headset (costs
$26) compared to a full-fledged VR headset.

8.6 Handling Unseen Changes

We evaluate the three techniques introduced in §5.3 for han-
dling unseen changes. We reuse the datasets {Tpg, T4, EA}
and models {Mp, M4} introduced in §5.1. The experiments
use the Seq2Seq w/ Pose model on an NVIDIA 1660Ti GPU.

Offline Transfer Learning. For C1 and C2, we compare
the training time between (1) transferring from Mp to M BoA
and (2) training a new model M, from scratch after the

5Gender: Male: 7, Female: 5; Height: <1.65m: 3, 1.65-1.75m: 5, >1.75m:
4. The subjects’ ages vary between 20 and 30. 8 out of them do not have
prior experience on watching volumetric videos.
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Figure 13: Online training cases (Left: C3; Right: C4).

change. MB% A and M A denote the transferred model and
the built-from-scratch model, respectively. For both Mp_a
and MA, we use p% € {100, 80,60,40,20} % of the samples in
T 4 to transfer (train) them. Their training stops when the pre-
diction accuracy evaluated on E4 reaches MAEQ (i.e., Ma’s
prediction accuracy on E4). We find that the training always
converges even when p is as low as 20%. We show the mea-
sured training time in Figure 12, where the dashed red line
marks the training time of M A With p =~100%. As shown,
to achieve the same evaluation accuracy, Mp_, 4 significantly
reduces the training time by 36% to 41% (48% to 55%) for
C1 (C2) across all five p values, compared to May. In partic-
ular, training Mp_a using only 40% (20%) of the samples
in T4 is still faster than training My using all the samples
ipr} T4 for C1 (C2). The reason, as explained in §5.3, is that
Mp_, 4 effectively reuses the invariant knowledge (e.g., the
physical property of mmWave and the throughput distribution
in certain positions) that is already present in Mp.

Online Transfer Learning. For C3 and C4, we measure
the time consumption when Mp_, 4 first converges to the tar-
get prediction accuracy MAEﬁ on EA. To accurately emulate
the online setting in a reproducible manner, when training
M B—A, we feed T4 s data at the same pace as the real-world
training data collection rate. The results indicate that it takes
on average 32 (15) secs for the training (i.e., online transfer
learning) to converge on C3 (C4), with a standard deviation
of 11 (12) secs. The convergence time includes the initial
10-sec bootstrapping (§5.3). Figure 13 shows case studies for
C3 and C4. Note that without online transfer learning, the
prediction error on E# will never decrease.

Dynamic Change Handling. For C5, we evaluate the
end-to-end performance of the Habitus-supported volumet-
ric streaming app (Appl) with and without vision-based dy-
namic change handling (§5.3). The controlled experiment is
conducted over a single-path 802.11ad network at University
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Office with the robotic arm. We pre-train the vision-based
object detection model in a separate experiment so the model
can reliably detect the aluminum-foil-covered box manipu-
lated by the robotic arm (§5.1). We use Mp as the throughput
prediction model. The results indicate that vision-based dy-
namic change handling reduces the stall by 7% with a video
quality reduction of only 2.2%.

8.7 Applying Habitus to Existing Systems

We integrate Habitus into App2 (ViVo [47], an existing volu-
metric streaming system) by changing only 47 LoC (details
in Appendix D.2). ViVo adopts visibility-aware streaming
by only fetching content that will appear in the future view-
port. As listed in Table 3, HO is our comparison baseline:
the vanilla ViVo over single-path ad. HI to H3 involve key
components of Habitus. Figure 14 shows the quality and stall
of HO to H3 across our dataset. As shown, by cumulatively
enabling Habitus’s components from HI to H3, both the aver-
age video quality and stall improve accordingly. Compared
to HO, H3 reduces the stall by 61% and improves the average
quality by 46%. In addition, compared to not using pose (H2),
full-fledged Habitus (H3) reduces the stall by 15.75% while
slightly boosting the quality by 2.44%. The absolute stall rate
of H3 is 1.67%, meaning that the user encounters less than
0.9 secs of stall per minute on average.

8.8 Micro Benchmarks and Resource Usage

We run experiments to show: (1) The GPU memory usage
(~4.7G out of 11G on 2080Ti) of Habitus is acceptable. The
average processing time of pose estimation and throughput
prediction is 27ms and 3.5ms on 2080Ti, respectively. (2)
Compared to single-path ac, the additional energy usage and
heat increase of App1 using Habitus are only 1% and 1.3°C
respectively. The details can be found in Appendix E.

9 Related Work

Immersive Content Delivery. We elaborate on some immer-
sive content delivery systems mentioned in §6.4 (more can
be found in [76]). Flare [66] and ViVo [47] apply viewport
adaptation to optimize mobile 360° and volumetric videos
streaming, respectively. M5 [89] investigates volumetric video
streaming using adaptive mmWave beamforming. InstantRe-
ality [36] introduces a perceptual-aware approach to enhance
VR media streaming. As a middleware framework, Habitus
can be integrated into most of the above systems to enhance

the application QoE (we have conducted a case study for ViVo
in §8.7). Also note that Habitus is orthogonal to some VR
systems (e.g., MoVR [27]) that enhances the PHY layer (§1).

mmWave Throughput Prediction. Recent measurement
studies have explored the feasibility of predicting mmWave
throughput for various radios, such as commercial mmWave
5G [63], 802.11ad [28], and 802.11ay [83]. Lumos5G [63]
establishes a composable machine learning framework to
predict mmWave 5G throughput. Wu et al. uses Markov chain
to predict the link quality of 802.11ay, based on the headset’s
motion data [83]. Aggarwal ef al. conducts a measurement
study on using a smartphone’s motion sensor data to predict
802.11ad throughput [28]. They only consider 2-DoF (with
a radio mounted on a guided rail) and LoS scenarios. None
of the above studies employs the full-body pose, which we
found to be an important feature for improving the prediction
accuracy. Also, none of them conducts in-depth investigations
on how to handle unseen changes as we do.

Multipath TCP Support for 802.11ac/ad. Despite a
plethora of works on WiFi/cellular multipath [48,82,92], there
are only a few studies on dual-band 802.11ac/ad multipath
networking. MUST [74] predicts the best 60GHz beam and
PHY rate setting, and switches between ac/ad links accord-
ingly. We discussed MuSher [71], an MPTCP scheduler for
802.11ac/ad and compared it with Habitus in §8.4. Compared
to the above works, Habitus is an application-layer solution
designed specifically for immersive content delivery.

Improving mmWave Network Performance at PHY
layer. There is rich literature on improving mmWave per-
formance at the PHY layer, such as efficient beam selec-
tion [79], LiDAR-assisted beam management [81], and beam
relay through smart metasurface [38], to name a few. Unlike
the above, Habitus aims at optimizing the upper-layer net-
work protocol stack for immersive content delivery without
requiring modifying PHY-layer protocols.

10 Limitations and Concluding Remarks

Limitations. First, our prototype and experiments only use
802.11ac+ad. We expect Habitus’s high-level design to also
work with other radio technologies such as 4G + mmWave
5@, but field tests are needed to verify this claim. Second,
Habitus’s reaction to unseen changes could be further im-
proved. We plan to employ more advanced techniques such
as parameter sharing [93] to speed up transfer learning. Third,
we focus on the single-user use case. Extending Habitus to
multiple viewers will involve additional challenges such as
dealing with the interplay among the viewers.

Despite the limitations, we have demonstrated through
a working system and rich real-world data that, full-body-
pose guided throughput prediction and joint use of omnidirec-
tional+mmWave radio can significantly improve the QoE (up
to 72%) for immersive applications. Furthermore, by fusing
transfer learning and vision-based object recognition, Habitus
can smoothly adapt to unseen changes.
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Appendices

A

Additional Details of mmWave Throughput
Prediction Study

A.1 The OpenPose Format

Typically, a full-body pose can be represented by a set of key
points where each key point corresponds to a joint/part of the
human body. We customize the OpenPose [34] BODY_25
format — a popular format used in the computer vision commu-
nity — to represent the full-body pose, as shown in Figure 15.



Location Moving Area (mz) Room Space (m3)
Personal Office 2.5%2.5 3.3x2.5x2.5
Living Room 3.0x2.7 6.6x5.4x2.5
University Office 4.0x2.0 9.0x7.0x3.0
Meeting Room 4.0x3.0 6.5x6.5%2.8

Table 4: The moving area and room space of the four locations.

We discard some key points (i.e., eyes, ears, toes, and heels)
that have little contribution to the full-body pose.

A.2 Missing Key Point Estimation

To estimate a missing key point’s 3D coordinate on the fly, we
consider two baseline approaches: simply reusing its most re-
cently captured 3D coordinate (Method 1), and linearly extrap-
olating its coordinate using its historical trajectory (Method
2[40,52,84]). To assess them, we select a subset of our dataset
with no missing key point (as the ground truth, referred to
as Dg). From D, we create a dataset D, where key points
are removed for k consecutive frames where k is exercised
from 1 to 60. We apply the above two approaches to D, and
find that when the missing duration is short (long), Method 1
(Method 2) gives a lower average estimation error (RMSE).
This finding leads to our solution where we switch between
the two baselines based on the missing duration. The switch-
ing threshold is empirically set to 7 or 14 frames for 30 and
60 FPS respectively, based on the data.

To evaluate our solution, we construct another dataset D,
from D,. In Dy, key points are removed in such a way that
their missing time follows the same distribution as that in our
entire dataset. Compared to using the two baselines alone,
our solution reduces the average RMSE by 21% and 15%,
respectively.

Recall from §4.1 that a key point contains a confidence
value w. We gradually decay w as a key point remains ab-
sent, because as the missing time ¢ increases, its 3D co-
ordinate estimation becomes less reliable. We let w(t) =
wo x max (0,1 - %) where wy is the most recently captured
confidence value of this key point and 7' is a threshold control-
ling the decay speed. We empirically set T to 1 sec, i.e., the
90-th percentile missing time for a key point in our dataset.
The confidence value will be used in §4.3 as an input to the
prediction model.

A.3 Details of Data collection Locations

As shown in Figure 3, the four data collection locations we se-
lect (Personal Office, Living Room, University Office, Meeting
Room) have diverse environments in terms of the layout, floor
materials, furniture types, and spatial openness, efc. The data
collection area of Personal Office covers almost the entire
room. While Living Room also has a similarly simple setup,
its data collection area only covers one-third of the room and
appears more open, as shown in the floor plan. University
Office is a large room with a complex layout. Meeting Room
has a long table in the center of the data collection area. The

Used Discarded

0: Nose 15: Right Eye

1: Neck 16: Left Eye

2: Right Shoulder | 17: Right Ear

3: Right Elbow 18: Left Ear

4: Right Wrist 19: Left Big Toe
5: Left Shoulder 20: Left Small Toe
6: Left Elbow 21: Left Heel

7: Left Wrist 22: Right Big Toe
8: Mid Hip 23: Right Small Toe
9: Right Hip 24: Right Heel

10: Right Knee

11: Right Ankle

12: Left Hip

13: Left Knee

14: Left Ankle

Figure 15: OpenPose BODY_25 Format.
relative positions between the camera and the WiFi AP also
differ across the four locations. Table 4 summarizes the mov-
ing area and room space of the four locations. The moving
area is the area for data collection. The room space refers to
the total space of the entire room.

B Details of Injecting Dynamic Change

We provide details on how to use a robotic arm to mimic real
humans in terms of NLoS-incurred throughput degradation
(§5.1). The idea is to find a material/object that can incur a
similar throughput drop to that caused by a real human and is
also lightweight enough for the robotic arm to carry.

To achieve the above, we perform the following experiment
consisting of three steps. (1) We install the smartphone on
a tripod and fix it in LoS to the 802.11ad access point. We
measure the mmWave throughput when there is no blockage
between the smartphone and AP. (2) We ask a real human
(height: 1.75 m) to stand between the smartphone and the
AP to introduce NLoS and measure the mmWave throughput,
which now drops. (3) We ask our volunteer to walk away,
and use the robotic arm to hold an object at the same posi-
tion where the real human stands. We make sure the object
blocks the LoS between the AP and the smartphone. We then
measure the mmWave throughput and compare it with the
measured throughput in Step (2). We want their difference to
be small. We try three objects: a paper box, a box covered by
an outwear, and a box covered by aluminum foil. We find that
a box covered by aluminum foil has the most similar impact
on mmWave throughput as a real human (with an average
throughput difference of 5%, or 28 Mbps). We therefore use
it in our dynamic change experiments in §5.1.

C Trend Test For Throughput Sequence

The Cox-Stuart test starts with two statistical hypotheses: (1)
Hj: No monotonic trend exists in the series, and (2) H: The
series is characterized by a monotonic trend, which is further
considered as three cases, i.e., (a) an increase or decrease trend
exists, (b) an increase trend exists, and (c) a decrease trend
exists. Mathematically, in the testing procedure, a throughput



sequence Z ={z1,22,...,2n } (We suppose n is an even number
for simplicity) is divided into two parts {z1,22,...,z2 } and
{z241,2242,..,2n}. The test statistic 7(+) and T'(-) is then

calculated as T'(+) = Zil I(z; < zi+%) andT(-) = Zil I(z; >
zi+%), respectively, where I € {0, 1} is an indicator function.
If the null hypothesis Hy is true, the statistic 7(+) and 7T'(-)
should obey the binomial distribution with parameters 5 and
1. ie, T(+),T(-) ~ B(%,3). Otherwise if T(+) > T(-) (or
T(-) > T(+)) and the p-value is less than a threshold (e.g.,
0.05 in our case), the hypothesis H4 case (b) (or H4 case (c))
is true.

D Additional Implementation Details
D.1 802.11ad Throughput Measurement

Compared to traditional 2D video traffic, immersive content
traffic is highly bursty. Take volumetric content as an exam-
ple. First, different from the traditional 2D videos that are
encoded at a group of pictures (GOP) level, volumetric videos
are typically encoded on a per-frame basis due to the difficulty
of inter-frame encoding. Second, volumetric content players
often apply visibility-aware techniques [36, 47,55, 66, 88]
per frame to only download the content inside the viewer’s
predicted viewport. To maintain accurate viewport predic-
tion results, the client player has to maintain a shallow buffer
(e.g., 5 frames in ViVo [47]). Both factors above lead to an
extremely frequent request/reply pattern, which renders tra-
ditional throughput measurement methods used by 2D video
players (simply calculating the ratio between the video chunk
size and the chunk download time) very inaccurate. Over
mmWave that offers Gbps throughput, the inaccuracy is fur-
ther deteriorated.

To address the above challenge, we adopt a cross-layer
design to measure the throughput by passively examining
incoming packets containing immersive content on the client
side. Our approach works for both single-path and multipath
cases. Specifically, at the application layer, the edge explicitly
informs the client how much data will be transmitted over
each path before sending data blocks belonging to each frame
back-to-back. At the transport layer, the client tracks the ar-
rival time and TCP sequence numbers of the incoming packets.
The TCP sequence numbers indicate how much data has been
received. Utilizing these information, the client-side through-
put measurement module is able to group the back-to-back
packets in each “burst” as a packet train [64,69, 83,87] and
use their sizes and timing for throughput measurement. Our
approach disregards the ordering and duplicate of packets, and
is therefore robust to packet out-of-order and retransmission.

D.2 Development of Two Sample Volumetric
Streaming Applications
To demonstrate how Habitus can benefit real immersive ap-

plications, we implement two sample volumetric content de-
livery applications with different logic and complexity.

App 1: Simple Volumetric Streaming. We build a simple
volumetric streaming system using the Habitus API from
scratch in 5,208 LoC. It delivers the volumetric content stored
on a Linux server to an Android client over the Internet. The
client player uses a shallow buffer of 5 frames (consistent with
App 2) for streaming. The content format uses the layered
encoding scheme described in §6.4: each volumetric frame
(point cloud) is split into 64 layers each consisting of non-
overlapped points through uniform sampling. Each (frame,
layer) pair corresponds to a data block in Habitus’s term. The
priority of each block is inverse proportional to the number
of points in the block. The intuition is to prioritize streaming
blocks with sparse points so that the viewer can see the partial
content as early as possible.

App 2: Visibility-aware Volumetric Streaming. We also
replicate ViVo [47], a state-of-the-art networked volumet-
ric video streaming system. ViVo performs visibility-aware
streaming where it only fetches content falling into the
viewer’s predicted viewport. In ViVo, each volumetric frame
(point cloud) is spatially segmented into 64 cubical cells. Each
(frame, cell) thus constitutes to a data block in Habitus. The
priority of a block is calculated at runtime, i.e., inverse pro-
portional to the Euclidean distance from the center of its cu-
bical cell to the center of the predicted viewport. To integrate
Habitus into ViVo, we only change 47 LoC that is mainly for
library initialization and blocks transmission/reception.

For both applications, each data block is encoded into 10
quality levels with different point density levels. Both applica-
tions use the same throughput-based adaptive bitrate (ABR)
algorithm [50] to determine the quality level of each data
block. The bitrate selection logic works as follows. Initially,
all the to-be-fetched blocks are set to the highest quality level.
The ABR algorithm then greedily picks the block with the
lowest priority and reduces its quality level by 1. The above
process is repeated until the total calculated bandwidth usage
does not exceed the aggregated network capacity reported by
Habitus, or all the blocks reach the lowest quality level.

E Micro Benchmarks and Resource Usage

Resource Usage and Processing Time For a Habitus-
enhanced volumetric content delivery system, the average
CPU utilization is 36% on the client side (i.e., ROG Phone II)
and 169% (i.e., equivalent to 1.69 cores being fully utilized)
on the edge side. The peak GPU memory usage on the edge
side is 4721MiB (out of 11GB on 2080Ti) in total, including
2101MiB for video capturing and pose estimation, 1017MiB
for 802.11ad throughput prediction, and 1603MiB for object
detection. The average processing time on an NVIDIA 2080Ti
GPU is 27ms and 3.5ms for pose estimation and throughput
prediction using a Seq2Seq with Pose model, respectively. The
processing time meets the system’s requirements.

Energy and Heat To profile the energy consumption and
heat increase of the client device, we run our control exper-
iment using V2 and {Personal Office, User 1}’s data traces



repeatedly on a ROG Phone II for 30 minutes. We use App1l
(§7) and three Habitus variants {ac, Full, MuSher-VR} in §8.4.
We start each experiment on a fully-charged phone. After 30-
minute running, the battery level drops from 100% to 93%
for ac, 92% for Full, and 92% for MuSher-VR, while the de-

vice temperature rises from 30.0°C to 36.2°C for ac, from
30.5°C to 38.0°C for Full, and 30.2°C to 38.0°C for MuSher-
VR. Compared to ac, the additional energy consumption and
heat increase of Fullis 1% and 1.3°C, respectively. Overall,
we believe the resource usage of Habitus is acceptable.



