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Abstract
A physical-layer modulator is a vital component for an IoT

gateway to map the symbols to signals. However, due to the
soldered hardware chipsets on the gateway’s motherboards or
the diverse toolkits on different platforms for the software ra-
dio, the existing solutions either have limited extensibility or
are platform-specific. Such limitation is hard to ignore when
modulation schemes and hardware platforms have become
extremely diverse. This paper presents a new paradigm of
using neural networks as an abstraction layer for physical
layer modulators in IoT gateway devices, referred to as NN-
defined modulators. Our approach addresses the challenges of
extensibility and portability for multiple technologies on vari-
ous hardware platforms. The proposed NN-defined modulator
uses a model-driven methodology rooted in solid mathemat-
ical foundations while having native support for hardware
acceleration and portability to heterogeneous platforms. We
conduct the evaluation of NN-defined modulators on differ-
ent platforms, including Nvidia Jetson Nano and Raspberry
Pi. Evaluations demonstrate that our NN-defined modulator
effectively operates as conventional modulators and provides
significant efficiency gains (up to 4.7× on Nvidia Jetson Nano
and 1.1× on Raspberry Pi), indicating high portability. Fur-
thermore, we show the real-world applications using our NN-
defined modulators to generate ZigBee and WiFi packets,
which are compliant with commodity TI CC2650 (ZigBee)
and Intel AX201 (WiFi NIC), respectively.

1 Introduction
In recent years, we have observed the swift progression of the
Internet of Things (IoT), transitioning from theoretical con-
cepts to tangible reality. IoT’s objective is to connect many
devices, such as sensors and actuators, globally via various
Physical (PHY) layer technologies. These technologies are
tailored to suit IoT connections based on factors like through-
put, power consumption, and coverage area. For instance,
IEEE 802.15.4 [19] is specifically designed for short-range,
low-rate IoT connections, while NB-IoT [7] is intended for
broader, low-power IoT connections. The IoT gateway func-
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tions as a central hub, establishing wireless communication
links with IoT devices and bridging them to the rest of the
Internet. Within PHY of IoT communication (Figure 1a), the
modulator plays a vital role in generating signals for data
transfer to transmit over the air.

Therefore, it is essential for the gateway to be flexible, al-
lowing it to support a variety of wireless technologies used
by IoT devices and even accommodate emerging technolo-
gies for future readiness. However, numerous existing gate-
way designs [5, 21, 27, 43] employ hardware-based solutions,
where wireless technologies are integrated into dedicated
chipsets, which are either soldered onto the gateway’s mother-
board or connected through extension ports. Such hardware-
based solutions offer limited adaptability, as their functions
are fixed upon manufacturing. Software Defined Radio (SDR)
is introduced as a flexible alternative for IoT gateways to ad-
dress these limitations. Users can implement both current and
emerging wireless transceivers as software, surpassing the
extensibility of hardware-based solutions.

Despite the advantage of flexibility, SDR-based gateway
design comes with several drawbacks. SDR-based designs
consist of the radio frequency (RF) front-end and the comput-
ing device serving as the host device for the software radio
application. The software radio application requires using
signal processing toolkits or libraries, like GNURadio [4]



and SciPy [15]. Owing to the variety of development tools
and host platforms, transferring the same functionality to a
new platform demands a considerable learning curve and
extensive effort in software development. Meanwhile, soft-
ware radio comes at the cost of efficiency loss as we shift
the signal processing from specialized hardware to general
software systems. Many researchers and developers intend to
optimize the software radio with the capability of hardware
acceleration [26,37,38]. However, these works are targeted at
specific platforms and require a considerable learning curve
and extensive effort during development. Given the diversity
of platforms and toolkits, deploying a highly efficient software
modulator on multiple platforms becomes challenging.

To address these issues, we propose to develop a novel
framework that facilitates the design of software transmitters
on a variety of IoT gateways using neural networks. This ap-
proach would maintain the flexibility needed to accommodate
a wide range of transmitters while enhancing portability and
efficiency on different platforms. Our work is motivated by
several interesting observations: i) the neural network module
is widely supported across diverse hardware platforms due to
the flourishing AI technologies, and ii) our research demon-
strates that signal processing blocks within a modulator can
be equivalently implemented using neural network models.
These insights have led to the development of our innovative
neural network-defined modulator 1, which offers a flexible
and portable design for IoT gateways. The complete archi-
tecture of the design is depicted in Figure 1b. The proposed
neural network-defined modulator functions are implemented
by a unified neural network framework that can take advan-
tage of accelerators across various platforms. In essence, the
unified neural network framework operates as an abstraction
layer for modulation tasks across heterogeneous platforms.

In summary, the original contributions of this paper are
listed as follows:

• Conceptually, we propose an NN-defined physical layer
modulator, which achieves high flexibility and exten-
sibility to support multiple modulation schemes, and
portability and efficiency on heterogeneous platforms.

• Technically, we adopt a model-driven approach to build
the NN-defined modulators. The structure and parame-
ters in the NN-defined modulators are rooted in a solid
mathematics foundation from the modulation model.

• Experimentally, we deploy the NN-defined modulators
on multiple hardware platforms (e.g., Nvidia Jetson
Nano, Raspberry Pi) with extensive evaluations. We also
employ our NN-defined modulators into the workflow of
the IoT gateway to generate protocol-compliant signals,
including ZigBee and WiFi.

1The code for reproduction is available at the anonymous repository:
https://github.com/Repo4Sub/NSDI2024

2 Motivation
2.1 Problem Statement
Modern IoT gateways strive to offer adaptable transmitters
to address the ever-evolving landscape of IoT connectivity
technologies. Present IoT gateway solutions can be classified
into hardware-based gateways and those based on software-
defined radio (SDR). Hardware-based solutions, as the term
implies, combine numerous chips/modules tailored for vari-
ous connectivity technologies on a single board [5, 21, 27, 43].
While these hardware chips/modules exhibit merits such as
cost-effectiveness and efficiency, they are limited by their lack
of adaptability. This limitation stems from the fixed nature
of technologies within the chips/modules and the restricted
capacity for users to alter connectivity technologies. Gate-
way platforms can take the form of diverse devices, including
personal computers, edge servers, and, increasingly, embed-
ded computers, which can function as host devices for SDR.
Consequently, it is possible to develop software radio for dis-
tinct IoT technologies, surpassing hardware-based solutions
in terms of flexibility. Nevertheless, the multitude of devel-
opment tools and deployment platforms for software radio
can impede portability. For instance, GNU Radio establishes
the signal processing blocks required for software radio con-
struction, yet porting GNU Radio to embedded computers for
IoT gateways is challenging, necessitating recompilation for
target devices [28]. Moreover, platform/toolkit-specific im-
plementations often depend on optimized designs that exploit
acceleration capabilities, potentially resulting in efficiency
loss when transferring SDR-based solutions to new platforms.
For example, cuSignal [20] is a GPU-accelerated signal pro-
cessing library, exclusively designed for devices equipped
with NVIDIA GPUs, thus not providing a universal solution.

2.2 Opportunities
Our design is inspired by the extensive integration of AI
frameworks and hardware across diverse computing plat-
forms, which can serve as IoT gateways. Hardware manu-
facturers continuously enhance their devices to facilitate neu-
ral network deployments, incorporating specialized instruc-
tion sets [18] and distinct hardware accelerators [9], along
with programming libraries that capitalize on these features.
Concurrently, nearly all mainstream machine learning frame-
works, such as Tensorflow [16] and PyTorch [13], endeavor
to function across various operating systems and hardware ar-
chitectures. Additionally, these frameworks encapsulate low-
level acceleration libraries, promoting developers to speed up
the execution of neural network models.

By constructing transmitters as neural network modules
with widespread support, we can attain not only extensibility
for an array of technologies but also portability and efficiency
on platforms compatible with neural networks. For one thing,
a gateway device can always update its supported modula-
tion schemes by retrieving the corresponding neural network
implementation from the repository server (Figure 2a). Si-
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Figure 2: (a) Different devices can retrieve various neural
network models to update modulation schemes. (b) Neural
network modulators can be accelerated to achieve better effi-
ciency compared with software modulators.

multaneously, the neural-network-defined modulators are ex-
pected to achieve superior efficiency compared to traditional
software modulators (Figure 2b), which are blessed by the
advantages of the hardware accelerators.

2.3 Challenges

The primary technical challenge involves integrating signal
processing blocks into neural network models. One direct
method is to utilize general-purpose neural network models,
such as fully-connected (FC) layers, as in the literature [46,
58]. Nevertheless, we contend that this approach has two
principal disadvantages compared to the traditional digital
modulation model. The operational mechanism of a general-
purpose machine learning model is often perceived as a black-
box approach [31], which raises concerns about its reliability.

To illustrate this, we present a straightforward example of
modulators based on general-purpose neural networks. We de-
velop an FC-based neural network model to modulate OFDM
symbols and train it using the dataset gathered from the stan-
dard 64-S.C. (subcarrier) OFDM modulator. The FC-based
OFDM modulator converges to a Mean Squared Error (MSE)
loss of 1.5×10−6 for the training set, signifying that the gen-
erated signals from training symbols closely resemble the
corresponding training signals. However, it fails to modulate
new OFDM symbols from the test set. The produced sig-
nal samples are depicted in Figure 3. The output from the
FC-based modulator substantially deviates from the standard
signals. Although this is a simple case study, we can deduce
from these results that the neural network ought to be meticu-
lously designed and executed to achieve modulation tasks.

10 20 30 40 50 60

 Sample

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 A
m

p
li

tu
d

e
 (

re
a
l)

FC-based modulator

Standard

Figure 3: Waveform (real part) comparison of FC-based mod-
ulator and standard 64-S.C. OFDM modulator.
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Figure 4: Architecture of NN-defined modulator.

Our research advocates for a model-driven strategy that
integrates domain-specific knowledge of modulation tech-
niques into the neural network design process. Instead of
employing general-purpose neural network models or creat-
ing tailored neural network layers, our objective is to interpret
fundamental neural network layers using domain-specific ex-
pertise regarding modulation schemes. By assembling the
modulator with these neural network layers, which are com-
prehensively supported and efficiently implemented across
diverse frameworks and platforms, we accomplish an inter-
pretable, lightweight, and efficient neural network-based im-
plementation for software modulators.

The architecture of the proposed Neural-Network-Defined
(NN-defined) modulator is depicted in Figure 4. As in the
figure, a modulator template (Section 3) rooted in solid math-
ematical foundations can be configured to implement specific
modulation schemes either manually as in Section 4, or in a
learning manner as in Section 5. Next, the NN-defined modu-
lator will be transformed into a unified NN framework capable
of executing across heterogeneous platforms (Section 6). The
unified NN framework can be deployed onto various plat-
forms and incorporated into the transmission pipeline (Sec-
tion 7).

3 Template of NN-defined Modulator
In this section, we discuss how to use a model-driven method-
ology to construct neural networks for modulation tasks based
on the underlying digital modulation models.

3.1 Mathematical Foundation of Digital Modulation

In wireless communication, a transmitter uses a modulator to
convert symbols to signals before transmitting them to the air.
The modulation process is usually analyzed through the Sig-
nal Space Analysis [29, 48], which is widely adopted in mod-
eling amplitude/phase modulation techniques or named as
linear modulation [29], including pulse amplitude modulation
(PAM), phase-shift keying (PSK), and quadrature amplitude
modulation (QAM). And the concepts are also applicable in
modeling multicarrier modulation schemes, like OFDM.

Based on this method, a signal Si(t) modulated from a
symbol si is considered a linear combination of the set of



basis functions. The synthesis process is given as

Si(t) =
N

∑
j=1

si jφ j(t) (1)

where φ j(t)∈ {φ(t)}N is the j-th function in the set of N basis
functions and si j is the j-th elements of the N-dimensional
vector representation of the input symbol si. The basis func-
tions and format of the symbol can be diverse and determine
the different modulation schemes.

3.2 Modulator Template via Neural Network
After modeling the modulation process, we start to fit such a
mathematical model into the neural network design to con-
struct the proposed NN-defined modulator template.

3.2.1 Discrete-time Modulation Model
To accommodate the model into the neural networks, we first
derive the discrete-time representation of the general model.
The N-dimensional symbol vector si will be modulated to a
series of signal samples as:

Si[n] =
N

∑
j=1

si jφ j[n] (2)

where φ j[n] is the discrete-time form of the basis functions.
The symbols are processed sequentially, and the signal sam-
ples are concatenated into the final modulated signals for the
whole symbol sequence, given as:

S[n] = ∑
i

Si[n− iL] (3)

where L is the number of samples per symbol, meaning that L
samples represent one symbol in the final modulated signals.

To extend Equation (2) to a complex I/Q signal, we have:

SI [n]+ jSQ[n] = Re{Si[n]}+ jIm{Si[n]}

=
N

∑
j=1

[Re{si j}+ jIm{si j}][Re{φ j[n]}+ jIm{φ j[n]}]

=
N

∑
j=1

Re{si j}Re{φ j[n]}−
N

∑
j=1

Im{si j}Im{φ j[n]}

+ j(
N

∑
j=1

Re{si j}Im{φ j[n]}+
N

∑
j=1

Im{si j}Re{φ j[n]})

(4)

where SI is the In-Phase signal and SQ is the Quadra-
ture. We can observe Equation (4) is composed of multiple
∑

N
j=1 si jφ j[n] patterns.

3.2.2 Basics of Transposed Convolutional Layer

Then we convert the ∑
N
j=1 si jφ j[n] pattern to a neural network.

We find the transposed convolutional layer is a mathemati-
cally equivalent implementation. We first introduce the basic
computation of a transposed convolutional layer in Figure 5.

stride=4

input:

kernel:

Figure 5: Diagram of the basic operation of the transposed
convolutional layer.
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Figure 6: Diagram of the operation of multi-channel trans-
posed convolutional layer.

The 1-D transposed convolutional layer has only 1 input chan-
nel and 1 output channel. The elements in input sequence
[+1,−1] are multiplied by a kernel. The multiplication results
are mapped to the output. The step between each multiplica-
tion result is determined by the stride parameter.

The transposed convolutional layer supports multiple input
channels and multiple output channels [13, 16]. In Figure 6,
we visualize the operation of the transposed convolutional
layer with multiple input and output channels (both are 2
in this figure). As illustrated here, each input channel will
convolve with a set of 2 kernels, and the results are com-
bined to generate one output channel. The calculation process
of the transposed convolutional layer is the same as in one
channel of Equation 4, if the kernel is set to the same as the
real/imaginary parts of the basis functions, i.e., Re{φ j[n]}
and Im{φ j[n]}, and the stride is set to the samples per symbol,
i.e., L as in Equation 3.

3.2.3 NN-defined Modulator Template
With the transposed convolutional layer, we can express the
whole modulation process in Equation (4) as an NN-defined
template modulator in Figure 7. The input channel comprises
real and imaginary parts of the symbol vectors, which form
two groups of the transposed convolutional layer. The kernels
of the transposed convolutional layer are determined by the
basis functions. After that, a linear (fully-connected) layer
is added to merge the four-channel outputs to generate the
real and imaginary parts of the modulated signals. Its weight
are set as [+1,0,0,−1] and [0,+1,+1,0] according to the
coefficients in Equation (4) as shown in Figure 7.

Thus, we begin with the mathematical foundation of the
modulation process and derive a generalized modulation
model. Subsequently, we show how to adapt the general model
within our template for the NN-defined modulator. The uni-
versal template comprises a transposed convolutional layer
followed by a fully-connected layer. By meticulously con-
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Figure 7: Diagram of the template of NN-defined modulator.
0-weight connections are omitted in the fully-connected layer.

figuring the template for the NN-defined modulator, we can
accomplish a range of modulation schemes.

4 Instances of NN-defined Modulator Tem-
plate

With the NN-defined modulator template, we further study
how to generate specific modulation schemes.
4.1 Common NN-defined Modulators
4.1.1 Single Carrier Amplitude/Phase Modulation
For amplitude/phase modulation on the single carrier, the
information is carried by the modulated signal’s amplitude
and/or phase. The most general case is quadrature amplitude
modulation (QAM). For example, ZigBee [24] adopts Offset-
Phase-Shift Keying (O-QPSK) as its modulation scheme,
which is a variant of QPSK or 4-QAM scheme.

The QAM symbols are represented in a complex scalar as
sk =Re{sk}+ jIm{sk}. The symbols pass a real-valued pulse-
shaping filter to generate signals. Similar to equation (4), we
represent the I/Q signals as in

SI [n] = Re{S[n]}= ∑
k

Re{sk}p[n− kL]

SQ[n] = Im{S[n]}= ∑
k

Im{sk}p[n− kL]
(5)

where p[n] represents the pulse-shaping filter, and L is the
number of samples per symbol.

Based on Equation (4) and (5), when applying the NN-
defined modulator template, we can configure the kernels of
the transposed convolutional layer to be the values of shap-
ing filter p[n]. This also implies the potential simplification
of the template. If the shaping filter is real-valued, we can
omit two channels of the transposed convolutional layer that
correspond to the imaginary parts. We can also discard the
fully-connected layer in the template because the output from
the remaining 2 output channels from the transposed convo-
lutional layer directly forms the desired modulated signals.
For better illustration, an NN-defined QPSK modulator with
a half-sine wave shaping filter is depicted in Figure 8. The
output from the transposed convolutional layer is I/Q signals.
4.1.2 Multicarrier Modulation
We also extend our design for multicarrier modulation
schemes, more specifically, the widely used OFDM scheme.

Trans Conv Layer
I

Q

Kernels

Figure 8: Diagram of a simplified NN-defined QPSK modula-
tor with half-sine wave shaping filter.

We consider a N-S.C. OFDM modulator as an example,
of which the input symbol vector consists of N elements,
s0,s1, · · · ,sN−1, that correspond to the components in the fre-
quency domain. Thus, to get the signal samples S[n], they
are transformed to the time domain by performing an inverse
Discrete Fourier Transform (IDFT) on the input N elements,
given as

S[n] =
N−1

∑
i=0

sie j2πni/N , 0 ≤ n ≤ N −1. (6)

The transformation can be interpreted as mapping the com-
plex symbol vector s = [s0,s1, · · · ,sN−1] of N dimensions to
signal S[0], · · · ,S[N − 1] with the basis functions set φi[n],
which consists of N functions in total, like φi[n] = e j(2πni/N).

The OFDM scheme is consistent with the general case as in
Equation (4). As discussed in Section 3, the input to the NN-
defined modulator consists of real and imaginary elements
from the complex symbol vectors. They are divided into 2
groups at the transposed convolutional layer. For each group,
the kernels are set based on the real and imaginary parts of
e j2πni/N . Then, the four-channel output from the transposed
convolutional layer is fed into the fully-connected layer to
generate the final In-phase and Quadrature signals.
4.2 Protocol-specified NN-defined Modulators
IoT protocol modulators may incorporate additional oper-
ations to enhance system reliability. For instance, ZigBee
adopts an offset operation to the QPSK modulator by shifting
the quadrature signals by half a symbol duration. OFDM sys-
tems used in WiFi adopt cyclic-prefix to improve robustness
against multipath effects. Concurrently, some IoT protocols
introduce intricate frame structures containing various fields
for signaling. For example, WiFi frames typically encompass
different signal fields. Although all these fields utilize the
OFDM modulator, they may require different operations.

To address these additional operations, we draw inspiration
from the inheritance feature in computer programming. The
NN-defined modulators serve as the foundational component,
and we attach operations to the temporal output from the
base NN-defined modulator to generate the ultimate output
signals. The attached processes are also achieved through
operators supported by neural networks, allowing us to derive
specialized NN-defined modulators for diverse protocols. We
will discuss the protocol-specific NN-defined modulator in
greater detail in Section 7.
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Figure 9: Different approaches to configure kernels. (a) Manual setting with expert knowledge, (b) Learning from existing
datasets, (c) Fine-tuning with other ML modules.

5 Modulator Kernel Configuration
From the previous sections, we designed a template for the
general modulation model, where the kernels of the template
can be derived for a specific modulation scheme. In this sec-
tion, we will discuss how to use the NN-defined modulator
template to learn from signals whose analytical expression is
unknown or fine-tune the NN-defined modulator to compen-
sate for hardware distortion in practical systems.

5.1 Manual Setting with Expert Knowledge
As shown in Figure 9a, for a modulation scheme with a known
analytical expression, communication experts can take a direct
way to derive the kernels of the transposed convolutional layer
as discussed in Section 4. It is an efficient and accurate way to
construct signals in the NN-defined modulator, similar to the
conventional Software modulator in the SDR development.

5.2 Learning from Dataset
As shown in Figure 9b, for a signal with an unknown analyti-
cal expression or a non-expert developer, the kernels of the
template can be derived by training the NN-defined modula-
tor. For example, a non-expert developer who intends to shift
an existing software radio to another platform can utilize the
learning ability of the NN-defined modulator from the existing
system to reconstruct the modulator, which will significantly
ease the development complexity. One can treat it as a stan-
dard machine learning task to minimize the mean squared
error. Thanks to the model-driven approach, the trained ker-
nels imply a potential signal processing pipeline to mimic the
target signal.

More specifically, the training input has the dimension
of [Batch_size,2 × Symbol_dimension, Sequence_length],
where 2 × Symbol_dimension indicates the input is repre-
sented using the real and imaginary parts. And the training out-
put has the size of [Batch_size,Signal_length,2], where the
2 on the last dimension also indicates the real and imaginary
parts of complex signals. There are 2× Symbol_dimension
kernels to train in total.

For demonstration, we apply the NN-defined modulator
template to learn the 64-S.C. OFDM scheme. The NN-defined
OFDM modulator is trained with the same training settings
as the example FC-based modulator in Section 2 with the

same dataset and training epochs. The training set contains
256 different OFDM symbol sequences, each of which repre-
sents 128 input complex symbols. The FC-based modulator
is implemented with two fully-connected layers, with almost
∼ 60000 trainable parameters in total. We calculate the mean
squared error between the modulated signals from two kinds
of modulators and the standard signals on the training and test
sets, respectively. Both the FC-based modulator and our NN-
defined modulator have tiny errors on the training set. Our
NN-defined modulator outperforms the FC-based modulator
significantly on the test set. We plot signals generated from
our NN-defined and the FC-based modulator in Figure 10.
As in the figure, our NN-defined modulator can modulate the
symbols correctly, while the FC-based modulator fails. The
NN-defined modulator has much fewer parameters to train
compared with the FC-based modulator, and the parameters
are physically meaningful, which ensures that our NN-defined
modulator is more reliable.
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Figure 10: Waveform (In-phase) comparison of FC-based
modulator, NN-defined modulator, and standard modulator
for 64-S.C. OFDM scheme.

5.3 Fine-tuning for Better Performance
As shown in Figure 9c, the NN-defined modulator can be com-
bined with extra AI/ML models to fine-tune to meet specific
performance demands. During the fine-tuning procedure, the
kernels of the NN-defined modulators and parameters within
the appended AI/ML module are adjusted to fulfill the goals.
The fine-tuning process is an open design because the per-
formance demands and the AI/ML extra modules are diverse.
For better illustration, we discuss combining the proposed
NN-defined modulator with additional AI/ML modules to
handle the hardware distortion in the transmitter systems.



The modulated signals are processed at the RF front-end
in the transmitter systems to send over the air. Due to the
characteristics of the circuits, there is some non-linearity in
the RF front-end hardware, which will introduce distortion
to the output signal compared with the ideal output. One
efficient approach to reduce the distortion effect is to apply the
predistortion process to the modulated signals before feeding
into the RF front-end [52]. Here, we propose to use a neural
network-based predistortion (NN-PD) module. Without loss
of generality, we focus on the non-linearity introduced by the
power amplifier.

Standard signal
FE Model

Distorted signal

NN-PD FE Model
(Fixed)

Modeling Distortion at Front-End

Fine-tuning of NN-defined Modulator with NN-PD module

NN-defined 
Modulator

Fine-tuning 
Algorithm

Pre-distorted signal

Compensated signal

Figure 11: Diagram of Front-End model and NN-defined
modulator with NN-PD module.

As illustrated in Figure 11, we first use a neural network,
the front-end (FE) Model, to model the nonlinear behavior of
the RF front-end. The FE model serves as the simulator of the
RF front-end for the fine-tuning procedure. Next, we construct
the NN-PD and insert it between the NN-defined modulator
and the FE model. The predistorted signals from the NN-PD
will pass the FE model, and the compensated signal is gen-
erated. The compensated signal is supposed to be as similar
as possible to the ideal output signal. So, we set the training
goal of our fine-tuning algorithm and tune the kernels in the
NN-defined modulator and the parameters in NN-PD module
while the parameters in the FE model are fixed. Once the
fine-tuning procedure is finished, the NN-defined modulator
and NN-PD module can generate predistorted signals, which
can compensate for the non-linearity of the RF front-end.

As for verification, we compare the Bit Error Rate (BER)
performance of QAM-modulated signals with predistortion
and those without predistortion. The simulation is conducted
in additive white Gaussian noise (AWGN) channel. We plot-
ted the BER curves in Figure 12. The BER curve of the ideal
signals is also visualized as the baseline. Furthermore, we
conduct Error Vector Magnitude (EVM) test on the modu-
lated signals. EVM can be evaluated by a percentage scale
that reflects the deviation of the modulated and standard con-
stellations. We measure the root mean squared EVM of the
signals at different SNR levels. The results are illustrated in
Table 1. When the SNR is low (SNR< 0dB), the noise is dom-
inant in such conditions, so all three signals suffer from noisy
environments, resulting in high error rates and high EVM.
However, when SNR is relatively high (SNR> 0dB), the dis-

tortion effect of the RF front-end is more significant than the
noise. Hence, the signals with predistortion perform much
better than those without predistortion because the hardware
distortion is reduced. However, the compensation is imper-
fect, so the error rates and EVMs of the predistorted signals
are still slightly larger than the ideal signals. The above re-
sults indicate the great potential that the proposed NN-defined
modulator can be integrated with other AI/ML modules and
deliver better performance.

SNR=-10dB 0dB 10dB
EVM of ideal signals 65.9% 31.2% 15.4%

w/ predistortion 66.6% 32.1% 15.7%
w/o predistortion 79.5% 33.4% 21.7%

Table 1: Root mean squared EVM of ideal modulated signals,
signals with predistortion, and signals without predistortion.
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Figure 12: BER of NN-defined Modulator with NN-PD.

6 Modulator with Portability
We first highlight better portability of NN-defined modu-
lators compared with conventional software radio systems
by demonstrating the pipeline of the software modulator to
generate signal samples. The software radio relies on some
libraries which contain signal processing operations. We
choose SciPy [15], a scientific computing library in Python,
and GNURadio [4], the recognized software radio library, as
case studies. Moreover, without loss of generality, we con-
sider the QAM with Root Raised Cosine (RRC) pulse shaping
filter as an example. It requires two major steps for modu-
lation: upsampling and pulse-shaping filtering. We list the
corresponding implementation for the GNURadio-based and
the SciPy-based modulators in Table 2. As shown in the
table, although the two kinds of implementations share the
same pipeline, the functions used are quite different, which
requires the developer to master new development tools for
smooth conversion. Besides, we also notice that GNURadio
provides several predefined shaping filter blocks, like Root
Raised Cosine Filter(rrc_fir) for quick usage. In con-
trast, SciPy does not provide such predefined functions, so
we need to configure the filter manually, which also increases
the difficulty of porting.



Operations GNURadio SciPy
Upsampling interp_fir scipy.interpolate

Filtering rrc_fir scipy.convovle

Table 2: Operations for QAM modulator in different toolkits.

6.1 Framework-Independent NN-defined Modulators
Framework-dependent design implies that the NN-based
modulators depend on unique functions or models provided
by specific machine learning frameworks. Although ma-
chine learning frameworks offer some mathematical func-
tions that can be employed to develop customized neural
network layers for modulation tasks, as seen in NVIDIA
Sionna [33] based on TensorFlow, the customized neural net-
work modulator remains reliant on the development frame-
work. To exemplify, we demonstrate the implementation
details of the Sionna-based QAM modulator. Sionna em-
ploys the built-in operations and encapsulates them into the
customized neural network layers, Upsampling and Filter,
to emulate the functions as in the conventional pipeline.
Upsampling layer applies tf.pad and some dimensional op-
erations like tf.expand_dims to insert zeros between sym-
bols, and Filter layer applies tf.math.convolve which
takes the upsampled symbol sequences and filter taps as input
to generate the modulated signals. We compare the availabil-
ity of mathematical functions used in the Sionna modulator
across other mainstream ML frameworks. The results are
presented in Table 3. Although there are similar functions
such as pad and convolve, the direct transition among dif-
ferent frameworks is still hard. Consequently, the framework-
dependent modulator can be ported to platforms running the
same framework, but it is challenging to deploy it on plat-
forms operating with different frameworks.

Tensorflow PyTorch

NN-defined Conv1DTranspose ConvTranspose1d
Linear Linear

Sionna
pad pad+concatenate

expand_dims unsqueeze
convolve convolve

Table 3: Original operations and converted ONNX operators
in our NN-defined and Sionna QAM modulator.

Framework-independent design means our NN-based
modulators are implemented by the share functions or models
by various machine learning frameworks. Unlike NVIDIA
Sionna, which constructs customized layers fro modulators,
our NN-defined modulators utilize the fundamental neural
network layers that are considered basic components of ex-
isting machine learning frameworks. More specifically, the
transposed convolutional layer and the fully connected layer
are generally supported by various frameworks [13, 16, 23].
Although the layer names vary (Table 3), they share the same
functionalities, which ensures that the proposed NN-defined
modulator can be a framework-independent design.

inputsymbol

ConvTranspose

W〈2×2×33〉

Transpose

MatMul

B〈4×2〉

outputwaveform

(a)

Modulator 
Implementation

Portable 
Format

Interpreter

(b)

Figure 13: (a) Example converted ONNX format of a QAM
NN-defined modulator, (b) Diagram of development and de-
ployment of NN-defined modulators.

We utilize the ONNX [10] as an intermediate framework
to ensure the interoperability. ONNX is an open ecosystem
for technology companies and research organizations to store
and import neural network models onto different frameworks.
ONNX defines a common set of operators that contains the
fundamental layers of neural network models, including the
transposed convolutional layer and the fully-connected layer
used in our design. As a validation, we visualize the graph
of the ONNX model of our NN-defined modulator template
in Figure 13a. As depicted in the figure, the transposed con-
volutional layer operator is ConvTranspose, and the fully-
connected layer is represented by the MatMul operator. Al-
most all mainstream machine learning frameworks support
conversions between their native models and ONNX ones. It
is also worth noting that porting customized neural network
layers to ONNX models demands significant effort. Conse-
quently, the custom layers in NVIDIA Sionna are challenging
to convert to ONNX models, while our NN-defined modulator
built upon fundamental layers exhibits better interoperability
across different frameworks.

6.2 Seamless Acceleration
As previously illustrated, IoT gateway hardware platforms
provide acceleration capabilities to expedite the execution of
neural network models. The proposed NN-defined modulator
is constructed based on fundamental neural network layers
that are generally supported and well-optimized for execution
on various hardware platforms. Therefore, the NN-based mod-
ulator can leverage these capabilities to enhance efficiency,
speeding up the modulation process.

A typical development and deployment workflow for the
proposed NN-defined modulators is depicted in Figure 13b.
The prototype of the NN-defined modulators can be devel-
oped in mainstream machine learning frameworks, such as
PyTorch. Then, NN-defined modulators are converted to a
portable ONNX format for improved interoperability across
different platforms. Deploying ONNX models requires a com-
piler, such as ONNX runtime [11] or Apache TVM [2]. Using



Figure 14: Prototype of NN-defined modulator. Left box:
Nvidia Jetson Nano as the host device for the NN-defined
modulator. Right box: ADI Pluto SDR as SDR hardware.

ONNX runtime as an example, it can utilize different accel-
erator backends. Numerous accelerator backends have been
developed by the community. For instance, it can employ
Nvidia GPU [8] on GPU-equipped systems, Arm ACL [3]
for Arm SoC platforms, and OpenVINO [12] for Intel x86
platforms. Therefore, the NN-defined modulator can be seam-
lessly accelerated on various platforms.

7 Evaluation
7.1 Implementation
7.1.1 Framework and hardware
We design the NN-defined modulator in PyTorch [13] with
ConvTranspose1d and Linear layers. Once the NN-defined
modulators are ready for port, we convert the modulators into
ONNX format. We port the ONNX NN-defined modulator to
Nvidia Jetson Nano [9] and Raspberry Pi [14] for verification.
Both devices support the ONNX runtime, and Jetson Nano
is equipped with a GPU, which can be used to accelerate the
execution of the ONNX NN-defined modulators.

Besides, we also implement an NN-defined modulator pro-
totype. We connect the host (Nvidia Jetson Nano) running the
NN-defined modulator with the SDR hardware (ADI Pluto
SDR [1]) as shown in Figure 14. We use this prototype to
transmit the modulated signals over the air.

7.1.2 Modulation schemes
Without loss of generality, we choose several typical schemes
for 1) PAM-2 with the rectangular filter, 2) QPSK with the
half-sine wave filter, 3) 16-QAM with RRC filter for ampli-
tude/phase modulation, and 4) 64-S.C. OFDM scheme for
multicarrier modulation. We use MATLAB Signal Processing
Toolbox [6] to generate the symbols and the signals as for
training sets. When evaluating the efficiency and portability,
we select 16-QAM modulator with RRC filter as the example.
The conventional SDR modulators for 16-QAM with RRC
filter are implemented with signal processing libraries, GNU-
Radio [4] on x86 laptop, and SciPy [15] on Nvidia Jetson
Nano, as the baselines. For comparison, we also implement a

16-QAM modulator with RRC filter using Nvidia Sionna [33]
on the x86 laptop for comparison.

7.2 Signal Quality of NN-defined Modulator

7.2.1 Trained kernels in NN-defined modulators

As discussed in Section 5, the kernels within the NN-defined
modulator can be trained with training sets. Here, we use
16-QAM with RRC filter and 64-S.C. OFDM scheme as ex-
amples to analyse the trained kernels.

For the 16-QAM scheme with RRC shaping filter, the in-
put symbol is 1-dimensional, so there are 2 kernels trained.
According to the analysis in Section 4, the trained kernels
are supposed to be the real and imaginary parts of the shap-
ing filter. We visualize trained kernels and the original RRC
shaping filter in Figure 15a. One of the trained kernels is
nearly identical to the original shaping filter. The other one is
almost zero-valued, which is consistent with the zero-valued
imaginary parts of the shaping filter.

For the 64-S.C. OFDM scheme, there are 2× 64 kernels
trained. According to the analysis in Section 4, the kernels
are supposed to be the real and imaginary parts of the sub-
carrier functions, i.e., e j 2πin

64 . We also visualized a pair of the
trained kernels in Figure 15b. And these two kernels are the
same as real and imaginary parts of the standard subcarrier
e j 2π×32n

64 . The NN-defined OFDM modulators share the same
conclusion that the trained kernels perfectly match the signal
processing pipeline in conventional modulators.
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Figure 15: Trained kernels from NN-defined modulators for
(a) QAM with RRC filter, (b) 64-S.C. OFDM.

7.2.2 Transmission performance in AWGN channel

We apply the trained NN-defined modulators to generate sig-
nals and pass the signals in the additive white Gaussian noise
(AWGN) channel to verify the transmission performance.
And we plot the Bit Error Rate (BER) curves in Figure 16.
Meanwhile, The BER curves of the signals from standard
modulators in MATLAB are also plotted as the baseline. As
illustrated in the figure, the NN-defined modulators for the
selected modulation schemes can modulate the symbols cor-
rectly so that the modulated signals can achieve the same error
performance as standard modulators in AWGN channels.
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7.3 Efficiency and Portability
7.3.1 Efficiency improvement
To verify the efficiency improvement of the NN-defined mod-
ulator, we measure the running time of the conventional SDR
QAM modulator, the NN-defined QAM modulator, and the
Nvidia Sionna QAM modulator on an x86 laptop and compare
these time recordings in Figure 17. All the QAM modulators
modulate a batch consisting of 32 symbol sequences with 256
symbols.
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Figure 17: Running time of different implementations.

When all three modulators run without acceleration, it takes
0.58ms for our design to finish, which is much faster than the
conventional (1.7ms) and Sionna modulator (1.9ms). Our NN-
defined modulator applies the fundamental neural network
layers that are well-optimized so that it performs better than
the customized neural network layers implemented in Nvidia
Sionna as well as the conventional SDR modulator.

The NN-defined and Sionna modulators support hardware
acceleration thanks to the neural network implementation.
We measure their running time with acceleration enabled. We
also implement an accelerated QAM modulator with cuSig-
nal [20]. The NN-defined modulator and Sionna modulator
execute much faster than without acceleration. The running
time of the NN-defined modulator is reduced to 0.059ms from
0.58ms, which is 28 times faster than the conventional SDR
modulators without acceleration, even 10 times faster than the
implementation using cuSignal. For the Sionna modulator, the
running time is also reduced to 0.25ms. Both our NN-defined
modulator and Sionna modulator run faster than the conven-

tional modulator. These results prove that the NN-defined
modulator can significantly improve efficiency compared with
conventional SDR modulators.
7.3.2 Portability
Porting among platforms. As aforementioned in Section 6,
porting the conventional SDR implementations and Sionna-
based one from one platform to another requires consider-
able effort. Here, we focus on the portability of our NN-
defined modulator. Following the development diagram of
the NN-defined modulators, we first implement the NN-
defined QAM modulator in PyTorch and convert it into
the ONNX model. We list the converted operations in
the ONNX framework in Table 4. The transposed con-
volutional layer (torch.ConvTranspose1d) and the linear
layer (torch.Linear) are widely supported so that they can
be converted to the portable format.

Implementations PyTorch layer ONNX operator

NN-defined ConvTranspose1d ConvTranspose
Linear MatMul

Table 4: Original operations and converted ONNX operators
in the NN-defined modulator.

Performance on different platforms. We now deploy the
ONNX NN-defined QAM modulator on embedded computers
such as Nvidia Jetson Nano and Raspberry Pi. Figure 18a
illustrates the running time on different platforms. Sionna
modulator fails to be ported because the customized layers
are hard to be transformed into ONNX models. Although
the running time of the NN-defined modulator on embedded
systems is longer than that on the x86 laptop, we successfully
port our NN-defined modulators to different platforms.
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Figure 18: (a) Running time on different platforms of x86 PC,
Nvidia Jetson Nano, Raspberry Pi. (b) Acceleration evaluation
on the target platform of Nvidia Jetson Nano.

The following evaluation demonstrates the acceleration
capability of the target platform. We configure the ONNX
NN-defined QAM modulator on Nvidia Jetson Nano to run
with GPU acceleration as discussed in Section 6. We compare
the running time of the conventional modulator and our NN-
defined modulator modulate symbol batches of different sizes.
The evaluation results are visualized in Figure 18. We can
observe a considerable efficiency improvement compared
with the conventional modulator as well as the CPU-only



NN-defined modulator. Moreover, the efficiency of our NN-
defined modulator is still much better than the conventional
modulator implemented with an accelerated signal processing
library. More specifically, when the number of input symbol
sequences is 32, the accelerated NN-defined modulator is 4.7
times faster than the conventional modulator and even 2.5
times faster than the accelerated modulator. These results
showcase that we can easily run the NN-defined modulators
on target platforms with acceleration capability.

7.4 Application in IoT Technologies
The proposed NN-defined modulators are employed to gen-
erate protocol-compliant signals, showcasing representative
use cases in IoT gateways.

7.4.1 ZigBee-compliant Signals
ZigBee [24], developed based on IEEE 802.15.4 [19], utilizes
Offset-QPSK, a variant of amplitude/phase modulation, as its
modulation scheme. The diagram of the O-QPSK modulator
is illustrated in Figure 19. The modulator input comes from a
4-QAM constellation, where the symbols are {±1±1 j}. The
real and imaginary parts of the input symbols are processed
separately to generate I/Q signals. The quadrature branch of
signal samples is shifted by a delay to introduce the offset.
As evident in the output waveform, the quadrature branch
exhibits a slight lag.

NN-defined O-QPSK Mod
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Conventional O-QPSK Mod
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Figure 19: Diagram of conventional O-QPSK modulator (top)
and the NN-defined O-QPSK modulator (bottom).

To construct an O-QPSK modulator for ZigBee protocol,
we combine the NN-defined QPSK modulator with a shift-
ing process to form the NN-defined O-QPSK modulator, as
depicted in Figure 19. We generate symbols from messages
following the specification and feed them into our NN-defined
O-QPSK modulator. The modulated signals are sent over the
air utilizing the prototype in Figure 14. We employ the TI
CC2650 Kit [17] as the ZigBee receiver, which can parse the
captured signals into messages.

We generate ZigBee packets with varying message lengths
and transmit 100 packets. At the receiver side, the received
ZigBee packets without errors are recorded, and we calculate
the packet reception ratio (PRR) in different settings, repeat-
ing the evaluation 5 times. We compare the performance with
the SDR implementation using signal processing libraries.
And we conduct the same experiments on commercial off-
the-shelf (COTS) TI devices as a baseline. The evaluation
is conducted indoors and outdoors. The settings of indoor
environments are demonstrated in Figure 20a. As depicted in

Figure 20b, the ZigBee signals generated by the NN-defined
modulator can be successfully received by the commercial
device, achieving performance comparable to the existing
SDR implementation and commercial devices.
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Figure 20: (a) Evaluation settings in indoor environment. (b)
Packet Reception Ratio of ZigBee packets modulated by NN-
defined modulator and SDR modulator.

7.4.2 WiFi-compliant Signals
WiFi, which is also extensively utilized for IoT communica-
tion, typically employs the OFDM scheme. When implement-
ing the NN-defined modulator for WiFi communication, the
process becomes slightly more complex, as WiFi utilizes the
CP-OFDM [48] modulator, and WiFi frames generally consist
of signals generated from various fields.

Taking IEEE 802.11a/g as an example in Figure 21, WiFi
frames comprise four fields: Short Training Field (STF), Long
Training Field (LTF), Signaling Field (SIG), and Data Field
(DATA). The STF and LTF primarily serve detection, synchro-
nization, and channel estimation purposes at the receiver. The
SIG contains information about the current frame, such as
frame length and modulation and coding scheme information,
while the DATA field carries the data.

STF LTF SIG DATA

8us

8us

4us

Variable

Figure 21: Fields in IEEE 802.11a/g frame.
Different fields need specific operations. The STF and LTF

involve repeating the signals from the OFDM modulator,
while the SIG and DATA require adding a cyclic prefix to the
modulated signals by copying the ending parts of the OFDM
signals to the front. Following the discussion in Section 4, we
combine an NN-defined OFDM modulator with additional
operations to add the cyclic prefix.

Four NN-defined modulators corresponding to the four
fields in IEEE 802.11a/g WiFi frames are implemented. These
modulators are then combined to create a single NN-defined
WiFi modulator. The overall structure is illustrated in Fig-
ure 22. The NN-defined modulators for STF, LTF, SIG, and
DATA fields collectively form the NN-defined WiFi modula-
tor, allowing for a comprehensive modulation process that
addresses the unique requirements of each field.

We generate beacon packet signals using the NN-defined
WiFi modulator and transmit them over the air. A laptop is
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Figure 22: NN-defined Wi-Fi modulator.

used to sniff the beacon packets. We test beacon reception in
an indoor environment at the 5GHz band, transmitting 100
beacon packets for 5 times. Figure 23 demonstrates that the
laptop can successfully receive the beacon with an SSID of
"NN-definedModulator", achieving a PRR at 96%.

Figure 23: Reception of beacon signals generated by NN-
defined Wi-Fi modulator.

Next, we extend our design to transmit data by generat-
ing data packets and passing the signals through simulated
AWGN channels. We follow the standard process to detect
and synchronize WiFi frames using STF signals, conduct
channel estimation and equalization using LTF signals, and
then demodulate and decode the SIG and DATA signals. In
our evaluation, the symbols for a grayscale image data are
generated using 16-QAM and 64-QAM. The results are listed
in Figure 24. As shown in the figure, we can successfully
reconstruct the transmitted images under different settings,
further demonstrating the effectiveness and versatility of our
NN-defined modulator design in practical applications.

(a) (b) (c)

Figure 24: (a) Original image of 256×256 pixels; Received
images using (b) 16-QAM at SNR=10dB and (c) using 64-
QAM at SNR=20dB.

8 Related Works
SDR solutions for IoT gateway: SDRs are proposed as
universal gateways operating across technologies. Past work
[22, 51, 59] has developed smart home gateways using the
USRP radio with GNUradio support. [45] revisited the SDR-

based IoT gateway for decoding collapsed packets. Other so-
lutions employed the cross-technology communication tech-
nique as an alternate for IoT gateways [34–36, 39–42, 53–56].

Machine learning for communication system: Neural
networks or machine learning has been extensively used in
physical layer designs [25, 31, 44, 47, 49, 57, 61]. [46] intro-
duced a method to learn an end-to-end communication sys-
tem by interpreting it as an autoencoder [30]. In [60], a DNN
model replaces all blocks in the conventional OFDM receiver.
In [50], the researchers propose to replace processing blocks
in the OFDM receiver with neural network models and deploy
them on IoT devices.

Our work has innovations in two tiers, distinctive objectives,
and different methodologies. Objective-wise, most literature
views the neural network as an optimizer and seeks perfor-
mance gains under complex conditions [61]. In contrast, we
use the neural network as an abstraction layer for the porta-
bility of IoT gateway functionalities. Methodology-wise, the
literature commonly adopts data-driven approaches that em-
ploy general-purpose neural networks [25,49,57]. We adopt a
model-driven approach that designs the neural network-based
modulators with reference to the mathematical models.

9 Discussion
It’s worth pointing out that we only discuss the linear ampli-
tude/phase modulation schemes in this paper. Other modula-
tion schemes require further study, such as frequency modula-
tion, also known as non-linear modulation. Following the sim-
ilar idea, We can model the frequency modulation based on
the phase changes and construct another NN-defined modula-
tor template that can be used for the Gaussian frequency shift
keying (GFSK) modulators used in Bluetooth [32]. Moreover,
we intend to extend the application of the learning ability.We
can further apply the neural network to learn to reduce the ad-
jacent channel leakage ratio (ACLR) for single carrier scheme
or to reduce the peak-average power ratio (PAPR) for OFDM
scheme. We can also apply the NN-defined modulator to learn
from noisy signal samples to reconstruct noiseless modulators.
The model-driven approach can also be applied to the receiver
design, including demodulation and decoding, which is an
emerging topic in wireless communication.

10 Conclusion
In this paper, we present an NN-defined modulator template
for various modulation schemes that can be converted to a
unified NN framework for portable deployment for IoT gate-
way design. The proposed NN-defined modulator has the
extensibility to achieve various modulation schemes for IoT
connections, and the evaluation results show that they can
perform well. The NN-defined modulator outperforms the
existing SDR solutions in terms of portability and efficiency
thanks to the wide support of the NN on heterogeneous com-
puting platforms. Meanwhile, the NN-based implementation
also enables our design with the learning ability, featuring the
potential for intelligent communication systems.
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