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Abstract
Live streaming of segmented videos over the Hypertext

Transfer Protocol (HTTP) is increasingly popular and serves
heterogeneous clients by offering each segment in multiple
representations. A bitrate ladder expresses this choice as a
list of bitrate-resolution pairs. Whereas existing solutions
for HTTP-based live streaming use a static bitrate ladder,
the fixed ladders struggle to appropriately accommodate
the dynamics in the video content and network-conditioned
client capabilities. This paper proposes ARTEMIS as a
practical scalable alternative that dynamically configures the
bitrate ladder depending on the content complexity, network
conditions, and clients’ statistics. ARTEMIS seamlessly
integrates with the end-to-end streaming pipeline and
operates transparently to video encoders and clients. We
develop a cloud-based implementation of ARTEMIS and
conduct extensive real-world and trace-driven experiments.
The experimental comparison vs. existing prominent
bitrate ladders demonstrates that live streaming with
ARTEMIS outperforms all baseline solutions, reduces
encoding computation by 25%, end-to-end latency by 18%,
and increases the quality of experience by 11%.

1 Introduction

Live streaming is an increasingly prominent variant of video
streaming. Video applications keep gaining popularity in
general, with the Internet experiencing a 24% increase in
video traffic during 2022 [55]. Live streaming constitutes a
major contributor to this growth and feeds on support by social
media platforms and streaming services such as Facebook
Live, Twitch, and YouTube Live. The skyrocketing rise of
live streaming in all Internet traffic from less than 1% to
nearly 18% during the 2015-2022 period substantiates the
importance of this streaming mode.

HTTP Adaptive Streaming (HAS) comprises an attractive
option for not only Video On Demand (VOD) but also live
streaming. The two leading representatives of the HAS
paradigm are Apple’s HTTP Live Streaming (HLS) [52]
and standardized Dynamic Adaptive Streaming over HTTP
(DASH) [36]. Both formats have low-latency extensions [20,
26] that accept the same Common Media Application Format
(CMAF) [35] for video packaging. While WebRTC [38]
enables streaming with subsecond latency and creates

a promising alternative to HAS formats for interactive
applications, the HAS paradigm maintains its dominance in
live streaming distribution [63] due to its easy deployment,
great scalability, and good performance.

In HAS, an origin server partitions a video into segments
and encodes each segment into multiple representations
characterized typically by a bitrate and resolution. A
bitrate ladder, aka an encoding ladder or simply a ladder,
comprises a list of the bitrate-resolution pairs. Each client,
aka player, downloads from the server a manifest file
that describes the bitrate ladder and other metadata. The
video delivery is segment by segment, with the client
requesting the next segment in a representation chosen by
an adaptive bitrate (ABR) algorithm [24]. The choice strives
to accommodate dynamic network conditions and balance
conflicting performance objectives. For example, a higher
bitrate might increase both video quality and stall duration
because the client does not receive the segment in time for its
playback.

A key metric of HAS performance is Quality of Experience
(QoE) which captures the overall satisfaction of the user
with the streaming service [56]. In this paper, we evaluate
QoE using the model introduced by Comyco [33]. This
QoE model measures video quality by means of Video
Multimethod Assessment Fusion (VMAF) [45] and expresses
QoE as a weighted sum of VMAF, stall duration, and VMAF
instability over a sequence of segments. VMAF relies on
machine learning to account for human perception, spatial
and temporal video characteristics, and many other factors.
Appendix A describes the QoE model in more detail.

HAS scales up to millions of clients due to two features.
First, because the number of representations, rather than
the number of clients, controls the encoding, storage, and
bandwidth overhead, bitrate ladders contain relatively few
representations, e.g., Twitch and Apple use ladders with six
and nine representations, respectively [21, 22]. When the
network bandwidth available for a client aligns with a bitrate
imperfectly, the discrepancy does not disrupt QoE as long
as it lies within the Just-Noticeable Difference (JND) [18].
Second, HAS employs Content Delivery Networks (CDNs)
which deploy edge caches around the world to serve end users
with low latency [31].

In comparison to VOD, live streaming faces new challenges.
The fundamental difference lies in the real-time operation of
the end-to-end pipeline from the video ingestion at the camera



to the playback at the client. Specifically, VOD encoding
is offline and free from stringent latency constraints. The
state of the art in ladder construction goes beyond one-
size-fits-all ladders [32, 42] and leverages video content and
viewing context to build more effective ladders [28, 32, 37,
40, 47, 53, 54, 64, 65]. The construction of content-aware
and context-aware ladders commonly relies on exhaustive
search or other time-consuming methods. In contrast, live
streaming is subject to tight constraints on end-to-end latency
and calls for new designs. For example, live streams encode on
a subsegment level, e.g., all the way down to individual frames.
Also, a live encoder is unable to assess video quality via
VMAF because the computation of VMAF would introduce
substantial latency which might even exceed the encoding
latency. On the ABR side, L2A [39] and LoL+ [22] represent
prominent low-latency ABR algorithms that leverage the
subsegment encoding structure and incorporate additional
mechanisms. For example, LoL+ includes a learning-based
technique that proactively controls the playback speed by
considering both current latency and buffer occupancy level
so as to jointly handle stalls and achieve the latency target.

The live mode also creates opportunities for more effective
streaming. In VOD, the origin server stores the video in all
representations of the bitrate ladder for future streaming to
a priori unknown clients. In live streaming, the server does
not necessarily need to store the streams for future playback.
Apart from making video storage less of a concern, this
aspect of live streaming opens the possibility of dynamically
configuring the bitrate ladder of the session to improve the
encoding efficiency and QoE of current clients.

In this paper, we design ARTEMIS1, a system that
dynamically constructs effective ladders for the live encoder
during the live video session without any pre-encoding step.
The system objectives are to: (1) support end-to-end streaming
latency of a few seconds, (2) provide heterogeneous clients
with high QoE, (3) utilize network bandwidth efficiently
with low storage and processing overhead, and (4) operate
transparently with existing video codecs, players, and ABR
algorithms.

ARTEMIS achieves its key innovation by collecting client-
state information via CDN log files and leveraging this
information to dynamically configure the bitrate ladder. The
added mechanisms preserve the scalability of CDN-assisted
HAS. In particular, whereas the number of representations
encoded in real time constitutes the most critical resource in a
live streaming system, the encoding of the live video into the
representations that fully accommodate the capabilities of all
individual clients in the session does not constitute a practical
option, and ARTEMIS instead constructs bitrate ladders
with a relatively small number of representations. Another
important innovation of ARTEMIS is a mega-manifest file
that advertises a large number of representations. ARTEMIS

1ARTEMIS is an abbreviation of the following full name of the design:
Adaptive bitRaTE ladder optiMIzation for live video Streaming.
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Figure 1: Conceptual architecture of live video streaming with
ARTEMIS enhancements (in blue).

utilizes the mega-manifest to collect information about the
bitrate preferences of the clients with a higher fidelity.

Figure 1 depicts the ARTEMIS architecture and its role in
live streaming. ARTEMIS consists of an ARTEMIS analytics
(AA) server and ARTEMIS origin (AO) agent with limited
communications between these two components. Operating
in real time to dynamically compose the bitrate ladder from
the representations advertised in the mega-manifest, the AA
server utilizes CDN logs in the Common Media Client Data
(CMCD) format [7] to scalably collect client-side information
about stall duration and numbers of requests for each bitrate
in the mega-manifest. ARTEMIS uses the Peak Signal-
to-Noise Ratio (PSNR) [34] as a metric of video quality
because the latency of computing a PSNR value is negligible,
within a millisecond. Specifically, based on the PSNR values
computed by the live encoder for past segments, the AO
agent trains a function predicting the video quality of future
segments and communicates this quality indicator function
to the AA server. Because the AO agent runs on the machine
of the live encoder, ARTEMIS trains the quality indicator
function at the AO agent, rather than at the AA server, in
order to reduce traffic from the live encoder to the AA server.
Utilizing the quality indicator function received from the AO
agent, the AA server solves a Mixed Integer Linear Program
(MILP) to update the bitrate ladder. Upon receiving the
updated ladder from the AA server, the AO agent instructs the
origin server to encode the subsequent segments of the video
according to this new ladder. In the most likely economic
realization, the streaming service provider administers both
components of ARTEMIS.

We implement the ARTEMIS system in the Amazon cloud
infrastructure and report an extensive real-world evaluation
of ARTEMIS-enhanced live streaming. Specifically, our
Python implementations of the AA server and the AO agent
run in the Amazon Elastic Compute Cloud (EC2) [2]. To
complete the end-to-end streaming pipeline, we utilize the
Bitmovin Live Encoder [5] for the origin-server encoding
of videos, Amazon CloudFront as the CDN, and multiple
instances of the DASH JavaScript Player (dash.js) [27] as
video clients on the CAdViSE platform [57]. The Bitmovin
Live Encoder and CAdViSE also run in EC2. The live
streaming experiments confirm that ARTEMIS achieves
its design objectives and significantly outperforms existing



techniques for ladder construction in terms of provided QoE
and network utilization while imposing low computation and
communication overhead.

Our paper makes the following main contributions:

1. We design ARTEMIS, a practical system that enhances
live video streaming by dynamically constructing the
bitrate ladder accounting for the content complexity
and network conditions. The construction leverages
the clients’ fine-grained bitrate preferences and stall
information collected scalably through the CDN.

2. The paper reports a cloud-based implementation of
ARTEMIS and an extensive real-world evaluation of
its utility for end-to-end live streaming.

3. The experimental comparison vs. existing prominent
bitrate ladders demonstrates that ARTEMIS delivers
multi-objective improvements over the static ladders
to reduce encoding computation by 25%, end-to-end
latency by 18%, and increase QoE by 11%.

2 Related Work

The traditional HAS approach relies on the same bitrate ladder
throughout the streaming session. The fixed ladder might
be agnostic of the video content, e.g., Apple’s ladder [51],
or depend on the content type, e.g., per-title encoding by
Netflix [28, 47]. One can classify recent advanced solutions
into content-aware and context-aware categories.

Content-aware ladder construction accounts for the
content complexity. Whereas the initial proposal of per-title
encoding [28] seeks to improve the resolution for each bitrate
in the ladder, [19] aims at content-aware improvements in
both resolution and frame rate. [46] considers the content
complexity to partition the video offline for streaming with
segments of variable duration and then augments the bitrate
ladder with additional representations to improve QoE via
fine-grained adaptation. [40] extracts content features and
applies machine learning to configure each quantization
parameter (QP) based on the rate-distortion curves of different
resolutions. [25] uses metrics of video quality to select a
resolution for each bitrate in a perception-aware manner.
[49, 50] extract low-complexity video features to set the
resolutions and QPs in bitrate ladders for live streaming.
While all the above solutions successfully leverage content
awareness to improve bitrate ladders, [19, 28, 46] rely on
brute force to construct the ladders, which is computationally
untenable in live streaming. On the other hand, [25,40,49,50]
do not consider network conditions. In contrast, ARTEMIS
accounts for both content complexity and dynamic network-
conditioned client capabilities to efficiently construct dynamic
ladders for live streaming.

Context-aware ladder construction addresses the impor-
tance of the context such as the network bandwidth available

for the segment download by the clients. [54] models the avail-
able network bandwidth as a continuous random variable and
uses its probability density function to build ladders. [43] con-
structs bitrate ladders by analyzing the content complexity and
historical data on the available network bandwidth in order to
reduce the likelihood that the user quits watching the streamed
video. [60] accounts for the user population, network dynam-
ics, video content, and other factors in its ladder construction
with the objective to improve user satisfaction. [32] applies
deep reinforcement learning to build ladders with features
that describe the content, available network bandwidth, and
storage overhead. [41] uses a Markov model to predict the
bitrate of the next requested segment so as to support transcod-
ing and ladder construction in VOD settings. [58] modifies
ABR algorithms with a plug-in to obtain feedback from the
clients, characterizes video quality via VMAF estimates, and
evaluates the utility of the constructed bitrate ladders via trace-
driven emulations. Although sharing some aspirations and
techniques with ARTEMIS, the above context-aware propos-
als tend to make problematic design choices that jeopardize
their chances for wide deployment in practice, e.g., deep learn-
ing or other computationally expensive techniques unsuitable
for live streaming. The key innovation of ARTEMIS as a
practical scalable system for live streaming lies in collect-
ing client-side information via CDN logs and leveraging this
information to construct dynamic context-aware bitrate lad-
ders. ARTEMIS operates transparently to ABR algorithms
and uses a mega-manifest file to accurately detect the bitrate
preferences of the clients.

3 Problem Description and Motivation

This paper deals with the problem of constructing improved
bitrate ladders for live streaming. As shown in Figure 1, the
end-to-end streaming pipeline passes through a CDN and
has two ends on the origin and client sides. On the origin
side, the encoder creates a bitrate ladder from the live video
captured by a camera. On the client side, the ABR algorithm
continuously requests segments of the video at a dynamically
chosen representation, with the client subsequently buffering
and playing back the received segments. In this section, we
discuss the utility and challenges of using information from
both origin and client sides to improve the ladder construction.

Client-side motivation. While ARTEMIS constructs the
bitrate ladder based on the bitrates requested by the clients,
an alternative foundation might be the network bandwidth
available for the segment download. ABR algorithms
typically predict the future network bandwidth through
various techniques, e.g., based on historical measurements of
throughput and occupancy level of the playback buffer [24].
However, ABR algorithms differ greatly in their logic of
selecting the bitrate for the next requested segment: whereas
the greedy approach requests the highest bitrate that does
not exceed the predicted available bandwidth, many ABR
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Figure 2: The bitrate ladder advertised in the mega-manifest,
predicted bandwidth and requested bitrates by two ABR
algorithms, and actually served bitrates at the origin side.

algorithms choose to keep the requested bitrate stable over
consecutive segments because QoE might benefit from the
bitrate stability even when the bitrate is significantly below
or above the available network bandwidth.

To support live streaming with low latency and utilize
efficiently the limited computation, bandwidth, and storage
resources, ARTEMIS constrains the number of encodings
to yield fewer representations than advertised in the mega-
manifest, and a client might receive a segment in a
representation with a lower bitrate than requested. Although
serving the segment at a lower bitrate might degrade QoE
for the client, prior work adopting this technique for similar
overhead reasons shows that the technique works well in
conjunction with client-side ABR algorithms and supports an
effective trade-off between the complexity and QoE [44, 59].

We explore the loose coupling between the client-side
and origin-side logics in experiments where the mega-
manifest advertises 19 representations2. Out of the 19
representations, the origin server actually maintains only the
five representations with the bitrates of 0.145, 0.365, 1.1,
2, and 4.5 Mbps. When the client requests a representation
with a different bitrate, the server delivers the maintained
representation with the highest bitrate that does not exceed
the requested one. The experiments evaluate the L2A ABR
algorithm [39] with the segment duration of 1 s and the LTE
network trace [61] as well as the LoL+ ABR algorithm [22]
with the segment duration of 2 s and the Cascade network
trace [23]. In both experiments, the content type is animation.
Figures 2a and 2b plot the results for L2A and LoL+,
respectively, and depict the 19 representations in the mega-
manifest as horizontal gray lines, bandwidth predictions by
the ABR algorithm as blue dashed lines, its requested bitrates
as green dots, and actually served bitrates as orange dash-
dotted lines.

2(0.09 Mbps, 270p), (0.145 Mbps, 270p), (0.24 Mbps, 270p), (0.365 Mbps,
360p), (0.5 Mbps, 360p), (0.6 Mbps, 360p), (0.75 Mbps, 360p), (0.9 Mbps,
360p), (1.1 Mbps, 480p), (1.4 Mbps, 480p), (1.6 Mbps, 720p), (1.8 Mbps,
720p), (2 Mbps, 720p), (2.25 Mbps, 720p), (2.8 Mbps, 720p), (3.4 Mbps,
720p), (4.5 Mbps, 1080p), (5 Mbps, 1080p), and (7 Mbps, 1080p).
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Figure 3: Dependence of video quality on the bitrate for two
different content types.

Figure 2 provides two relevant observations. First, the
predicted available bandwidth is a poor proxy of the bitrate
requested by the ABR algorithm. It is common for the
discrepancy between these two values to span multiple
representations. Therefore, compared to the available network
bandwidth, the bitrates requested by the clients constitute a
better foundation for constructing a dynamic bitrate ladder.
Second, the L2A and LoL+ algorithms adapt the bitrate
effectively even though the origin server encodes segments
into a smaller number of representations than advertised in the
mega-manifest. Thus, the mega-manifest empowers the origin
server to detect the bitrate preference of the client with a
higher accuracy and yet preserves the effectiveness of diverse
ABR algorithms. The above two observations substantiate a
promise of our approach where the origin server leverages the
mega-manifest technique and relies on the bitrates requested
by the clients, rather than the available network bandwidth,
to construct the dynamic bitrate ladder.

Origin-side motivation. Even if the origin server collects
real-time fine-grained feedback about the bitrate preferences
of the clients, the dynamic construction of an effective bitrate
ladder requires additional information from the origin side.
In particular, video quality is relevant because it strongly
correlates with QoE. Figure 3 plots VMAF as a function of
the bitrate for two different resolutions in the experiments that
consider two content types of sport and documentary. The
graphs depict the average VMAF over 100 segments, where
each segment has the duration of 2 s, and show that VMAF
grows sublinearly with the bitrate and greatly depends on the
content type. Hence, in addition to the bitrate preferences of
the clients, the construction of effective bitrate ladders should
also consider the sublinear impact of the chosen bitrate on
video quality as well as the specific content type. Thus, origin-
side awareness of video quality and content complexity is
critical for constructing an effective bitrate ladder.

Exploitation of content awareness in live streaming has
additional challenges compared to VOD. Content-aware
VOD solutions typically rely on offline search in the bitrate
and resolution spaces to find a bitrate ladder where the



chosen list of bitrate-resolution pairs provides a good
coverage of the VMAF space for the given content. However,
the exhaustive search requires extensive computations and
imposes extra latency unacceptable for real-time operation.
Similarly, the computation of VMAF is untenably slow for
live streaming. Therefore, construction of a dynamic bitrate
ladder for live streaming requires efficient techniques to
quickly measure content complexity and select a content-
aware ladder configuration.

4 System Design

4.1 Design Principles
Based on the motivation in Section 3, we now present
our ARTEMIS system and start by establishing its design
principles. ARTEMIS aspires to build a dynamic bitrate
ladder for a live streaming session by leveraging real-time
information from both origin and client sides of the streaming
pipeline. However, the provided improvements in the bitrate
ladder should not undermine the traditional ability of HAS
to scale up well with respect to the number of clients in the
session, computation and storage overhead, and bandwidth
consumption. This constraint forms a basis for our first design
principle:

Design Principle 1 Enhancements of the ladder construc-
tion should preserve scalability of live streaming and, in par-
ticular, require only affordable amounts of extra feedback
from both client and origin sides.

The existing ecosystem of live streaming is diverse in
regard to deployed clients and their ABR algorithms. At the
same time, ABR streaming also has standard features, e.g., the
client learns about available representations by receiving from
the origin server a manifest file and reacts by requesting one
of the advertised representations. For ease of deployment, the
proposed design should exploit common elements of end-to-
end streaming and avoid modifications in the components that
exist in heterogeneous instances. The above considerations
lead us to the following design principle:

Design Principle 2 ARTEMIS should seamlessly integrate
with today’s streaming ecosystem by leveraging its standard
features and, in particular, operate transparently to heteroge-
neous clients and their ABR algorithms.

Constructing an effective bitrate ladder with inexpensive
overhead constitutes an important but not the only goal in
live streaming. A major objective of end-to-end streaming
is to support high QoE. Furthermore, because live streaming
imposes tight constraints on end-to-end latency, the ladder
construction should be sufficiently fast so that the streaming
session fulfills the end-to-end latency constraints. Thus, we
establish the final design principle for ARTEMIS:

Design Principle 3 The ladder construction should simul-
taneously achieve multiple interdependent objectives that
include the ladder effectiveness, reasonable overhead, high
QoE, and satisfaction of end-to-end latency constraints.

4.2 ARTEMIS Overview

We derive the ARTEMIS design from the principles
established in Section 4.1. Figure 1 shows the conceptual
architecture of our proposal with the AA server and AO agent
as its two primary components. We envision that the provider
of the streaming service administers both components and
instantiates them in a cloud, e.g., in EC2.

To fulfill Design Principle 1 on the client side, the AA
server in ARTEMIS utilizes a CDN service to scalably collect
client-state information. Akamai [1] and other major CDNs
offer such services that transmit log files to third parties, e.g.,
Conviva [6] and Datazoom [8] analytics platforms. When a
streaming session uses multiple CDNs, the analytics platform
obtains the client-state information separately from each
individual CDN. Without loss of generality, the rest of our
paper assumes that each streaming session utilizes a single
CDN. In ARTEMIS, each player appends its stall information
and unique player identifier (pid) in the CMCD format to
the Uniform Resource Locator (URL) of the HTTP request
message sent to the CDN edge server [3, 7]. The URL also
includes the ID of the segment representation requested by
the player. The CDN compiles both kinds of information
provided by the players to the CDN edge servers and
periodically provides the AA server with log files that contain
information about stall duration and requested representations
for all players in the session during the covered period. By
processing the CDN log files with negligible computation
overhead, the AA server extracts aggregate statistics in the
form of average stall duration and request counts for each
bitrate in the mega-manifest. The AA server leverages these
two kinds of statistics in its computation of a new bitrate
ladder.

To satisfy Design Principle 1 on the origin side, the AO
agent acts as an intermediary between the origin server and the
AA server in order to reduce traffic from the live encoder to
the AA server. The AO agent runs on the machine of the live
encoder, trains a quality indicator function on the segments
produced by the encoder, and sends the quality indicator
function to the AA server. The reliance of ARTEMIS on
PSNR as the quality metric enables low end-to-end latency
of a few seconds while accomplishing the QoE, overhead,
and other objectives in compliance with Design Principle 3.
Because the computation of VMAF is unacceptably slow
for live streaming, Figure 14 in Appendix B shows a strong
correlation between PSNR and VMAF across different
segment durations and content types.

The AA server utilizes the collected origin-side and client-
side information to solve an optimization program that
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produces an optimized temporary ladder (OTL). Because the
number of representations encoded in real time constitutes
the critical resource in a live streaming system, the AA
server dynamically composes the OTL from only some of
the representations listed in the mega-manifest and instructs
the origin server through the AO agent to use the OTL as the
current ladder for segment encoding. The origin server does
not encode any mega-manifest representations that do not
appear in the OTL. When a client requests a representation
absent from the OTL, ARTEMIS instructs the origin server to
stream the segment in the closest lower representation in the
OTL. Hence, ARTEMIS operates transparently to the clients
and origin server in accordance with Design Principle 2.

ARTEMIS relies on time slots in its internal and external
communications. As shown in Figure 4, each time slot is
θ seconds long and consists of two distinct intervals: the
collecting inputs (CI) interval and determining OTL (OT)
interval. During the CI interval, the AA server collects inputs
from the CDN and AO agent. In the OT interval, the AA server
uses the collected data to update the OTL. Below, we detail
the methodology and explain our algorithm for determining
the OTL based on the data collected during the CI interval.

4.3 OTL Selection

During each OT interval, the AA server decides whether to
update the OTL. In the following, we formulate a Mixed
Integer Linear Program (MILP) that computes a new OTL.
Table 2 in Appendix C summarizes our notation. Without
loss of generality, we assume only one fixed resolution for
each bitrate in the mega-manifest. The optimal resolution for
a bitrate is determinable in an online manner [50]. Set B =
{1,2, . . . ,m} indexes the m mega-manifest representations in
increasing order of their bitrates, and bi refers to the bitrate
of representation i. List R = {r1,r2, . . . ,rm} consists of m
nonnegative integers, where ri denotes the number of requests
for bitate bi.

The OTL contains at most ℓ of the m representations.
For each representation i, we define binary variable xi that
indicates whether bitrate bi appears in the OTL (xi = 1) or
not (xi = 0). When the OTL does not include bitrate bi, and
the AA server observes requests for this bitrate (i.e., ri > 0),
ARTEMIS selects a lower bitrate in the OTL to serve the
requests. To model such situations, our MILP incorporates a
list of i−1 binary variables Yi = {y1,i,y2,i, . . . ,yi−1,i} and the
following two constraints:
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Figure 5: Execution time to: (a) train quality indicator
function F for different numbers of segments and (b) solve
the MILP as a function of m, the number of representations
in the mega-manifest.

∑
j∈B & j<i

y j,i + xi = 1 ∀i ∈ B, (1)

∑
i∈B & j<i

y j,i ≤ x j×m ∀ j ∈ B (2)

where y j,i = 1 indicates that ARTEMIS instructs the origin
server to transmit the segment at bitrate b j which is lower
(i.e., j < i) than requested bitrate bi. Constraint 1 guarantees
that ARTEMIS accommodates the requests for bitrate bi
by either including this bitrate into the OTL (xi = 1) or
serving them at a lower bitrate in the OTL (∑ j∈B & j<i y j,i = 1).
Constraint 2 enforces x j = 1 when the OTL includes bitrate
b j to accommodate requests for higher bitrates than b j.

The following constraint ensures that the OTL comprises
at most ℓ representations:

∑
i∈B

xi ≤ ℓ. (3)

If all bitrates in the OTL would change every OT interval,
excessive bitrate switching might degrade the QoE. To prevent
frequent bitrate changes, the MILP imposes an upper limit on
the number of changes in the OTL over two consecutive OT
intervals:

∑
i∈B
|xi− x̄i| ≤ β, (4)

where β > 0 and x̄i ∈ {0,1} indicates whether bitrate bi
appears in the OTL of the previous OT interval.

The live encoder calculates the PSNR value of a segment on
the fly during the encoding process, e.g., by appending -psnr
to the FFmpeg command line [10]. Based on the PSNR values
collected from the encoder for previous segments, the AO
agent computes a function estimating the quality of upcoming
segments. Specifically, the AO agent uses linear regression to
train quality indicator function F that maps a bitrate to PSNR.
Figure 5a plots the execution time to train function F . The
AA server leverages quality indicator function F to estimate
the PSNR values for all bitrates in the mega-manifest for
subsequent segments. When the OTL relies on bitrate b j
to accommodate the requests for higher bitrate bi, the AA
server utilizes function F to measure the respective change in
PSNR. The following inequality introduces the nonpositive
real variable q to express the quality improvement that the
requested bitrates would provide compared to the bitrates
chosen in the OTL:



q×∑
i∈B

ri ≤∑
i∈B

∑
j∈B & j<i

ri× y j,i×
(
F(b j)−F(bi)

)
. (5)

The final constraint of our MILP brings in the nonnegative
real variable s to represent the traffic reduction that happens
because clients receive segments in lower representations than
the requested ones:

s×∑
i∈B

ri ≤∑
i∈B

∑
j∈B & j<i

ri× y j,i× (bi−b j). (6)

For the sake of normalization, we introduce Q and S as
bounds on the possible values of quality improvement q
and traffic reduction s, respectively, and define the following
Multi-Objective Optimization (MOO) function:

MOO = α× q
Q
+(1−α)× s

S
. (7)

Our MILP strives to maximize the MOO function where
weight α controls the relative priorities of the quality
improvement vs. traffic reduction. The two individual
objectives are in conflict: increasing q decreases s and vice
versa. Note that α = 1 emphasizes increasing the video
quality, which conforms to the OTL selecting its bitrates as
close as possible to the requested bitrates. On the other hand,
α = 0 places the only focus on minimizing the traffic, which
corresponds to serving all requests with the lowest bitrate.
We detail our algorithm for determining the value of α in
Section 4.4. To summarize, ARTEMIS relies on the following
MILP:

Maximize: MOO in Equation 7 (8)
subject to: Constraints 1 through 6 (9)
variables: xi, y j,i ∈ {0,1}, q≤ 0, and s≥ 0. (10)
The computational complexity of the formulated MILP

depends on the number of representations in the mega-
manifest, and not on the number of clients in the session. The
total number of variables equals m+ m(m−1)

2 +2 because each
bitrate bi contributes i−1 binary variables y j,i and one binary
variable xi, with two real variables q and s completing the total.
The number of individual constraints behind Constraints 1
through 6 amounts to 2m+4. Despite being an NP-complete
problem [30], the MILP is applicable for optimizing the
OTL in live streaming due to the relatively low numbers
of variables and constraints. We solve the MILP by using the
PuLP library [14]. Figure 5b reports the respective execution
time as a function of m, the number of representations in the
mega-manifest.

4.4 Algorithm Details

Input processing. Algorithm 1 constitutes the core algorithm
of ARTEMIS. Lines 3-6 of the pseudocode describe the
operation during the CI interval when the AA server retrieves
the latest version of quality indicator function F and client-
state log files from the AO agent and CDN, respectively.
After extracting the request counts and stall information from
the CDN logs, the AA server stores the data as list R =
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Figure 6: (a) Rate-distortion curves v1 and v2 with 30 bitrates
between 0.09 Mbps and 7 Mbps and (b) impact of the α value
on quality improvement and traffic reduction.

{r1,r2, . . . ,rm} and set T that consists of tuples (pid, ts, te),
where pid denotes the unique player identifier included
in the URLs of HTTP requests according to the CMCD
specification, and ts and te represent the start and end times of
a stall event. A player that experiences a stall event sends the
respective (pid, ts, te) tuple to the CDN and requests to buffer
all encoded segments that reach the CDN edge server. The
time-slot duration divided by the segment duration imposes
the upper limit on the number of requests that the player
contributes to the R list during the time slot. For each of the
players that request segments and do not report any stalls, set
T includes tuple (pid,0,0).

Algorithm for determining α. Before answering the
question how to determine the best α value, we use Figure 6 to
illustrate the impact of α on quality improvement q and traffic
reduction s, i.e., the two individual objectives of our MILP.
Figure 6a depicts rate-distortion curves v1 and v2 associated
with two different content types and m = 30 bitrates. For each
bitrate bi, we randomly pick a value between 50 and 100
for request count ri and configure x̄i to 0. The example also
assumes ℓ = β = 8. Figure 6b reveals the opposite impact
of changes in α on q and s. When α equals 0, the MILP
produces OTLs that offer the worst video quality, with q
being about -4.2 and -10.2 for curves v1 and v2, respectively.
However, the traffic reduction in this α setting is the largest,
with s reaching around 2.4 Mbps for both curves. Increasing
the α value improves quality and increases traffic. When α

becomes 1, the MILP-produced OTLs support video quality
within 0.2% and 3% of the PSNR values with the requested
bitrates, and traffic reduction s drops to 0.35 Mbps for both
curves v1 and v2.

Because Figure 6b shows that α significantly affects both
video quality and traffic volume, ARTEMIS adjusts the α

value based on the origin-side and client-side information.
For instance, larger traffic with a greater α value might
cause not only improved video quality but also increased
stall duration, which the AA server detects by observing the
increased average stall duration in the client-side feedback
provided via the CDN. In adjusting the α value based on the
stall information, ARTEMIS avoids dramatic changes over
consecutive OT intervals so that the resulting updates in the



Algorithm 1 ARTEMIS Algorithm
1: for each time slot do
2: R←[], T ←[], F ←∅, O∗←∅
3: while in CI do ▷ CI interval starts
4: T,R← ProcessCDNlogs()
5: F ← QualityFunction()
6: end while ▷ OT interval starts
7: α, f1←StallAnalysis(T ) ▷ Algorithm 2
8: O,q← Optimization(α,O∗,R,F)
9: if f1 then

10: SendOTLtoAOagent(O)
11: O∗← O
12: else
13: f2←QualityAnalysis(q,F) ▷ Alg. 3
14: if f2 then
15: SendOTLtoAOagent(O)
16: O∗← O
17: end if
18: end if
19: end for

Algorithm 2 StallAnalysis Function
1: Inputs: LastStall, StallAlpha
2: function STALLANALYSIS(T )
3: l∗← mean(T )
4: α←SelectAlpha(StallAlpha,l∗)
5: l←LastStall
6: if l == 0 then
7: t← min(1, l∗)
8: else
9: t← min(1, l∗−l

l )
10: end if
11: LastStall← l∗

12: p←GenerateRandom(uniform[0,1))
13: if p≤ t then
14: f ← True
15: else
16: f ← False
17: end if
18: return α, f
19: end function

Algorithm 3 QualityAnalysis Function

1: Inputs: O∗

2: function QUALITYANALYSIS(q,F)
3: d←[]
4: for i ∈ B do
5: d.append(DiffQuality(bi,ri,ai,F ,i))
6: end for
7: q∗← mean(d)
8: if q == 0 then
9: t← min(1,q∗)

10: else
11: t← min(1, q∗−q

q )

12: end if
13: p←GenerateRandom(uniform[0,1))
14: if p≤ t then
15: return True
16: else
17: return False
18: end if
19: end function

OTL do not degrade QoE for the clients, e.g., due to frequent
bitrate switching.

Algorithm 2 presents pseudocode of the StallAnalysis()
function that determines the α value. The function seeks
an appropriate balance between high video quality and
low stall duration. In addition to set T , the function takes
LastStall and StallAl pha as two other local inputs. LastStall
refers to the average stall duration calculated during the
previous time slot. StallAl pha is a dictionary that specifies
the α value for each range of stall duration. For example,
StallAlpha={(0,2):1.0,(2,’inf’):0.8} means α = 1.0
for the average stall duration between 0 and 2 s and α = 0.8
for the average stall duration exceeding 2 s. Supplied by
the streaming service provider, the StallAl pha dictionary is
updatable during the streaming session.

Line 3 of Algorithm 2 computes l∗ as the average stall
duration in set T . Line 4 configures α according to the
StallAl pha dictionary. With variable l initialized to LastStall,
Lines 6-10 adjust threshold t according to the difference
between l∗ and l. Line 12 draws random number p uniformly
between 0 and 1. If p is at most threshold t, i.e., the stalling is
significantly higher than in the previous time slot, Line 14 sets
flag f to True, indicating the need for a new OTL to decrease
the stalling. Otherwise, Line 16 sets flag f to False. Line 18
returns the α and f values. The core algorithm of ARTEMIS
obtains these values as α and f1, respectively, by calling the
StallAnalysis() function in Line 7 of Algorithm 1.

OTL computation. Based on the determined α value,
previous OTL O∗, list R of request counts, and quality
indicator function F , Line 8 of Algorithm 1 computes new
OTL O as described in Section 4.3. Solving the MILP also
returns quality improvement q that satisfies Constraint 5.

Communication of the OTL to the AO agent. If flag f1
is set to True, Line 10 of Algorithm 1 sends the new OTL
from the AA server to the AO agent. Otherwise, with flag f1

set to False and indicating insignificant stalling, Line 13
calls a QualityAnalysis() function to explore whether quality
improvement justifies adopting the new OTL.

Algorithm 3 shows the pseudocode of the
QualityAnalysis() function, with previous OTL O∗ as
an extra input. Lines 4-6 of Algorithm 3 measure how much
the requested bitrates would improve video quality compared
to the bitrates in the previous OTL. While ri refers to the
number of requests for bitrate bi, input ai in Line 5 indicates
how many requests the previous OTL accommodates with
bitrate bi. Lines 7-12 introduce threshold t that captures
the difference between q∗ and q, which refer to the quality
improvement for the previous and new OTL, respectively.
Line 14 compares the threshold with random number p drawn
uniformly between 0 and 1. The QualityAnalysis() function
returns a True flag if p is at most t. Otherwise, Algorithm 3
returns a False flag.

When Line 13 of Algorithm 1 receives a True flag from
the QualityAnalysis() function, Line 15 of the core algorithm
sends the new OTL to the AO agent. With this flag f2 set to
False, ARTEMIS continues operation with the previous OTL.
Hence, in deciding whether to update the OTL, ARTEMIS
considers not only the StallAl pha dictionary but also video
quality and stalling information across two consecutive time
slots.

5 Performance Evaluation

This section describes our practical implementation of
ARTEMIS as well as the evaluation methodology and results
of our real-world experiments. The evaluation intends to
answer the following questions: (i) What is the impact of
ARTEMIS on QoE? How do the constructed dynamic bitrate
ladders fare against existing fixed-length and content-based
ladders? (ii) What is the influence of ARTEMIS on resource
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Figure 7: Cloud-based implementation of ARTEMIS.

consumption? (iii) How do different real-world network traces
affect the ARTEMIS performance? (iv) How sensitive is the
ARTEMIS performance to changes in the number of players,
segment duration, content type, end-to-end latency, and α

value?

5.1 ARTEMIS Implementation

Our real-world experimentation combines existing infras-
tructure with our own cloud-based implementations of the
ARTEMIS functionalities. The existing infrastructure in-
cludes Amazon CloudFront as the CDN, Bitmovin Live En-
coder [5] as the origin server, and CAdViSE [57] for hosting
media players. Both Bitmovin Live Encoder and CAdViSE op-
erate as EC2 implementations. We implement the ARTEMIS
functionalities in EC2 as well. Figure 7 depicts our implemen-
tations and their interactions with the existing infrastructure.

Media players. CAdViSE is a cloud-based platform for
automated testing of media players. We use CAdViSE to run
multiple players on different kinds of EC2 machines. Each
EC2 instance fetches from Docker Hub [9] a Docker container
holding the DASH JavaScript Player [27]. We modify the
player to send the pid and stall information in the CMCD
format as a query argument in the URL of every HTTP request
for a segment.

Emulated CDN frontend. To support the mega-manifest
feature of ARTEMIS, we emulate a CDN frontend by
implementing it in Python and running the frontend on an EC2
machine. The emulated CDN frontend faces the players and
receives their HTTP requests. Also, the AA server provides
the CDN frontend with an OTL and Segment ID (SID) to
indicate the validity of the given OTL for segments with
numerical IDs that are equal or greater than this SID. Before
forwarding each HTTP request for a segment to the CDN, the
CDN frontend checks whether the requested representation
appears in the OTL associated with this segment. If the
representation ID is not in the OTL, the CDN frontend
changes the representation ID in the HTTP request to the ID
of the representation with the closest lower bitrate in the OTL.
The emulated CDN frontend also provides the AA server with
CDN logs in the form of requests’ URLs.

AA server. We implement the AA server in Python and,
specifically, employ the Pulp library [14] to solve the MILP.
Apart from determining the OTL and communicating it
to the CDN frontend and AO agent, the AA server also
coordinates the time-slotted operation of ARTEMIS. The two
main threads of the AA server utilize Transmission Control
Protocol (TCP) sockets to receive the requests’ URLs and
quality indicator function F from the CDN frontend and AO
agent, respectively.

AO agent. Our Python implementation of the AO agent
runs in EC2 on the same machine with the Bitmovin Live
Encoder. The encoder uses DASH packaging, computes
PSNR values during the encoding process, and records
a (SID, bitrate, PSNR) tuple for each encoded segment.
The computational burden of extracting the PSNR values
during the encoding process is negligible [62]. The main
computational task of the AO agent is to train quality indicator
function F by means of linear regression. Figure 5a shows that
the execution time to train function F is low, below 20 ms,
and largely independent from the number of segments. In
addition, based on the OTL received from the AA server, the
AO agent updates the encoder settings of the Bitmovin Live
Encoder. The AO agent also stores the bitrates of the previous
OTL along with their resolutions. Our experiments employ
predetermined resolutions for all bitrates.

5.2 Evaluation Methodology

Bitrate ladders. We consider two groups of baselines
for evaluating the dynamic bitrate ladders constructed by
ARTEMIS. The first group consists of common fixed-length
ladders used by conventional HAS solutions for live streaming
that do not account for the content type or network conditions.
Table 1 presents the Theo [16], Bitmovin [4], Mux [11],
Pensieve [48], and Twitch [17] ladders that comprise this
first group. The second group consists of three bitrate ladders
designed for particular content types and/or specific average
available bandwidth. Table 3 in Appendix D describes
these three ladders. Designed offline for VOD scenarios, the
ILP ladder [60] targets animation videos with the average
available bandwidth of the clients being around 3 Mbps. The
other two baselines in the second group are the Netflix ladders
for animation [12] and movie [13] as the content type and do
not account for the available network bandwidth.

Network traces. Our experiments use the LTE [61], Ama-
zonFCC [15], Cascade-5, and Cascade-20 traces. Figure 15
in Appendix D depicts the four traces for 500 s, i.e., the total
duration of each streaming session. Cascade-5 and Cascade-
20 are synthetic network traces generated using five distinct
bandwidth values of 0.5, 1, 2, 4, and 7 Mbps, where labels 5
and 20 indicate the the available bandwidth remains constant
for 5 and 20 s, respectively. To allocate a network trace to each
player, we convert a longer network trace into circular arrays.
Then, we generate a random number uniformly distributed



Table 1: Representations advertised by the mega-manifest of ARTEMIS vs. the five static bitrate ladders.

BL R
es

.@
M

bp
s

24
0p

@
0.

14
5

24
0p

@
0.

24
0

36
0p

@
0.

36
5

36
0p

@
0.

5

36
0p

@
0.

6

36
0p

@
.7

5

36
0p

@
0.

9

54
0p

@
1.

0

48
0p

@
1.

1

48
0p

@
1.

2

48
0p

@
1.

4

72
0p

@
1.

6

72
0p

@
1.

8

72
0p

@
2.

0

72
0p

@
2.

25

72
0p

@
2.

5

10
80

p@
2.

8

72
0p

@
3.

0

72
0p

@
3.

2

72
0p

@
3.

4

72
0p

@
3.

75

10
80

p@
4.

0

10
80

p@
4.

3

10
80

p@
4.

5

10
80

p@
5.

0

10
80

p@
5.

5

10
80

p@
6.

0

10
80

p@
6.

5

10
80

p@
7.

0

Theo ✓ ✓ ✓ ✓

Bitmovin ✓ ✓ ✓ ✓ ✓

Mux ✓ ✓ ✓ ✓

Pensieve ✓ ✓ ✓ ✓ ✓ ✓

Twitch ✓ ✓ ✓ ✓ ✓ ✓

ARTEMIS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LTE AmazonFCC Cas-5 Cas-20
(a) Avg. QoE improvement

0

5

10

15

20

25

30

35

%

Theo Bitmovin MUX Pensieve Twitch

LTE AmazonFCC Cas-5 Cas-20
(c) Avg. stall improvement

0

20

40

60

80

100

120

%

LTE AmazonFCC Cas-5 Cas-20
(b) Avg. end-to-end latency improvement

0

10

20

30

40

% LTE AmazonFCC Cas-5 Cas-20
(d) Avg. bitrate instability improvement

0

20

40

%

LTE AmazonFCC Cas-5 Cas-20
(e) Avg. VMAF instability improvement

−10
0

10
20

%

LTE AmazonFCC Cas-5 Cas-20
(f) Avg. bitrate degradation

0.00

0.25

0.50

M
bp

s

LTE AmazonFCC Cas-5 Cas-20
(g) Avg. VMAF degradation

-5
0
5

10

Figure 8: QoE, latency, stall, bitrate, and VMAF performance of ARTEMIS’ dynamic ladders vs. the five static ladders.

between 0 and 500. This random number determines the time
at which the allocated network trace starts for the specific
player. Thereby, we have a distinct network trace for each
player.

Content types and encoding parameters. Animation,
sport, movie, and documentary are four distinct content types
in our experiments. The Bitmovin Live Encoder encodes
segments at a constant bitrate with segment duration of 1, 2,
and 4 s and extracts the PSNR values of the segments during
the encoding process.

Default ARTEMIS parameters. By default, we set
maximum OTL length ℓ to 5 representations, dictionary
StallAl pha to {1 : [0,1],0.9 : [1,2],0.8 : [2,3],0.7 : [3,4],0.6 :
[4,5],0.5 : [5,100]}, time-slot duration θ to 10 s, segment
duration to 2 s, and target end-to-end latency to 4 s. The
default number of players, ABR algorithm, and content type
are 50 players, L2A, and animation, respectively.

Experimental scenarios. We experiment in two scenarios.
Using the default parameter settings, Scenarios I and II
evaluate ARTEMIS’ dynamic ladders against the bitrate
ladders from the first and second baseline groups, respectively.
We also analyze performance sensitivity to changes in the
experimental settings, including the ABR algorithm, content
type, ARTEMIS parameters α, ℓ, and θ, and the number of
players. While individual experiments in our preliminary
investigation substantiate the potential of ARTEMIS in
sessions with as many as 15,000 players, the evaluation in
this paper accomplishes its multifaceted agenda in the settings
where each session serves 10, 20, 50, or 100 players. For each
experiment, we average the results over five runs.

Evaluation metrics. We evaluate QoE via the QoE model
of Appendix A and also zoom in on instability of the
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Figure 9: Bitrates used by the five static ladders and
ARTEMIS’ dynamic ladders on different network traces.

bitrate and VMAF. For each of these two underlying metrics,
we calculate its instability as the average of the absolute
differences between their consecutive values throughout a
sequence of segments. Besides, we calculate ladder efficiency
and resource cost. To compute ladder efficiency, we divide
the average served bitrate of the clients by the average
encoded bitrate of the ladder. Instead of directly measuring
computation and bandwidth costs, we report encoding time
and volume of traffic from the live encoder to the CDN and
from the CDN to the player. We choose these metrics because
the computation and bandwidth costs are proportional to the
processing time and traffic volume.

5.3 Results and Analysis
Scenario I. Our evaluation of ARTEMIS starts by comparing
its dynamic bitrate ladders with the five fixed-length ladders.
Figures 8a-8e and, in more detail, Table 4 in Appendix E show
the average relative improvement in QoE, end-to-end latency,
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Figure 10: Computation cost, traffic volume, and ladder efficiency with ARTEMIS vs. the five static ladders.

stall duration, bitrate and VMAF instability for ARTEMIS
vs. the baselines. The results demonstrate that ARTEMIS
consistently improves QoE compared to the baselines, with
the average QoE improvement ranging from 4% to 16.5%
with respect to the Bitmovin and Mux ladders, respectively.
Figure 8a shows that ARTEMIS yields the largest average
QoE improvement in comparison to the Mux ladder because
ARTEMIS mitigates stalls for the players by selecting lower
bitrates than 0.75 Mbps, which is the lowest bitrate in the Mux
ladder. Although the Bitmovin ladder includes the lowest
bitrate of 0.145 Mbps, ARTEMIS outperforms this ladder
as well, e.g., by reducing the stall duration by 17.3% and
improving QoE by 10.9% on the Cascade-5 network trace.
Similarly, Figure 8b reveals that ARTEMIS outperforms the
baselines by reducing the end-to-end latency. The latency
reduction occurs due to shorter encoding time arising from
the more effective ladder selection in ARTEMIS.

Figures 8d and 8e demonstrate that ARTEMIS decreases
the bitrate instability compared to the baseline ladders,
particularly on the LTE, AmazonFCC, and Cascade-5 network
traces. While the VMAF instability gets worse with
ARTEMIS on the AmazonFCC and Cascade-20 traces,
ARTEMIS still improves the overall QoE on these traces.
Furthermore, the observed increase in the VMAF instability
lies within the JND, meaning that humans do not perceive the
quality decrease.

Figures 8f and 8g offer further insights into the impact of
ARTEMIS on the decrease in the average bitrate and VMAF
compared to the baseline ladders. Although ARTEMIS serves
the players with lower bitrates, the decrease in VMAF is
negligible for some combinations of ladders and network
traces, and ARTEMIS improves the VMAF value in other
cases. ARTEMIS attains this performance by using PSNR
as a proxy of VMAF in predicting the video quality of
the subsequent segments. Figure 8g shows that ARTEMIS
provides higher VMAF compared to the Theo ladder on
the LTE and Cascade-20 network traces. The Theo ladder
yields the lower VMAF values due to employing only
four representations with the largest bitrate of 4 Mbps only,
whereas ARTEMIS includes higher bitrates into its dynamic
ladders and thereby improves the video quality.

Figure 9 reports on the bitrates used by ARTEMIS’
dynamic ladders vs. the static baselines. While the static
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Figure 11: Normalized average computation time for
encoding each bitrate in ARTEMIS.

ladders always employ the same bitrates regardless of the
network trace, ARTEMIS adapts its ladders to network
conditions. Only the lowest mega-manifest bitrate of
0.145 Mbps always appears in ARTEMIS’ OTL. The second
lowest bitrate of 0.365 Mbps is always present in the OTL for
the AmazonFCC and Cascade-20 network traces only. The
bitrate of 1.1 Mbps is consistently in demand on the LTE and
Cascade-5 traces. For all four traces, ARTEMIS includes the
bitrate of 2 Mbps in the OTL most of the time but not always.
Finally, ARTEMIS never puts into the OTL the largest mega-
manifest bitrate of 7 Mbps on all four traces and occasionally
employs the second largest bitrate of 4.5 Mbps in the OTL.
Overall, Figure 9 corroborates that ARTEMIS effectively
adjusts its ladders for the current network conditions.

Figure 10 evaluates ARTEMIS vs. the baselines in regard
to computation cost, traffic volume, and ladder efficiency.
While Figures 10a and 10b focus on the computation cost,
we also investigate the relationship between the computation
cost and processing time by measuring the time to encode
each bitrate to the ultrafast preset on an EC2 machine
and by calculating the average processing time to encode
each segment according to the selected OTL. Figure 11
shows the normalized average computation time for encoding
each bitrate. The findings corroborate earlier research
conclusions that the computation cost is proportional to
the processing time [29]. Figures 10a and 10b demonstrate
that, by accounting for the network conditions, ARTEMIS’
dynamic ladders provide lower computation cost than the
baseline ladders, except for the Theo ladder that comprises
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Figure 12: Requested and served bitrates, stall duration, VMAF, QoE, and encoding time with ARTEMIS’ dynamic ladder vs.
the static Twitch ladder when both approaches advertise the mega-manifest bitrates to the players.

only four representations. Despite limiting the maximum
ladder length to five representations, ARTEMIS requires less
computation than the Bitmovin ladder due to selecting a lower
bitrate to cope with fluctuations in the available bandwidth.
Additionally, ARTEMIS selects a smaller ladder when the
bitrate preferences of the clients indicate a need in less than
the maximum ℓ representations.

Figure 10c demonstrates that ARTEMIS’ dynamic ladders
increase the normalized average QoE compared to almost
all baselines across the four network traces. This finding
highlights the effectiveness of ARTEMIS even under
challenging network conditions. While the Pensieve ladder
on the LTE network trace delivers nearly the same QoE as
ARTEMIS’ dynamic ladders, the computation cost incurred
by the Pensieve ladder is 44% higher than with ARTEMIS.
Figure 10d shows that ARTEMIS substantially outperforms
the static baselines with respect to ladder efficiency across all
four network traces within a time slot of at most θ.

The network traces in our study exhibit high bandwidth
fluctuations resulting in frequent stalls for the players.
Whereas Figure 9 unveils that ARTEMIS reacts to the highly
variable bandwidth by limiting the highest bitrate in the
OTL to 4.5 Mbps, we conduct an additional experiment
on a network trace with minimal bandwidth fluctuations.
Specifically, the available bandwidth for each player is
10 Mbps initially, decreases to 6.5 Mbps after 85 s, and
remains at this level for the subsequent 65 s. The experiment
evaluates ARTEMIS’ dynamic ladder against the static Twitch
ladder, which is the only baseline that includes the largest
considered bitrate of 7 Mbps. Additionally, we expose the
mega-manifest bitrate preferences of the players not only to
ARTEMIS but also to the Twitch alternative. In this setup,
we anticipate ARTEMIS to serve the players with the highest
available bitrate until 85 s into the experiment.

For this additional experiment, Figures 12a and 12b depict
the bitrates requested by the players as black dots and
the bitrates available for serving the requests as horizontal
purple lines. The Twitch alternative supports the bitrate
of 7 Mbps and affirmatively responds to all requests for
this highest bitrate in the mega-manifest until 85 s into the

experiment. After 85 s however, the players request bitrates
that are below 7 Mbps and above 3.75 Mbps, which is the
second highest bitrate in the Twitch ladder. Hence, the
Twitch alternative serves the requests with the bitrate of
3.75 Mbps, which degrades the video quality by underutilizing
the available bandwidth. On the other hand, Figure 12b
shows that ARTEMIS efficiently selects the OTL to serve the
requests with higher bitrates. The gray vertical lines indicate
the times when ARTEMIS changes its OTL. During the first
10 s that comprise the first slot of the time-slotted operation,
ARTEMIS uses the OTL predefined by the streaming service
provider and depicted as gray rectangles in Figure 12b. Upon
receiving requests for the bitrates of 6.5 and 7 Mbps during
the first time slot, ARTEMIS updates the OTL and, due to
low stalling and frequent requests for the bitrate of 7 Mbps,
converges by the third time slot to serving the players with the
bitrate of 7 Mbps until time 85 s. During the five consequent
time slots, ARTEMIS instructs the live encoder to use the
OTL with only three bitrates of 0.145, 1.1, and 7 Mbps, which
efficiently reduces the computation and bandwidth costs.
However, when the clients request lower bitrates at time
85 s, ARTEMIS reacts quickly, and Figure 12b shows that
ARTEMIS determines the four bitrates that closely match all
bitrates requested by the players.

Figures 12c-12f compare ARTEMIS with the Twitch
alternative in regard to the average stall duration, VMAF, and
normalized QoE as well as encoding time (labeled as E. Time),
encoded bitrate (E. Data) and served bitrate (S. Data). The
results show that ARTEMIS’ dynamic ladders perform better
than the static Twitch ladder in all metrics while reducing the
traffic volume by 0.3%.

We further extend our exploration of Scenario I by
evaluating QoE in Figure 16 of Appendix E, LoL+ as
an alternative low-latency ABR algorithm in Figure 17
of Appendix F, and influence of the content type in
Figures 18 and 19 of Appendix G. We also study how the
ARTEMIS performance depends on weight α in Figure 20 of
Appendix H, maximum OTL length ℓ in Figures 21 and 22 of
Appendix I, and time-slot duration θ in Figures 23 and 24 of
Appendix J.
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Figure 13: QoE, end-to-end latency, VMAF, served bitrates, traffic volume, and encoding cost for ARTEMIS’ customized BL1,
BL2, and BL3 ladders vs. the ILP, Netflix-Animation, and Netflix-Movie ladders.

Scenario II. We also assess ARTEMIS’ dynamic ladders
in comparison to the three fixed-length ladders described in
Table 3 of Appendix D. These baselines aim at particular
content types and/or available network bandwidth. Because
the average bandwidth in the LTE network trace is nearly
3 Mbps, i.e., as targeted by the ILP ladder, we evaluate
ARTEMIS against the ILP ladder specifically on the LTE
trace. However, we consider all available network traces
for the two Netflix ladders. To cover the representations in
the considered baselines, we customize ARTEMIS’ mega-
manifest by introducing additional representations into it.
For example, the comparison with the ILP ladder customizes
ARTEMIS’ mega-manifest by including all representations
of the ILP ladder and the additional seven representations
described in Table 3.

Figure 13, along with Table 5 in Appendix K, shows that
ARTEMIS consistently outperforms the baselines across all
network traces in terms of QoE and end-to-end latency by
selecting the maximum five representations. ARTEMIS also
exhibits better performance in terms of stall duration, bitrate
instability, and VMAF instability. While Figure 13c reveals a
negligible decrease in VMAF, Figure 13d demonstrates that
ARTEMIS effectively serves the players with lower bitrates,
thereby reducing the traffic from the CDN to the players.
Figure 13e illustrates that ARTEMIS decreases the volume
of encoded data, reducing the consumption of computational
resources in the live encoder and also lowering the traffic
from the encoder to the CDN.

6 Conclusion

This paper presents ARTEMIS, a practical scalable system
for efficient dynamic construction of effective bitrate ladders
during a live session of video streaming. ARTEMIS
seamlessly enhances the end-to-end HAS pipeline and
innovatively leverages its standard features, such as the
advertisement of representations via the mega-manifest to
collect fine-grained client-side information transparently to
heterogeneous ABR algorithms. The context-aware system

is also efficient in its capture of the content complexity
via PSNR. We provide a cloud-based implementation of
ARTEMIS and extensively evaluate it in real-world and trace-
driven experiments.

Whereas ARTEMIS pursues multifaceted goals that
include low end-to-end latency, high QoE, and low encoding
computation, the evaluation against prominent static bitrate
ladders shows that ARTEMIS successfully delivers multi-
objective improvements to reduce end-to-end latency by 18%,
increase QoE by 11%, and decrease encoding computation
by 25%. The deeper analysis of ARTEMIS’ success reveals
that its accounting for dynamic network conditions is crucial.
When the available network bandwidth fluctuates significantly
to increase the likelihood of stall events, ARTEMIS prioritizes
lower bitrates in the ladder construction while maintaining
QoE close to the maximum achievable under the poor
network conditions. By scaling down the bitrate ladder,
ARTEMIS also reduces encoding computation, decreases
storage and bandwidth costs (especially at the network edge),
and thereby enables the streaming service to support more
clients. Under stable network conditions, ARTEMIS also
lowers the resource consumption by composing a ladder
with a smaller number of representations and improves QoE
through a better alignment of the representations with the
bitrate preferences of the clients.
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A QoE Model

Our work and, specifically, the evaluation metrics in
Section 5.2 adopt the following QoE model to express QoE
as a weighted sum of four terms [33]:

QoE = ω1

N

∑
n=1

q(Rn)+ω2

N

∑
n=1

Tn+ (11)

ω3

N−1

∑
n=1

[q(Rn+1)−q(Rn)]++ω4

N−1

∑
n=1

[q(Rn+1)−q(Rn)]−

where bitrate Rn and stall time Tn characterize each segment n,
function q(Rn) computes VMAF of the segment, and the
last two terms express VMAF instability over N consecutive
segments, with different weights for VMAF increases and
decreases. The QoE model uses weights ω1 = 0.8469, ω2 =
−28.7959, ω3 = 0.2979, and ω4 =−1.0610.

B Correlation between PSNR and VMAF

To measure video quality quickly enough for live streaming,
the ARTEMIS design in Section 4.2 relies on PSNR rather
than VMAF. For different segment durations and content
types, Figure 14 demonstrates that PSNR strongly correlates
with VMAF.

C Notation in the OTL Selection

Table 2 sums up the notation in Section 4.3 that formulates
and solves the MILP to determine a new bitrate ladder.

D Experimental Settings

To elaborate on the setup presented in Section 5.2,
Table 3 describes the three static content-aware ILP, Netflix-
Animation, and Netflix-Movie bitrate ladders in contrast with
three customized ARTEMIS ladders. Figure 15 illustrates
bandwidth fluctuations in the LTE, AmazonFCC, Cascade-5,
and Cascade-20 network traces used in our experiments.

https://www.sandvine.com/phenomena
https://www.sandvine.com/phenomena
https://www.wowza.com/wp-content/uploads/Streaming-Video-Latency-Report-Interactive-2019.pdf
https://www.wowza.com/wp-content/uploads/Streaming-Video-Latency-Report-Interactive-2019.pdf
https://www.wowza.com/wp-content/uploads/Streaming-Video-Latency-Report-Interactive-2019.pdf
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Figure 14: Correlation between PSNR and VMAF.

Table 2: Notation summary.
Symbol Description

Input parameters
B Set with indexes of the m representations in the mega-manifest
bi Bitrate of representation i
ri Number of requests for bitrate bi

F(bi) Quality indicator function that predicts the PSNR value
of the segment with bitrate bi

ℓ Maximum number of representations in the OTL
β Maximum changes between two successive OTLs
α Weight in the objective function
x̄i Indicator whether bitrate bi appears in the previous OTL

Variables
xi Indicator whether bitrate bi appears in the the new OTL

y j,i Indicator whether the OTL uses bitrate b j to accommodate
the requests for higher bitrate bi

q Quality improvement that the requested bitrates would
provide compared to the OTL bitrates

s Traffic reduction due to using the OTL bitrates instead of
the requested bitrates

E Additional Results for Scenario I

To complement the experimental results presented for
Scenario I in Figures 8a-8e of Section 5.3, Table 4 depicts the
mean and standard deviation for the stall duration, bitrate,
and VMAF. The results on the stall duration show that
ARTEMIS outperforms the baselines by efficiently updating
the OTL. Due to leveraging the client-side information,
ARTEMIS succeeds in detecting the stalls and adjusts the
OTL by selecting lower bitrates to mitigate the stalls while
maintaining an acceptable average VMAF value. Table 4
reveals that ARTEMIS serves the players with lower average
bitrates for almost all network traces and numbers of players.
However, because ARTEMIS considers the estimated PSNR
values of the subsequent segments, the lower served bitrates
decrease VMAF insignificantly. The comparison with the
Theo ladder on the LTE network trace shows that ARTEMIS
even improves the average VMAF in some situations despite
decreasing the average served bitrates. Figure 16 evaluates the
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Figure 15: Bandwidth fluctuations in the network traces.
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dynamic ladders vs. the five static baselines.
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Table 3: Representations in the three static content-aware ILP, Netflix-Animation, and Netflix-Movie ladders vs. three customized
ARTEMIS ladders.
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Table 4: Impact by the Theo (T), ARTEMIS (A), Bitmovin (B), Mux (M), Pensieve (P), and Twitch (W) bitrate ladders (BLs) on
the stall duration, bitrate, and VMAF of served segments on four network traces (NTs).

NT BL
Stall duration (s) Bitrate (Mbps) VMAF

#10 #20 #50 #100 #10 #20 #50 #100 #10 #20 #50 #100

LT
E

T 37.1±13.9 41.3±17.4 37.5±14.8 36.7±13.1 2.2±0.5 2.3±0.5 2.1±0.5 2.2±0.6 57.0±21.0 58.5±20.5 57.5±20.9 57.9±20.8
A 36.4±11.6 29.9±10.6 30.6±9.9 33.5±10.4 2.0±0.4 1.7±0.3 1.7±0.2 2.1±0.4 60.0±18.5 60.4±18.5 60.6±18.4 62.5±18.9
B 36.1±15.9 38.6±14.1 37.1±11.3 34.3±13.4 2.2±0.6 2.1±0.5 2.1±0.5 2.1±0.5 62.6±19.4 61.7±18.7 62.2±18.9 62.3±19.2
M 44.0±15.4 42.2±14.1 47.3±11.3 43.7±13.4 2.4±0.6 2.3±0.5 2.5±0.6 2.5±0.6 62.5±19.1 62.2±18.3 64.2±17.9 63.4±18.4
P 45.0±16.6 42.4±14.8 40.5±14.2 39.4±13.0 2.6±0.7 2.5±0.6 2.5±0.6 2.5±0.6 64.8±17.6 64.0±17.7 65.0±17.8 64.8±17.4
W 41.9±14.6 43.8±17.7 42.1±12.2 43.7±15.7 2.3±0.6 2.4±0.8 2.4±0.8 2.5±0.8 62.1±18.4 63.1±17.5 62.5±17.6 63.2±17.8

A
m

az
on

FC
C T 40.7±14.8 44.0±16.1 40.2±15.2 40.8±17.5 2.0±0.7 2.1±0.7 2.0±0.7 2.0±0.8 53.9±22.6 55.1±22.2 55.8±23.2 55.4±22.3

A 39.0±16.4 35.9±14.4 35.1±15.2 35.0±14.3 1.5±0.6 1.5±0.5 1.7±0.5 1.7±0.6 51.3±22.1 50.9±22.8 53.2±22.0 53.5±22.2
B 44.1±20.0 39.6±21.8 35.7±19.1 36.1±20.2 1.9±0.8 1.8±0.7 1.8±0.7 1.8±0.7 56.2±22.1 55.1±23.1 54.0±23.5 55.2±22.7
M 62.0±13.9 63.1±17.9 53.3±18.5 55.2±19.7 2.5±0.7 2.5±0.6 2.3±0.6 2.3±0.7 61.4±20.8 62.4±19.3 54.3±21.4 55.4±20.9
P 51.3±19.0 46.7±18.2 53.5±17.2 42.2±18.6 2.2±0.7 2.2±0.8 2.2±0.8 2.2±0.7 58.3±21.9 57.7±21.2 57.2±22.1 58.0±21.7
W 52.1±20.9 50.2±21.4 48.5±19.2 48.9±20.7 2.4±1.2 2.5±1.2 2.3±1.2 2.3±1.1 58.5±20.9 59.1±20.8 57.3±21.0 58.1±21.3

C
as

ca
de

-5

T 37.1±10.9 36.6±10.8 32.6±8.8 32.0±11 1.8±0.3 1.7±0.4 1.8±0.3 1.7±0.3 52.7±22.5 51.0±22.5 52.1±23.4 51.8±22.4
A 29.6±8.9 30.7±10.3 32.6±11.2 27.7±10.3 1.5±0.2 1.6±0.2 1.6±0.3 1.5±0.3 56.5±20.2 55.3±20.6 56.7±20.8 54.5±21.7
B 36.0±10.1 36.3±9.5 35.7±10.5 33.6±12.5 1.8±0.3 1.7±0.3 1.8±0.4 1.7±0.3 57.4±21.9 56.0±22.3 56.4±22.0 56.3±21.6
M 45.1±10.6 48.1±10.3 46.8±10.6 44.7±10.3 2.1±0.3 2.0±0.3 2.0±0.3 2.0±0.3 48.4±21.3 57.7±21.2 57.4±20.9 57.2±21.1
P 43.5±11.2 46.0±12.0 44.2±9.6 42.5±12.6 2.1±0.4 2.1±0.4 2.1±0.3 2.0±0.4 58.6±21.2 58.8±19.9 59.1±20.4 57.9±20.6
W 37.3±10.7 43.3±12.0 38.5±11.3 38.4±12.9 1.9±0.3 2.0±0.4 1.8±0.3 1.9±0.4 57.2±20.5 57.4±20.5 56.4±21.0 57.1±20.4

C
as

ca
de

-2
0

T 26.4±15.7 21.8±12.4 19.3±13.7 20.5±14.5 1.8±0.2 1.6±0.3 1.6±0.2 1.6±0.3 54.1±22.4 51.3±23.6 51.2±23.8 49.0±23.0
A 11.4±8.2 13.3±11.9 16.7±10.5 15.1±11.2 1.7±0.4 1.5±0.2 1.4±0.3 1.4±0.3 55.2±22.7 52.5±25.3 51.1±23.3 50.3±21.8
B 15.4±10.9 18.8±13.3 17.3±14.2 17.4±13.9 1.6±0.1 1.6±0.3 1.6±0.3 1.6±0.3 53.1±23.9 52.5±25.2 52.2±24.9 51.9±25.0
M 30.0±15.1 34.5±13.7 32.3±14.9 32.0±15.0 2.0±0.2 2.0±0.2 2.0±0.3 2.0±0.3 55.2±21.9 55.3±22.3 56.9±23.3 54.0±23.0
P 20.4±13.4 22.5±14.6 20.8±14.5 21.0±14.1 1.8±0.2 1.8±0.3 1.7±0.2 1.7±0.3 55.0±22.6 54.7±23.7 54.7±23.5 52.0±24.0
W 23.9±15.0 26.5±14.5 24.8±15.2 25.2±15.5 1.8±0.2 1.8±0.3 1.8±0.3 1.8±0.2 54.7±22.8 54.2±23.4 54.6±23.8 51.9±23.0

F Sensitivity to the ABR Algorithm

While the default ABR algorithm in our experiments is L2A,
we also examine how the choice of the ABR algorithm affects
the ARTEMIS performance. Specifically, we consider LoL+

as an alternative to L2A. Figure 17 evaluates ARTEMIS’
dynamic ladders against the five static baselines on the

four network traces. The results demonstrate that ARTEMIS
consistently outperforms the baselines in terms of the
stall duration, bitrate switching, VMAF switching, bitrate
instability, and VMAF instability regardless of the chosen
ABR algorithm. Although Figure 17b shows that ARTEMIS
serves the players with lower bitrates, Figures 17g and 17h
reveal that the decreases in VMAF and PSNR are negligible.
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Figure 17: Impact of choosing L2A vs. LoL+ as the ABR
algorithm on the performance with the five static ladders and
ARTEMIS’ dynamic ladders.

G Influence of the Content Type

We assess ARTEMIS’ dynamic ladders against the five
static baselines on the LTE and Cascade-5 network traces.
Figure 18 reports on the stall duration, bitrates, VMAF, and
PSNR. ARTEMIS reduces the stall reduction compared to
the static fixed-length baselines for two different content
types. We attribute the reduction to the substantial bandwidth
fluctuations in both considered network traces, which leads to
frequent stalls. Figures 18c and 18d illustrate that ARTEMIS
mitigates the stalls by adding representations with lower
bitrates to the OTL. Despite the reduction in the served
bitrates, ARTEMIS maintains an acceptable VMAF value
for the two content types. ARTEMIS surpasses the baseline
performance because its ladder construction accounts for
video quality measured via PSNR which, unlike VMAF, is
quickly computable. The comparison of Figures 18c and 18d
with Figures 18g and 18h suggests a strong correlation
between PSNR and VMAF. Figure 14 in Appendix B
corroborates this correlation.

Figure 19 extends the evaluation by reporting on the bitrate
switching, bitrate instability, JND switching, and VMAF
instability. We set JND to 6 [18]. While the bitrate switching
is similar with ARTEMIS’ dynamic ladders and baselines,
ARTEMIS reduces the bitrate instability compared to the
baseline ladders. We attribute this reduction to composing
the mega-manifest from the large number of representations.
Overall, the evaluation shows that ARTEMIS outperforms the
baselines with different content types.
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Figure 18: Stall duration, served bitrates, VMAF, and PSNR
under the five static ladders and ARTEMIS’ dynamic ladders
for sport vs. documentary as the content type.
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Figure 19: Bitrate switching, bitrate instability, JND switch-
ing, and VMAF instability under the five static ladders and
ARTEMIS’ dynamic ladders for sport vs. documentary as the
content type.

H Impact of Weight α

We evaluate the impact of weight α on the LTE trace and a
constant-bandwidth trace where the network bandwidth avail-
able for each player remains fixed at 7 Mbps throughout the
streaming session. We assess how ARTEMIS performs when
provided with the following three StallAl pha dictionaries:

• D-I = {1:[0,1], 0.9:[1,2], 0.8:[2,3], 0.7:[3,4], 0.6:[4,5],
0.5:[5,100]},

• D-II = {1:[0,2], 0.9:[2,4], 0.8:[4,6], 0.7:[6,8], 0.6:[8,10],
0.5:[10,100]}, and
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Figure 20: Impact of using the D-I, D-II, and D-III dictionaries
to dynamically determine the α value vs. employing the static
α values of 0.5 and 1.

• D-III = {1:[0,5], 0.9:[5,10], 0.8:[10,15], 0.7:[15,100]}.

The D-I, D-II, and D-III StallAl pha dictionaries exhibit
different sensitivity levels to stall events. Dictionary D-I
prioritizes stall duration over video quality and decreases
α in response to short stalls. For example, ARTEMIS with
dictionary D-I sets α to 1 when the average stall duration
in the current time slot, which lasts 10 s, is less than 1 s.
On the other hand, dictionary D-III sets α to 1 when the
average stall duration is below 5 s. Figure 20 shows that
reduction of this sensitivity causes more stalls and increases
the bitrate instability, JND switching, bitrate instability, and
VMAF instability.

We also consider an ARTEMIS variant that uses a static
α value instead of relying on the StallAnalysis() function
to determine α dynamically. Figure 20 indicates that the
ARTEMIS instances with dictionary D-I and constant α of
0.5 behave similarly on the LTE trace. The similar behavior
occurs because the bandwidth in the LTE trace fluctuates
significantly and forces ARTEMIS with dictionary D-I
to update the OTL eight times in order to handle stalls.
Figure 20h demonstrates that the average of dynamic α values
for ARTEMIS with dictionary D-I is 0.69, which is close
to 0.5 in the static α setting. However, a static α value
makes ARTEMIS perform suboptimally on the constant-
bandwidth network trace by considerably reducing the video
quality. Based on the experiments, we select D-I as the default
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Figure 21: Impact of maximum OTL length ℓ on the
ARTEMIS performance.
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Figure 22: Bitrates selected by ARTEMIS with different
values of maximum OTL length ℓ.

StallAl pha dictionary of ARTEMIS because dictionary D-I
supports the best response to different network conditions
while maintaining high video quality.

I Impact of Maximum OTL Length ℓ

We run ARTEMIS on the LTE and AmazonFCC network
traces with different values of maximum OTL length ℓ.
Figure 21 presents an exciting result that an increase in
ℓ improves the served bitrates, VMAF, and encoding cost.
However, these improvements do not guarantee higher QoE,
i.e., longer OTLs increase the resource cost without achieving
a remarkable improvement in QoE. With relatively short
OTLs, the difference between two adjacent bitrates in the OTL
is typically large. Thus, the ABR algorithm keeps requesting
the same bitrate when the available network bandwidth
fluctuates mildly. On the other hand, when the bitrate
switching does occur, the amplitude of the bitrate change
is high. With a longer OTL, the bitrate switching becomes
more frequent, and the bitrate-change amplitude diminishes.
Figure 22 depicts the bitrates selected by ARTEMIS for its
OTL with different values of the maximum OTL length.

J Impact of Time-Slot Duration θ

We investigate the impact of the time-slot duration on the
ARTEMIS performance. It is essential for the time-slot
duration to be neither too long nor too short. When the
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Figure 23: Impact of the time-slot duration on the ARTEMIS
performance with the segment duration of 2 s.
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Figure 24: Impact of the time-slot duration on the ARTEMIS
performance with the segment duration of 1 s.

time-slot duration is too long, ARTEMIS might be unable
to promptly react to condition changes because ARTEMIS
checks for a need to update the OTL only at the end of each
time slot. The slow response degrades QoE. On the other
hand, if the time-slot duration is too short, ARTEMIS incurs
larger overhead, e.g., due to solving the MILP more frequently.
Other potential concerns include unnecessary updates of the
OTL, higher bitrate instability for the clients, drifts in the live
encoder, and emergence of video compression artifacts due
to frequent changes in the OTL.

Figures 23 and 24 evaluate the impact of the time-slot
duration on the ARTEMIS performance when the segment
duration is set to 2 s or 1 s, respectively. The experiments
rely on the LTE and Cascade-5 network traces and consider
6, 10, and 14 s as three values of the time-slot duration. For
both values of the segment duration, our results show that the
time-slot duration of 10 s provides the best performance. An
algorithm for dynamic configuration of the time-slot duration
is an exciting direction for future research on ARTEMIS.

Table 5: Stall duration, bitrate instability, and VMAF
instability under ARTEMIS’ dynamic ladders compared to
the ILP and Netflix ladders in Scenario II.

NT Bitrate ladder Stall (s) Bitrate instability VMAF instability
(×1e6)

LT
E

ILP BL [60] 32.3±14.6 0.5±0.2 6.3±2.8
ARTEMIS-BL1 [60] 31.1±12.7 0.2±0.08 3.2±1.4
Netflix-Animation 35.5±11.8 0.27±0.1 3.9±1.8
ARTEMIS-BL2 33.2±11.1 0.19±0.07 3.6±2.1
Netflix-Movie 40.6±13.5 0.37±0.13 4.0±2.1
ARTEMIS-BL3 36.1±16.6 0.22±0.077 3.0±1.6

A
m

az
on

FC
C Netflix-Animation 36.5±12.7 0.21±0.032 3.29±1.4

ARTEMIS-BL2 34.5±14.4 0.18±0.069 3.22±1.6
Netflix-Movie 40.8±13.8 0.35±0.12 4.8±2.2
ARTEMIS-BL3 35.1±10.11 0.20±0.069 4.5±2.3

C
as

ca
de

-5

Netflix-Animation 37.2±9.0 0.296±0.065 4.5±1.41
ARTEMIS-BL2 29.5±9.1 0.185±0.041 3.4±1.07
Netflix-Movie 45.5±0.2 0.42±0.087 4.5±1.5
ARTEMIS-BL3 31.5±12.3 0.22±0.081 3.5±1.4

C
as

ca
de

-2
0 Netflix-Animation 20.7±11.2 0.1±0.026 2.4±0.5

ARTEMIS-BL2 17.1±13.2 0.1±0.038 2.1±0.7
Netflix-Movie 24.5±11.6 0.16±0.035 3.2±1.09
ARTEMIS-BL3 17.9±13.8 0.13±0.032 2.9±0.92

K Extra Results for Scenario II

Table 5 characterizes the performance of the ILP, Netflix-
Animation, and Netflix-Movie bitrate ladders compared to
ARTEMIS’ three customized ladders in Scenario II.
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