
Sifter: An Inversion-Free and Large-Capacity Programmable Packet Scheduler

Peixuan Gao
New York University

Anthony Dalleggio
New York University

Jiajin Liu
New York University

Chen Peng
New York University

Yang Xu *

Fudan University
H. Jonathan Chao

New York University

Abstract
Packet schedulers play a crucial role in determining the or-
der in which packets are served. They achieve this by as-
signing a rank to each packet and sorting them based on
these ranks. However, when dealing with a large number
of flows at high packet rates, sorting functions can become
extremely complex and time-consuming. To address this
issue, fast-approximating packet schedulers have been pro-
posed, but they come with the risk of producing schedul-
ing errors, or packet inversions, which can lead to unde-
sirable consequences. We present Sifter, a programmable
packet scheduler that offers high accuracy and large capac-
ity while ensuring inversion-free operation. Sifter employs
a unique sorting technique called “Sift Sorting” to coarsely
sort packets with larger ranks into buckets, while accurately
and finely sorting those with smaller ranks using a small
Push-In-First-Out (PIFO) queue in parallel. The sorting pro-
cess takes advantage of the “Speed-up Factor”, which is a
function of the memory bandwidth to output link bandwidth
ratio, to achieve Sift Sorting and ensure accurate scheduling
with low resource consumption. Sifter combines the ben-
efits of PIFO’s accuracy and FIFO-based schedulers’ large
capacity, resulting in guaranteed delivery of packets in an
accurate scheduling order. Our simulation results demon-
strate Sifter’s efficiency in achieving inversion-free schedul-
ing, while the FPGA-based hardware prototype validates that
Sifter supports a throughput of 100Gbps without packet in-
version errors.

1 Introduction
The Programmable Data Plane has seen increased interest in
both academia and industry to enhance the flexibility and the
programmability of ultra-high-speed networks without com-
promising the throughput and latency performance [9] [27]
[56] [53] [55] [23]. The academic and industry communities
have built a sophisticated ecosystem for the programmable
data plane including the P4 programming language (P4) [8],
cross-platform high-level languages and their compilers [42]
[38], programmable switch devices [11], [17], and a variety
of re-configurable network chip architectures [18] [10].

Recent research has focused on enhancing the pro-

*Corresponding author

grammability of packet scheduling in the data plane. Various
packet scheduling disciplines sort packets based on a “rank”
value assigned by the scheduler to represent their transmis-
sion order. [48] [49] [35].

However, implementing a priority queue that sorts packets
in an ultra-high-speed data plane is challenging. The sched-
uler needs to serve each packet within a very limited time
budget. For a 64-byte packet on a 100 Gbps Ethernet link, the
packet processing time is less than 7 ns. Packet schedulers
such as Sequencer [13] [14] [15] and PIFO[48] [49] manage
to sort packets with ultra-low time complexity by sacrific-
ing buffer capacity. To accommodate larger buffer sizes and
reduce the implementation complexity, the community pro-
posed a number of approximating packet schedulers such as
PCQ [45], SP-PIFO [2], Gearbox [24] and AIFO [54] that
trade-off scheduling accuracy for simplicity and scalability.

Scheduling errors, also known as packet inversions [2],
are introduced by approximating packet schedulers and may
impact network performance. These packet inversions cause
throughput fluctuation, affect fairness, introduce delay, and
slow down the flow completion time (FCT). Failure to rig-
orously adhere to the scheduling order of bandwidth alloca-
tion algorithms can negatively affect performance and fair-
ness, which are essential for network isolation [31] [6] [46]
[30] [41] [50]. Moreover, emerging applications, such as
self-driving vehicles and remote surgery, exhibit a high sen-
sitivity to packet inversions. As a result, there is a press-
ing requirement for precise packet scheduling to maintains
strict packet order, not only for delay-sensitive applications
but also for algorithms that react adversely to packet inver-
sions.

Accuracy and scalability of the scheduler are often con-
flicting requirements. We want a scheduler that can accu-
rately serve packets by the strict order of their ranks (e.g.,
PIFO) and also support a large buffer size with low hardware
resource consumption.

We present Sifter, an accurate and large-capacity pro-
grammable packet scheduler that operates free of packet in-
versions and supports a large buffer size with low imple-
mentation overhead. Sifter sorts packets by “Sift Sorting”,
a sorting method consisting of two parallel processes. Sifter
sorts packets with larger ranks coarsely into a FIFO-based
“Rotating Calendar Queue” (RCQ) and packets with smaller

ranks accurately using a mini PIFO. Sifter is intended for
next-generation programmable switches and smart NICs. By
taking advantage of the “Speed-up Factor” provided by the
hardware architecture, Sifter combines the advantages of ac-
curate scheduling of a PIFO with the large capacity provided
by FIFO-based approximate schedulers. Based on our sim-
ulation results and our hardware prototype, Sifter eliminates
packet inversions1 while supporting a large buffer capacity
and low implementation complexity. The contributions of
this paper are summarized as follows:

• Analysis of the impact of packet inversions on network
performance. Starting from the different scheduling goals
of packet scheduling algorithms, this paper discusses the
impact of packet inversion errors on network performance.
Various scheduling algorithms have different sensitivities
to packet inversions, and delay-guarantee scheduling algo-
rithms are the most sensitive to the accuracy of the packet
scheduling order.

• Design of an accurate and large-capacity packet sched-
uler with inversion-free operation. This paper presents
Sifter, an accurate and large-capacity packet scheduler
that operates free of packet inversions without sacrificing
scalability or increasing implementation complexity using
“Sift Sorting”. By exploiting the “Speed-up Factor”, Sifter
combines the accuracy of PIFO and the large capacity of
RCQ, a FIFO-based scheduler.

• Definition of the conditions for achieving inversion-free
operation. This paper presents a quantitative analysis to
determine the conditions under which Sifter guarantees
operation with no packet inversions.

• Comprehensive simulation of Sifter on NS3 and exper-
iments on an FPGA-based Sifter prototype. We imple-
mented Sifter in the NS3 simulator and in VHDL on an
AMD/Xilinx Alveo U250 FPGA card [4] with a mid-speed
grade XCVU13P FPGA. In the NS3 [37] simulator, we
conduct comprehensive evaluations of Sifter using multi-
ple metrics, demonstrating that it provides packet schedul-
ing performance that is close to the ideal PIFO. Our hard-
ware testbed results show the FPGA-based Sifter prototype
operates at 322 MHz and achieves a line rate of 100 Gbps
for packets larger than 370 bytes2 without any inversions.

The rest of the paper is organized as follows. Section 2
provides the background and motivation of our work. Sec-
tion 3 presents the detailed architecture, scheduling pro-
cesses of Sifter and the conditions for inversion-free schedul-
ing. Section 4 provides a detailed Sifter prototype implemen-
tation and Section 5 presents the packet-based NS3 and the
hardware testbed evaluations. We discuss related works in
Section 6 and conclude the paper in Section 7.

1See Section 3.5 for the conditions for inversion-free scheduling.
2See Appendix H for more details.

2 Background and Motivation

2.1 Programmable Packet Scheduling
The concept of programmable packet scheduling is to en-
able network administrators to schedule packets using dif-
ferent packet scheduling algorithms. According to previ-
ous literature [48] [49] [35], different packet scheduling al-
gorithms determine the packet scheduling order to achieve
certain goals, such as max-min fairness in bandwidth allo-
cation [20] [39] [40] [25] [26] [57], minimizing FCT [43]
[3] as well as delay guarantee [34] [35]. When a gener-
alized scheduler serves packets in ascending order of their
rank values, it effectively implements the scheduling order
dictated by a specific scheduling algorithm. Consequently,
the abstraction of programmable packet scheduling involves
two key steps: (1) establishing the sequence for scheduling
each packet (Rank Calculation) and (2) enforcing this packet
scheduling sequence (Rank Sorting).

The calculation of packet rank can be programmed at the
end-hosts before the packet is sent out, or even in the pro-
grammable ingress and egress switch pipeline [9][8]. When
the packet arrives at the scheduler, the switch needs to en-
force the scheduling order by sorting the packets by their
rank values. Based on this theory, multiple works have im-
plemented generic programmable packet schedulers [45] [2]
[24] [54].

2.2 Packet Inversions
To deliver a correct packet scheduling order, an ideal packet
scheduler needs to serve packets strictly according to the in-
creasing order of the rank of each packet. However, due
to limited packet processing time and implementation com-
plexity, many generic packet scheduler designs cannot serve
packets in such an ideal order and instead, schedule pack-
ets in an approximate increasing order, which may introduce
packet inversions. We formally define packet inversions3.

Packet Inversions: When a packet with rank r departs
from the scheduler, there exists packet(s) with a smaller rank
r′ (where smaller rank has higher priority, r′ < r) in the
scheduler.

2.2.1 Impact of Packet Inversions
Packet inversions have various impacts on different packet
scheduling algorithms according to their logic and goals.

Fairness The impact of packet inversions on fairness-
based scheduling algorithms varies from fluctuation in short-
term bandwidth allocation to fairness impairment. Most
of the fairness-based algorithms [20] [39] [40] [25] [47]
[26] [57] are derived from GPS, which serves flows based
on round-robin logic by assigning a departure time to each
packet. Packet inversions can have several negative effects,

3We further extend Packet Inversions by Inversion Magnitude to quantify
the severity of packet inversions in AppendixA.

including short-term fairness issues and fluctuations in both
throughput and delay.

However, for the fairness-based scheduling algorithms
that update the virtual clock according to the departure times
of packets [25] [26], the consequence of packet inversions
could be much more severe. When there is a packet inversion
and a packet with a very large timestamp (rank) t ′ departs
early, the scheduler updates its current virtual clock from t
to a much larger value t ′ in advance. The skew on the vir-
tual clock can prevent any newly arrived packet from getting
a departure time between t and t ′. As a consequence, exist-
ing packets with departure times smaller than t ′ would take
up the bandwidth and lead to starvation of the newly arrived
flows. The accumulation of such packet inversions can lead
to performance degradation and impairment of network iso-
lation [31] [6] [46] [30] [41] [50].

Minimizing FCT Other packet scheduling algorithms,
such as those designed to minimize average FCT [43] [3]
[28], can be significantly impacted by packet order inver-
sions. The core logic of minimizing FCT is to always serve
the flow with the minimum remaining flow size. However, if
packet inversions occur, the scheduler may serve other flows
with larger remaining sizes and may possibly serve multiple
flows at the same time. For example, when packet inversions
occur, the packet scheduler may fail to differentiate between
multiple flows that have similar remaining sizes. As a result,
the scheduler may start serving multiple flows in a round-
robin fashion instead of serving the flow with the minimum
size, which can dramatically increase the average FCT.

Delay Guarantee (Tail Packet Delay) Scheduling disci-
plines that are most affected by packet inversions are those
that provide a delay guarantee [34] [52]. Typically, these
scheduling algorithms cater to delay-sensitive applications
that impose strict end-to-end delay requirements, such as Ve-
hicle to Everything (V2X) and remote surgery. These algo-
rithms usually assign a delay budget to each packet (“slack
time”), which represents the end-to-end delay requirement.
Upon the arrival of each packet, the packet scheduler sorts
packets according to their urgency and always schedules the
packet with the least “slack time”. In this case, the accu-
racy of the packet scheduler is critical. A minor inversion in
scheduling could result in a series of packets missing their
deadlines and having a major negative impact on the perfor-
mance of the application.

Evaluating Impacts of Packet Inversions We evaluated
the impacts of packet inversions by running Start-Time Fair
Queueing (SFQ) [26] on approximate schedulers and a PIFO.
The evaluation setup is described in detail in Appendix F.

Figure 1(a) shows the impact of packet inversion on packet
delay. When packet inversions occur, packets with larger
ranks are scheduled prior to other packets with smaller ranks,
which leads to extra queuing delay for the packets that should

(a) Inversion impact on delay (b) Inversion impact on FCT

Figure 1: Impacts of Packet Inversions

have been scheduled earlier. Furthermore, Figure 1(b) shows
the impact of packet inversion on FCT. Approximate packet
schedulers introduce extra delay and unfairness in through-
put due to packet inversions, which impairs the FCT of small
flows.

We have also noted that the introduction of randomness
through packet inversion amplifies both throughput and de-
lay uncertainties. Certain applications like autonomous ve-
hicles and remote surgery heavily depend on consistent con-
nection performance.

2.3 Achieving accurate packet scheduling
2.3.1 Causes of Packet Inversions
As discussed in Section 2.2, existing implementations of ap-
proximating packet schedulers [44] [45] [2] [24] [54] are
subject to packet inversions. These approximating sched-
ulers are implemented with one or more FIFO queues and
packets from each FIFO queue are served on a first-come-
first-served basis, which can lead to packet inversions be-
tween the packets from the same FIFO queue. Although
such a FIFO-based structure has the advantages of low time-
complexity, high scalability, and implementation simplicity,
the potential packet inversions may result in various conse-
quences as discussed in Section 2.2.1. The key to eliminating
those packet inversions is to resolve any packet misordering
within each FIFO queue.

2.3.2 Proactive and Reactive Packet Sorting
An intuitive solution to resolve packet misordering is to sort
the packets in each FIFO queue before they are dequeued.
The existing solutions of packet sorting can be categorized
into two classes, proactive and reactive. The proactive ap-
proach sorts each packet upon arrival and maintains a sorted
priority queue [19]. As Figure 2(a) shows, each packet is
inserted into the correct place upon arrival. Such sorting
algorithms are subject to a fairly large time complexity of
O(logN) for each packet enqueue 4. This sorting is diffi-
cult to complete within the limited packet processing time in
ultra-high-speed data planes. A number of works [13] [14]
[15] [48] [49] overcome this challenge and provide proactive
packet sorters operating at line rate, however, they usually
cannot support a large buffer capacity. The reactive approach

4N is the total number of packets inside the packet sorter

Figure 2: Proactive and Reactive Sorters

sorts packets as part of the dequeue process [45]. As shown
in Figure 2(b), reactive solutions enqueue packets into a set
of strict priority FIFO queues and sort them with finer granu-
larity when the scheduler is about to serve these packets. Al-
though these reactive sorters provide a fast enqueue process
and large capacity, the sorting process is time-consuming and
might lead to blocking in the dequeue process.

2.3.3 Speed-up Factor

We can achieve a perfect packet sorting solution that com-
bines the advantages of non-blocking dequeue from proac-
tive sorters and large capacity from reactive sorters. The key
to our approach to accomplish this is sorting packets in par-
allel with the dequeue process.

Memory bandwidth is usually higher than the output links
bandwidth on hardware switches and network interface cards
(NIC). In addition, packet schedulers usually schedule de-
scriptors5 that represent packets. Packet descriptors are
much smaller than the average size of a packet. Combin-
ing the above facts, hardware switches can access multi-
ple packet descriptors during the time of dequeuing a sin-
gle packet. We adopt the concept of “Speed-up Factor” K,
a number that measures the relative speed between the de-
scriptor access speed and packet dequeue speed.

K = ⌊RM

Ro
· minLP

Ld
⌋ (1)

where K is the minimum Speed-up factor6, RM is the
memory bandwidth, Ro is the output link line rate, minLP
is the minimum packet size and Ld is the byte-length of the
packet descriptor. For illustration purposes, let us consider
a system with RM = 64 Gbps (64-bit memory running at 1
GHz), Ld = 64 bits, minLP = 64 bytes, and Ro = 100 Gb/s,
then

K = ⌊ 64 ·109

100 ·109 · 64 ·8
64

⌋= ⌊5.12⌋= 5 (2)

A speed-up factor K means the scheduler can access at
least K packet descriptors during the time of dequeuing a

5A packet descriptor is also known as metadata.
6When packet sizes are larger than the minimum packet size minLP, the

speed-up factor would be larger accordingly.

packet. By taking advantage of the speed-up factor, the re-
active FIFO-based sorter can sort packets with a proactive
priority queue (PIFO) in parallel without causing blocking.

3 Sifter: An Accurate and Large-Capacity
Programmable Packet Scheduler

3.1 Concept and Architecture
The previous sections establish a need for a programmable
packet scheduler with accuracy and scalability, combining
the advantages of both a perfect and an approximating PIFO.

We introduce Sifter, a scalable PIFO to support large-
capacity programmable packet scheduling without packet in-
versions. As shown in Figure 3, Sifter consists of two ma-
jor components: (1) A Mini-PIFO and (2) An RCQ. The
Mini-PIFO stores the packets with relatively smaller ranks.
It performs a strict sorting of packets and always outputs the
packet with the smallest rank. The RCQ holds the rest of
the packets with relatively larger ranks. It stores and sorts
packets with coarse granularity7 similarly to [12] [51] [44]
[45] [2] [24] by a set of strict-priority FIFO queues and is
therefore widely scalable in rank range and capacity.

Sifter uses an algorithm, “Sift Sorting”, which consists
of two parallel processes to schedule packets in strict order:
The first process is Enqueue, in which packets are stored in
different components according to their ranks. The pack-
ets with larger ranks enter the RCQs and are sorted with
coarse granularity while the packets with smaller ranks en-
ter the Mini-PIFO and are strictly sorted. The second pro-
cess called “Sifting” operates in parallel. When packets de-
queue from the Mini-PIFO and there is available space, the
RCQ keeps migrating (sifting) the packets from FIFOs with
smaller ranks to the Mini-PIFO. The Mini-PIFO therefore
eliminates the potential misordering of ranks in a FIFO in the
RCQ using only minimal-sized sifting registers. By combin-
ing the RCQ and Mini-PIFO, Sifter schedules packets in the
correct order while supporting a large capacity.

The name Sifter is derived from its sorting method. If
each packet is a particle in the sifter, the rank of each packet
would represent the size of the particle. Sifter “filters” the
larger particles from the upper layers and passes through the
smaller particles, as shown in Figure 3. Since the Mini-
PIFO always holds the packets with the smallest ranks in
the scheduler, Sifter dequeues packets from the head of the
Mini-PIFO. For a more in-depth look at Sifter’s operation,
we introduce its three major processes: Enqueue, Dequeue,
and Sifting in Section 3.2.

Sifter only schedules packet descriptors8. In this paper,
“packets” refer to the packet descriptor in the scheduler. To

7Granularity: the rank range that a FIFO in the RCQ accommodates.
8Packets are stored in a shared-memory buffer [1] [16] and the sched-

uler only deals with their descriptors. An example of packet descriptor is
provided in Appendix E

Figure 3: Sifter Architecture

Table 1: TERMS AND NOTATIONS

Notation Description
P(i,k) kth packet in flow i
R(i,k) Rank of packet P(i,k)
K Speed-up factor of Sifter
RM Memory bandwidth
Ro Line rate of the output link
minLP Minimal packet size
Ld Byte length of a packet descriptor
SF Max size of a FIFO in the RCQ
F Total number of FIFOs in the RCQ
g Granularity of a FIFO in the RCQ
OP Current occupancy of the Mini-PIFO
SP Max size of the Mini-PIFO
T hS Sifting threshold of the Mini-PIFO
s Rank value of the Sentinel

better illustrate the detailed schemes in Sifter, we summarize
the related concepts and notations in Table 1.

3.2 Enqueue, Dequeue and Sifting Processes
Sifter has three major processes: Enqueue, Dequeue, and
Sifting. Figure 4 shows the workflow of Sifter. When pack-
ets arrive at Sifter, those with larger ranks enter the RCQ
and those with smaller ranks enqueue directly into the Mini-
PIFO. When the Mini-PIFO’s occupancy is below a given
threshold described below, Sifter moves packets from the
RCQ to the Mini-PIFO through “Sifting”. If the Mini-PIFO
becomes full, the packet with the largest rank is evicted from
the tail of the Mini-PIFO back to the RCQ as it is replaced
with a smaller-rank packet. In the dequeue process, Sifter
dequeues the packet with the smallest rank from the head of
the Mini-PIFO.

Enqueue The enqueue process decides whether the packet
should be placed in the RCQ or the Mini-PIFO. As described
in Section 3.1, the Mini-PIFO stores the packets with the
smallest ranks in the scheduler. To preserve this property,
if a newly arriving packet has a rank smaller than the small-
est rank in the RCQ, it is stored in the Mini-PIFO. Here we
introduce the concept of Sentinel, which represents the max-

Figure 4: Sifter Workflow

imum rank value of a packet that can enter the Mini-PIFO.
In most cases9, Sentinel is equal to the smallest rank among
the packets in the RCQ.

The enqueue process consists of two steps: (1) Deter-
mine the target storage element (RCQ or Mini-PIFO) and
(2) Enqueue into that storage element. The target storage
element of a packet depends on the comparison between its
rank and the Sentinel value. If a packet has a rank smaller
than or equal to the Sentinel value, it is stored in the Mini-
PIFO, otherwise, it is stored in the RCQ. For the second
(enqueue) step, packets are enqueued in the Mini-PIFO and
the RCQ differently. Enqueuing in the RCQ is straightfor-
ward: the packet is stored in the FIFO that accommodates its
rank based on the FIFOs’ granularity g. To enqueue in the
Mini-PIFO, the packet’s position in the PIFO is determined
by its rank. If the Mini-PIFO is full when a new packet is
enqueued, the packet with the largest rank is evicted back to
the RCQ. Sifter updates the Sentinel to the evicted packet’s
rank and stores that packet in the RCQ as described above.

Dequeue Based on the property that the Mini-PIFO always
holds the packets with the smallest rank in the scheduler,
Sifter always dequeues the packet at the head of the Mini-
PIFO. As long as Sifter maintains the above property and
keeps sifting the packets with smaller ranks from the RCQ
into the Mini-PIFO, the dequeue process will always output
the packet with the smallest rank in the scheduler.

Sifting The sifting process is triggered by a “Sifting
Threshold”, denoted as T hS. When the occupancy of the
Mini-PIFO is lower than T hS and the RCQ is not empty,
Sifter finds the earliest10 non-empty FIFO in the RCQ and
transfers packets from it to the Mini-PIFO. The function and
configuration of the Sifting Threshold T hS are discussed in
further detail in Section 3.4

The process of sifting the packets from the RCQ into the
Mini-PIFO results in a strict ordering of the smallest ranks in
the Mini-PIFO. Since the RCQ sorts packets with granular-
ity g in each FIFO queue, the earliest non-empty FIFO queue
contains the packets with the smallest rank in RCQ. Sifter
needs to traverse all the packets in this FIFO to ensure that
the packets it migrates to the Mini-PIFO have ranks smaller

9When outside of the Sifting process.
10Earliest FIFO: the FIFO that covers the lowest-valued rank range.

than all other packets remaining in the RCQ. This is accom-
plished by transferring all the packets from this FIFO to the
Mini-PIFO such that the packets with the smaller ranks will
remain in the Mini-PIFO while the others are evicted back to
the RCQ if the Mini-PIFO overflows.

To start the sifting process, Sifter first updates the Sentinel
value s to the maximum rank that the FIFO queue accom-
modates to guarantee that the Sentinel does not block that
FIFO’s packets from entering the Mini-PIFO. If the Mini-
PIFO becomes full, as new packets enter the Mini-PIFO and
the packets with the largest ranks are evicted back to the
RCQ, Sifter updates the Sentinel s to the rank of the last
evicted packet, as in the enqueue process. We further ex-
plain the Sentinel update mechanism in Section 3.3. When
all packets from the earliest non-empty FIFO are transferred,
the sifting process is completed and, as a result, the packets
with the smallest ranks are held in the Mini-PIFO. If, follow-
ing a sifting round, the Mini-PIFO occupancy is still lower
than the sifting threshold T hS, Sifter again finds the next ear-
liest non-empty FIFO and repeats the sifting process until the
occupancy of the Mini-PIFO is higher than T hS.

We describe the Enqueue, Dequeue and Sifting processes
in pseudo-code in Appendix I.

3.3 Sentinel Updates

The Sentinel s is a key element that controls the selection
of storage elements (Mini-PIFO vs. RCQ) when a packet
is enqueued. As described in Section 3.2, the sentinel rep-
resents the smallest rank in the RCQ and therefore guaran-
tees that the packets that enqueue into the Mini-PIFO have
ranks smaller than all packets in the RCQ. To maintain this
property, the Sentinel needs to be updated with each eviction
from the Mini-PIFO. Since the most recently evicted packet
has the smallest rank among the evicted packets, it is always
correct to update the Sentinel with the rank of the recently
evicted packet11.

Figure 5 illustrates an example of a sifting process with
Sentinel updates. At stage (1), the occupancy of the Mini-
PIFO is lower than the “Sifting Threshold” T hS, which
means Sifter needs to sift packets from the earliest non-
empty FIFO in the RCQ into the Mini-PIFO. Sifter deter-
mines the FIFO that it needs to sift from, which covers the
rank range from 20 to 29. To make sure all packets have
the opportunity to enter the Mini-PIFO, the Sentinel value
s is updated to 29, the highest possible rank in the FIFO.
As Sifter transfers packets from the RCQ to the Mini-PIFO,
the Mini-PIFO fills up and evicts the packet with the largest
rank as shown in stage (2). In this example, the packet with
a rank of 28 is evicted and sent back to the RCQ. Note that
this packet with a rank of 28 will stay in the RCQ until the
next sifting round, which means that other packets with ranks

11Before updating the Sentinel, Sifter compares the current Sentinel s
with the rank of the evicted packet and updates s to the smaller rank

larger than 28 will not enter the Mini-PIFO until then. To
achieve this, Sifter updates the Sentinel value s to 28 as de-
scribed in Section 3.2. In stage (3), although the Mini-PIFO
is not full, the packet with rank 29 cannot enqueue into the
Mini-PIFO since its rank is larger than the Sentinel value s
(28). The Sentinel guards the entrance of the Mini-PIFO to
keep the packets with larger ranks out and thus guarantees
all the packets in the Mini-PIFO have ranks smaller than any
packet in the RCQ after each sifting round 12.

3.4 Sifting Threshold

The configuration of the Sifting Threshold T hS is critical to
the performance of Sifter. It serves as a watermark below
which the Mini-PIFO is guaranteed to hold the packets with
the smallest ranks. As stated in Section 3.2, Sifter replen-
ishes the Mini-PIFO when its occupancy is below this thresh-
old using the sifting process that must traverse all the packets
in the earliest non-empty FIFO of the RCQ. Therefore, this
threshold T hS must be high enough, with enough packets
below it to guarantee that the Mini-PIFO will not underrun
before the sifting process is complete.

Although it would be reasonable to propose that the sifting
threshold T hS be large, at the limit as large as the size of
the Mini-PIFO SP, which would keep the Mini-PIFO fully
utilized, a large sifting threshold would result in too-frequent
sifting operations. If T hS is set as large as SP, Sifter would
trigger the sifting process after each packet dequeue. Since
the sifting process requires the transfer of all packets from
the earliest non-empty FIFO, frequent sifting rounds would
be unnecessarily wasteful, consuming a lot of energy with no
performance gain. Therefore, the sifting threshold T hS must
be the smallest value that guarantees that the Mini-PIFO does
not underrun.

Figure 6 shows the Mini-PIFO of size SP and a sifting
threshold, T hS. According to Figure 6, the Mini-PIFO is
bisected by the sifting threshold T hS. The segment below
(to the right of) T hS is guaranteed to be occupied as long as
packets are available in the RCQ. As mentioned above, this
segment holds enough packets to dequeue before the sifting
process is completed. The segment above (to the left of) T hS
determines the interval between two sifting rounds. Typi-
cally, the sizes of the FIFOs in the RCQ SF are larger than the
Mini-PIFO SP, which means the Mini-PIFO would be filled
up after each Sifting process and it would take SP −T hS de-
queues until the Mini-PIFO occupancy triggers the next Sift-
ing. In other words, a larger segment above T hS leads to less
frequent sifting.

We provide the quantitative relationship between the FIFO
size SF , the Mini-PIFO size SP and the sifting threshold T hS
that guarantees the condition for strict-order scheduling in
Section 3.5. In Appendix C, we evaluate the average num-

12Sentinel is initialized to ∞ and will be reset to ∞ if RCQ is empty.

Figure 5: Sifting and Sentinel Updates

Figure 6: The Mini-PIFO and the Sifting Threshold

ber of extra memory accesses13 per packet to show that a
larger space above the sifting threshold T hS would decrease
the number of extra memory accesses introduced by the sift-
ing process.

3.5 Condition for Inversion-free Scheduling
To guarantee there are no packet inversions in Sifter, we
must ensure that each dequeue will output the packet with
the smallest rank in the scheduler. According to the dequeue
process described in Section 3.2, Sifter always dequeues the
packet at the head of the Mini-PIFO. Therefore, Sifter needs
to guarantee that the Mini-PIFO always holds the packet with
the smallest rank at its head. We introduce Property 1 of
Sifter:

Property 1: The Mini PIFO always holds the packet with
the smallest rank at its head.

To maintain Property 1, Sifter needs to guarantee that all
the packets sifted into the Mini-PIFO have smaller ranks than
the ones that remain in the RCQ after each sifting process.
Thus Sifter needs to traverse all the packets in the earliest
FIFO before the original packets in the Mini-PIFO drain out.
That is the packets below the sifting threshold T hS multiplied
by the speed-up factor K should be larger than the maximum
size of a FIFO SF in the RCQ. We have:

T hS ∗K ≥ SF (3)

In addition to condition (3), Sifter must ensure that the
Mini-PIFO holds at least T hS packets before traversing
through the earliest FIFO in the RCQ.

13Average number of extra memory accesses: the average number of extra
memory access of a packet descriptor from the time it enters and until it
leaves the packet scheduler when compared with a simple FIFO queue.

The size of the Mini-PIFO region between SP and T hS
determines the number of packets transferred to the Mini-
PIFO in each sifting process, assuming the source FIFO has
enough packets. When Sifter sifts from a FIFO that has more
than (SP −T hS) packets, the Mini-PIFO will be loaded with
(SP − T hS) newly sifted elements at the end of the sifting
process. If the earliest FIFO in the RCQ has fewer than
(SP − T hS) packets, Sifter will keep transferring from the
next FIFOs until the Mini-PIFO fill level reaches T hS as de-
scribed in Section 3.2. Accordingly, Sifter guarantees a min-
imal Mini-PIFO fill level after each sifting as follows:

min{(SP −T hS),T hS} (4)

Since Sifter needs to ensure there are at least T hS packets
at the beginning of the sifting process, we have the following
additional condition:

SP −T hS ≥ T hS (5)

Rearranging terms:

SP ≥ 2∗T hS (6)

Combining conditions (3) and (6), Sifter always guaran-
tees Property 1, regardless of the state of the sifting process.
Therefore, Sifter guarantees there are no packet inversions.

4 Sifter Hardware Prototype

Figure 7 shows an abstraction of the system-level application
of a programmable packet scheduler.

Usually, the size of the packet descriptor14 is much smaller
than the packet itself. Thus, packet schedulers in high-speed
data planes need to process only the descriptors rather than
the packets themselves due to the limited packet processing
time. According to Figure 7, there are two paths in the sys-
tem: the Packet Path and the Descriptor Path. In the Packet

14In general, a packet descriptor in the data plane includes metadata re-
lated to the packet, including length, flow ID, memory pointer, etc.)

Figure 7: System-Level Packet Scheduler Application

Path, the ingress packets are stored in the packet buffer and
wait to be dequeued or dropped. The packet scheduling takes
place in the Descriptor Path. The packet classifier and parser
extract the packet information from the packet header and
generate a packet descriptor by combining it with the mem-
ory address of the packet in the buffer. Next, the packet
rank calculator computes the rank of the packet according
to the applicable scheduling algorithm and updates the de-
scriptor. Finally, the system enqueues the descriptor into
the packet scheduler15, which drops or dequeues descriptors
according to their ranks. When the scheduler dequeues or
drops a packet descriptor, the system accesses the associated
packet in the buffer, referenced by its memory address, and
dequeues or drops the corresponding packet. Since this paper
focuses on programmable packet scheduling, the hardware
prototype design section also targets the Descriptor Path in
the system.

Hardware Prototype Architecture We implemented the
Sifter hardware prototype in VHDL according to the algo-
rithms in Section 3. Figure 8 shows a block diagram of
the Sifter hardware prototype. The RCQ and Mini-PIFO
hold descriptors during the enqueue and dequeue operations.
The Enqueue block stores the packet in one of the FIFOs in
the RCQ or in the Mini-PIFO according to the descriptor’s
rank. The Sifting process transfers the descriptors between
the RCQ and the Mini-PIFO to ensure that those with the
smallest ranks are held in the Mini-PIFO. Finally, the De-
queue block outputs the descriptors with the smallest rank.

There are multiple scaling parameters in the VHDL im-
plementation of Sifter, including: (1) the number and size
of FIFOs in the RCQ, (2) the size and sifting threshold of
the Mini-PIFO, and (3) other sizing parameters for memo-
ries and logic. These parameters improve the flexibility and
scalability of our design16.

We evaluate the performance impact and the resource
overhead of adjusting different design parameters in Ap-
pendix D.

We designed a 72-bit packet descriptor17 for the Sifter
hardware prototype, and Sifter schedules packets according
to a 20-bit Packet Rank field.

15Sifter is a specific implementation of such a packet scheduler.
16The VHDL code, test bench, and FPGA implementation files are avail-

able at https://github.com/Sifter-NSDI24/Sifter-NSDI24
17The details of the packet descriptor are revealed in Appendix E.

Figure 8: Sifter Block Diagram, VHDL Implementation

Rank Computation We programmed SFQ[26], a virtual-
clock-based fairness packet scheduling scheme, on the Sifter
hardware prototype. The transmission time is pre-calculated
by the packet classifier and stored in the Packet Rank field in
the packet descriptor. The Enqueue Process module updates
the Packet Rank by the system virtual clock and the last rank
of the corresponding flow.

According to the definition of programmable packet
scheduling in Section 2.1, most packet scheduling schemes
compute the ranks in the end-hosts or flow tables prior to
entering the packet scheduler[35] [48] [49]. Therefore, it
would be straightforward to extend the Sifter prototype to
support a wide variety of packet scheduling schemes with
the pre-calculated ranks in the packet descriptors.

Fast RCQ FIFO Indexing For each packet descriptor that
enqueues into the RCQ module, Sifter needs to find the FIFO
associated with its rank. We call this operation FIFO index-
ing. RCQ performs FIFO indexing when a new packet de-
scriptor arrives or when a packet descriptor is evicted from
the Mini-PIFO, which occurs whenever the Mini-PIFO be-
comes full and additional descriptors need to be stored in
the RCQ. Thus, FIFO indexing must be extremely fast in the
hardware implementation.

Rather than scanning through the rank bounds of each
FIFO, RCQ directly finds the corresponding FIFO index by
extracting a range of bits in the Packet Rank. We config-
ured the number of FIFOs F and the granularity g as powers
of two to be able to use bit slice selection and shifting op-
erations in the hardware implementation rather than slower
math operations, such as multiplication18.

Mini-PIFO The Mini-PIFO is implemented using a shift
register structure and performs a push operation in two clock
cycles. In the first clock cycle when a new descriptor is
pushed, its rank is compared in parallel to those of all de-
scriptors stored in the Mini-PIFO and an insertion position is
determined. In the second clock cycle, the descriptors with
higher ranks are shifted one position towards the tail, and the
new descriptor is inserted in the newly created “hole”. In the
process of shifting towards the tail, one descriptor may be
evicted and stored in the RCQ if the Mini-PIFO was previ-
ously full. The pop operation simply outputs the descriptor

18Additional details of fast FIFO indexing are provided in Appendix E

at the head of the Mini-PIFO and shifts all other descriptors
toward the head. Once the Mini-PIFO fill level reaches the
reload threshold, the sifting process starts a reload operation
to replenish the PIFO from the RCQ.

The Mini-PIFO can also handle simultaneous push and
pop operations, whether the arriving descriptor needs to be
popped immediately or inserted in a Mini-PIFO location.

In addition, the Mini-PIFO has a logic “wrapper” that han-
dles the resolution of race conditions that may occur if en-
queue and reload operations generate simultaneous push op-
erations toward the PIFO.

Search for The First Non-empty FIFO When the Mini-
PIFO triggers a sifting process, RCQ finds the earliest non-
empty FIFO queue to replenish the Mini-PIFO with packet
descriptors. The FIFOs in the RCQ are organized as a cir-
cular list with an index indicating the current FIFO (earliest
time range) corresponding to the current value of the virtual
clock. The search for the first non-empty FIFO is performed
in parallel on two groups of FIFOs: (1) First Group: From
the current FIFO to the highest numbered FIFO in the range;
(2) Second Group: From FIFO zero to the FIFO preceding
the current FIFO.

Because of the circular structure, FIFOs in the First Group
hold descriptors that have smaller ranks than those in the
Second Group. Therefore, if the first non-empty FIFO is
found in the First Group, it is selected as the next non-empty
FIFO. Otherwise, the first non-empty FIFO in the Second
Group is selected.

5 Evaluation
In Section 5.1 and 5.2, we evaluate Sifter using the NS3 [37]
packet-based simulator and show the advantages of Sifter in
fairness, FCT, and delay due to the elimination of packet
scheduling inversions. Furthermore, we demonstrate the
flexibility of Sifter with two use cases. Finally, in Section 5.3
we implement Sifter on an AMD/Xilinx Alveo U250 FPGA
board and evaluate its functionality, performance as well as
resource utilization.

5.1 Micro-benchmark Evaluation
We first set up a micro-benchmark to evaluate the perfor-
mance of Sifter in detail at the packet level. The evaluated
performance metrics include fairness in short-term band-
width allocation shown in Section 5.1.2, the FCT and end-to-
end delay given in Appendix F, as well as the average extra
number of memory accesses shown in Appendix C.

5.1.1 Micro-benchmark setup

Topology Given that the micro-benchmark aims to assess
the intricate packet-level performance of schedulers, it is
advisable to maintain a compact topology scale. This ap-
proach facilitates a more straightforward observation of de-

tailed metrics. In the micro-benchmark, we set up a single-
node star topology with multiple end hosts connected via one
switch with programmable packet schedulers. All links have
a bandwidth of 10 Gbps and a delay of 3µs.

Traffic We prepared two sets of traffic for different eval-
uation proposes: (1) A set with small-scale traffic that con-
tains 8 flows to evaluate the convergence of fair bandwidth
allocation and (2) A set with large-scale traffic that contains
approximately 1k flows to evaluate the FCT and end-to-end
delay. To create network congestion on the bottleneck link,
we generate the TCP flows19 in an in-cast traffic pattern.

Schedulers Setup We applied packet schedulers on the
bottleneck link to evaluate their performance under conges-
tion conditions. The evaluated schedulers include Sifter, Pro-
grammable Calendar Queues (PCQ) [45] and SP-PIFO [2].
Each of the schedulers has 16 FIFO queues with a depth of
6420. Sifter has a mini-PIFO with a capacity of 32 descrip-
tors. In addition, we also introduce an ideal PIFO[48][49]
with a capacity of 1024 and a standalone Mini-PIFO with a
capacity of 32 to serve as benchmarks.

5.1.2 Convergence to fair bandwidth allocation

There are 8 TCP flows in the micro-benchmark test with the
small-scale traffic, with each flow becoming active at succes-
sive 2 ms intervals. Flow 8 stops 2 ms after its arrival, and
other flows stop progressively in reverse order of their arrival
at intervals of 2 ms. To evaluate the fairness of short-term
bandwidth allocation, we measure the throughput of each
TCP flow in a window size of 120 µs, which is ten times
the RTT. The evaluation results are shown in Figure 9.

Sifter converges to fairness in bandwidth allocation
Figure 9 shows that Sifter has a fair bandwidth allocation
close to that of an ideal PIFO. The 8 TCP connections in
Sifter converge to the fair share of bandwidth very fast and
with minimum fluctuations. On the other hand, PCQ and
SP-PIFO experience packet inversions, which result in fluc-
tuations in the short-term throughput as shown in Figure 9.
The fluctuation is due to the fact that PCQ and SP-FIFO store
packets in FIFOs. Packets in the same FIFO are scheduled
on a first-come-first-served basis, which means that multiple
packets from a flow could continuously enter the same FIFO
in a short burst, and later leave the scheduler continuously
in a burst. Such burstiness impairs the short-term fairness of
bandwidth allocation and the steadiness of the throughput.

Sifter eliminates packet inversions In the simulation re-
sults, we observe no inversions in Sifter while PCQ and SP-
PIFO exhibit a significant number of packet inversions with
large magnitudes due to their FIFO-based architectures. The

19We use TCP New Reno in our micro-benchmark simulation
20An Insufficient FIFO size can result in sub-optimal performance due to

overflows for both FIFO-based schedulers and Sifter. We will discuss the
overflows in Sifter in Appendix B.

Figure 9: Convergence for fair bandwidth allocation

consequence of inversions is reflected in the fluctuations of
flow throughput as shown in Figure 9.

5.2 Large-scale Packet-based Simulation
To evaluate the performance of packet schedulers in data-
center environments, we use large-scale packet-based simu-
lations with a fat-tree topology with a variety of larger-scaled
empirical traffic loads.

We evaluate two use cases of programmable packet sched-
ulers: (1) Weighted max-min fairness in bandwidth alloca-
tion with SFQ [26] in Section 5.2.2 and (2) Minimizing FCT
with modified SRPT[3] in Appendix G.

5.2.1 Simulation Setup

Network topology We extend the topology to a 3-tier fat-
tree consisting of 4 core switches, 8 aggregation switches,
and 8 ToR switches. All the switch nodes are connected with
40Gbps links with 1µs delay. A total of 256 hosts are con-
nected by the fat-tree topology. Each ToR switch connects
with 32 hosts and the links between each host and the ToR
switch each have a bandwidth of 10Gbps with 10ns delay.

Simulation Traffic We generate two types of empirical
traffic with different patterns: (1) random pattern and (2)
incast pattern. For the random pattern, each generated TCP
flow randomly selects a source node and a destination node
among the 256 hosts in the topology, while the flows in the
incast pattern randomly select a source node but always have
a fixed destination node to represent an in-cast traffic pattern.
The arrival time of each TCP flow follows a Poisson distri-
bution, and the flow size follows the Web-search distribution
in data centers [3].

5.2.2 Use Case: Start-time Fair Queuing for weighted
max-min fairness in bandwidth allocation

Weighted max-min fairness in bandwidth allocation is one
of the most important goals of packet scheduling [46] [6]
[41] [32] [36]. Among the algorithms derived from Weighted
Fair Queueing (WFQ), Start-time Fair Queueing (SFQ) [26]

is the most popular one due to its simplicity and accuracy.
Therefore, we applied SFQ to all the schedulers in the simu-
lation. We configured all three schedulers (Sifter, PCQ, and
SP-PIFO) with 32 FIFO queues with a depth of 256 entries.
In addition, Sifter has a Mini-PIFO with 64 entries21. Fur-
thermore, we set two PIFO benchmarks with different sizes:
an ideal PIFO with a large capacity of 1024 entries and a
standalone Mini-PIFO with 64 entries to match the Mini-
PIFO in Sifter.

Sifter is a close approximation to the ideal PIFO Fig-
ure 10 (a)− (d) shows the Normalized FCT22 performance
of the different packet schedulers under random pattern and
in-cast pattern respectively. As shown in Figure 10, Sifter
has an FCT performance that is nearly identical to the ideal
PIFO. Similarly, the end-to-end delay performance of Sifter
matches closely that of the ideal PIFO. Figure 10 (e)− (h)
shows the 95th percentile end-to-end delay of the small flows
(≤50MB) with different setups. By providing an accurate
scheduling order, Sifter guarantees that packets with smaller
ranks are scheduled without the extra delay that would be
caused by scheduling inversions.

Compared with the standalone Mini-PIFO, the RCQ of
Sifter extends the buffer capacity and thus reduces the packet
loss rate for mid-sized flows. As Figure 10 (a) − (d)
shows, Sifter outperforms the Mini-PIFO among the mid-
sized flows by reducing packet loss and re-transmissions.

Sifter is stable under different traffic patterns Approxi-
mate packet schedulers are subject to the impacts of certain
traffic patterns while Sifter achieves a stable performance
close to that of the ideal PIFO.

As shown in Figure 10, PCQ has poor FCT and tail-
latency performance for small-sized flows for both random
and in-cast patterns. As illustrated in Section 2.3.1, the
FIFO-based calendar queue structure of PCQ introduces in-
versions and extra delays for packets within one FIFO queue.
The packets with small ranks from the short flows are signifi-
cantly affected by the extra delay, which results in significant
performance degradation for small flows between PCQ and
other schedulers.

Although SP-PIFO provides decent performance with the
random pattern, its performance degrades as the congestion
level increases for the in-cast pattern. Queue-bound adjust-
ments in SP-PIFO tend to put packets with larger ranks into
the queues with lower priorities. Since SFQ is a virtual-
clock-based scheduling algorithm where the ranks of incom-
ing packets keep increasing as the congestion persists, SP-
PIFO stores most of the packets in the last few FIFO queues.
We observe that SP-PIFO does not fully utilize all of its

21In the Mini-PIFO of Sifter, we set the Sift threshold T hS = 32 (half of
the PIFO size), and used a speed-up factor K = 4 to fulfill the conditions in
Section 3.5.

22Normalized FCT: The measured FCT normalized to the ideal FCT.

Figure 10: Normalized FCT and End-to-End Delay with SFQ

available FIFO queues, and that the last few FIFOs become
particularly crowded under heavy congestion. This queue
congestion increases the end-to-end delay as Figure 10 (g)
and (h) shows and degrades the FCT of large flows as shown
in Figure 10 (c) and (d).

5.3 FPGA Hardware Testbed

We built a hardware testbed for the Sifter prototype on an
AMD/Xilinx Alveo U250 board [4], which uses an FPGA
similar in size to an UltraScale+ VU13P with mid-speed
grade. The hardware evaluation of the Sifter prototype cov-
ers three aspects: (1) Line rate measurement; (2) Verification
of no inversions in the output of Sifter to validate error-free
scheduling; (3) Evaluation of the hardware resources for dif-
ferent configurations by varying the design parameters.

Hardware Testbed Structure According to Section 4, we
focus on the descriptor path in the system. Therefore, in our
hardware testbed evaluation, we feed packet descriptors to
our hardware prototype and scale their input and output rates
to achieve a line rate of 100Gbps.

Figure 11 shows the structure of the hardware testbed. We
use two sets of packet descriptors parsed from a PCAP file.

For simulation purposes, we implemented the testbed in
Cocotb [21], a Python-based HDL simulation environment.
For the hardware testing, we implemented the same testbed
using Exegy’s nxFramework [22], which provides the PCIe
connectivity and C++ device drivers to access registers and
memories within Sifter.

The input packet descriptors are originally generated from
a PCAP packet capture [33]. We load the input packet de-
scriptors in the Input Buffer module on the FPGA, along
with time gaps between packets to set a line rate equiva-
lent to 100Gbps. The Enq Rate Ctl module reads the de-

Figure 11: Sifter Hardware Testbed

scriptors from the input buffer and enqueues them into Sifter
at the specified rate. After a software-programmable delay,
the Deq Rate Ctl module starts dequeuing packet descrip-
tor from Sifter at a rate equivalent to 100Gbps, by using
the packet length information to control the descriptor de-
queue rate. Dequeued descriptors are written to the Out-
put Recorder block along with timestamps and read out and
written to an output file by software at the end of the test.
We analyze the packet descriptor output file from the Output
Recorder to measure the line rate and validate that there are
no packet inversions or missing descriptors.

Running Sifter on an FPGA We configured Sifter with
32 FIFOs with 32 locations each and a Mini-PIFO with 32
locations. We used Vivado 2021.2 to generate a bitstream of
the test bed including the Exegy PCIe memory-mapped I/O
(MMIO) logic and loaded it on an AMD/Xilinx Alveo U250
board [4]. With the above design parameters, the Sifter pro-
totype achieved a frequency of 322MHz and used less than
1.25% of the FPGA. 23 We used C++ code and the Exegy
MMIO device drivers to write the input data into the Input
Buffer and read the output data from the Output Recorder.

23Additional information about the trade-off of different design parame-
ters with FPGA resource overhead is given in Appendix D.2.

Figure 12: Inversion-free Scheduling Order of Sifter Prototype

Figure 13: Sifter Hardware Throughput and Packet Rate

Traffic Trace We generated the packet descriptor inputs
by parsing a PCAP packet capture, which includes 13708
packets and 941 flows. The average packet size of the input
trace is 823 Bytes. With the max frequency of 322 MHz of
its FPGA prototype, Sifter can achieve a line rate of 100Gbps
with packets larger than 370 Bytes24.Therefore, we modified
the packet size of the PCAP file and generated two sets of
packet descriptor inputs: (1) A fixed packet size input where
all the packets have the same size of 370 Bytes and (2) A
varying packet size input by modifying the small packets size
to 370 Bytes while preserving the original packet sizes of
other packets that are larger than 370 Bytes

Inversion-free Packet Scheduling Figure 12 shows the
packet descriptor scheduling order from the output of our
testbed. For both fixed and varying packet size traces, there
are no inversions in the packet scheduling order and the
packet loss rate25 of both input traces is lower than 0.6%.

Scaling to 100Gbps Line Rate Figure 13 shows the
throughput and the packet rate of Sifter’s hardware prototype
under fixed and varying packet size inputs. From the output
of our hardware testbed, Sifter reaches the line rate of 100
Gbps for both types of input. For the fixed packet size input,
the Sifter prototype operates at a constant packet rate of 32.2
Mpps, since the packet processing time of Sifter is 10 clock
cycles. On the other hand, for the varying packet size input,
the line rate is also 100Gbps with an average packet rate of
21.6 Mpps because the average packet size is larger.

24This packet length allows Sifter to dequeue at 100Gbps without inver-
sions on our prototype. With a higher clock frequency, Sifter supports a
100Gbps line rate with 64-byte packets. See Appendix E and H for details

25Packet loss may occur if FIFOs become full and is not related to Sifter’s
operation. See Appendix B for more information on overflows in Sifter.

6 Related Work

In the 1990s, early implementations of general packet sched-
ulers such as Sequencer [13] [14] [15] sort packets accurately
by their ranks based on a shift-register design. However, the
architecture of these ASIC-based packet schedulers limits
their capacity. In the 2000s, pipeline-Heap (pHeap) [7][29]
was proposed, which serves as an accurate packet scheduler
that supports a large buffer capacity. However, the high im-
plementation overhead of pHeap takes up a significant area
on the switch chip. This issue would be compounded if a
pHeap is used for each port on the switch.

In the 2010s, the advent of the programmable data plane
brought to light the topic of implementing general packet
schedulers in academia and industry. PIFO [48] [49] is a
fundamental building block for programmable packet sched-
ulers. However, while its design achieves accurate pro-
grammable packet scheduling with a small chip area over-
head, it is still limited by its capacity and the require-
ment of special hardware support such as Ternary Content-
Addressable Memory (TCAM).

PCQ [45] and SP-PIFO [2] are two approximate pro-
grammable packet schedulers based on strict-priority queues.
While they greatly reduce implementation overhead and
boost the capacity of the scheduler, the impact of the packet
inversions they introduce is not negligible. Approximate
Fair Queuing (AFQ) [44] and Gearbox [24] are two other
approximate packet schedulers focused on fair queuing and
weighted fair queuing, but are not generalized for pro-
grammable packet scheduling.

AIFO [54] is a programmable packet scheduler design,
which only requires a single FIFO queue and filters the in-
coming packets using admission control. However, AIFO
can cause packet inversions similar to the above-mentioned
approximate packet schedulers, and scaling it to support a
large buffer capacity would be challenging.

7 Conclusion

In this paper, we present Sifter, an accurate, programmable
packet scheduler that operates free of packet inversions and
supports a large buffer size with low implementation over-
head. By taking advantage of the “Speed-up Factor”, Sifter
sorts packets by “Sift Sorting” and combines the advantages
of accurate scheduling of a PIFO with the large capacity pro-
vided by FIFO-based approximate schedulers. Our simula-
tions in NS3 show that Sifter achieves better fairness, lower
FCT, and delay by eliminating packet inversions. We im-
plemented Sifter in VHDL, targeting an AMD/Xilinx Alveo
U250 FPGA card [4] with a mid-speed grade XCVU13P
FPGA. Our FPGA-based hardware prototype operates at 322
MHz and reaches a line rate of 100 Gb/s for packets larger
than 370 bytes. Sifter uses less than 1.25% of the FPGA
resources.

References
[1] ADDANKI, V., APOSTOLAKI, M., GHOBADI, M., SCHMID, S., AND

VANBEVER, L. Abm: active buffer management in datacenters. In
Proceedings of the ACM SIGCOMM 2022 Conference (2022), pp. 36–
52.

[2] ALCOZ, A. G., DIETMÜLLER, A., AND VANBEVER, L. Sp-pifo:
Approximating push-in first-out behaviors using strict-priority queues.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20) (2020), pp. 59–76.

[3] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pfabric: Minimal near-
optimal datacenter transport. In ACM SIGCOMM Computer Commu-
nication Review (2013), vol. 43, ACM, pp. 435–446.

[4] AMD/XILINX. AMD/Xilinx Alveo U250 Data Center Ac-
celerator Card. https://www.xilinx.com/products/

boards-and-kits/alveo/u250.html, 2021.

[5] AMD/XILINX. Vivado Design Suite, Integrated Design Envi-
ronment. https://www.xilinx.com/products/design-tools/
vivado.html, 2021.

[6] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROWSTRON, A.
Towards predictable datacenter networks. In ACM SIGCOMM com-
puter communication review (2011), vol. 41, ACM, pp. 242–253.

[7] BHAGWAN, R., AND LIN, B. Fast and scalable priority queue archi-
tecture for high-speed network switches. In Proceedings IEEE INFO-
COM 2000. Conference on Computer Communications. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No. 00CH37064) (2000), vol. 2, IEEE, pp. 538–547.

[8] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., ET AL. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Communication Re-
view 44, 3 (2014), 87–95.

[9] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKE-
OWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for sdn. ACM SIGCOMM Computer Communication Re-
view 43, 4 (2013), 99–110.

[10] BROADCOM. Broadcom StrataDNX™ BCM88480 Traffic Man-
agement Architecture. https://docs.broadcom.com/doc/

88480-DG1-PUB, 2021.

[11] BROADCOM. High Capacity StrataXGS®Trident II Ethernet Switch
Series. http://www:broadcom:com/products/Switching/

Data-Center/BCM56850-Series., 2021.

[12] BROWN, R. Calendar queues: a fast 0 (1) priority queue implemen-
tation for the simulation event set problem. Communications of the
ACM 31, 10 (1988), 1220–1227.

[13] CHAO, H. J. Architecture emersesign for regulating and scheduling
user’s traffic in atm networks. In ACM SIGCOMM Computer Com-
munication Review (1992), vol. 22, ACM, pp. 77–87.

[14] CHAO, H. J., CHENG, H., JENQ, Y.-R., AND JEONG, D. Design of
a generalized priority queue manager for atm switches. IEEE Journal
on Selected Areas in Communications 15, 5 (1997), 867–880.

[15] CHAO, H. J., JENQ, Y.-R., GUO, X., AND LAM, C.-H. Design of
packet-fair queuing schedulers using a ram-based searching engine.
IEEE Journal on Selected Areas in Communications 17, 6 (1999),
1105–1126.

[16] CHOUDHURY, A. K., AND HAHNE, E. L. Buffer management in a
hierarchical shared memory switch. In Proceedings of INFOCOM’94
Conference on Computer Communications (1994), IEEE, pp. 1410–
1419.

[17] CISCO. Cisco Nexus 7700 F3-Series 12-Port 100 Gi-
gabit Ethernet Module Data Sheet. https://www.

cisco.com/c/en/us/products/collateral/switches/

nexus-7000-series-switches/data_sheet_c78-728423.

html, 2019.

[18] CISCO. Cisco Silicon One Product Family White Paper. https:

//www.cisco.com/c/en/us/solutions/silicon-one.html,
2021.

[19] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN,
C. Introduction to algorithms. MIT press, 2009.

[20] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and sim-
ulation of a fair queueing algorithm. In ACM SIGCOMM Computer
Communication Review (1989), vol. 19, ACM, pp. 1–12.

[21] DEVELOPMENT GROUP, C. Cocotb chip design testbench. In
https://www.cocotb.org/. 2023, 2023, p. 1.

[22] EXEGY. Exegy nxframework. In
https://www.enyx.com/nxframework/. 2022, 2022, p. 1.

[23] FENG, Y., CHEN, Z., SONG, H., XU, W., LI, J., ZHANG, Z., YUN,
T., WAN, Y., AND LIU, B. Enabling in-situ programmability in net-
work data plane: From architecture to language. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22) (2022), pp. 635–649.

[24] GAO, P., DALLEGGIO, A., XU, Y., AND CHAO, H. J. Gearbox:
A hierarchical packet scheduler for approximate weighted fair queu-
ing. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22) (2022), pp. 551–565.

[25] GOLESTANI, S. J. A self-clocked fair queueing scheme for broad-
band applications. In Proceedings of INFOCOM’94 Conference on
Computer Communications (1994), IEEE, pp. 636–646.

[26] GOYAL, P., VIN, H. M., AND CHEN, H. Start-time fair queueing:
a scheduling algorithm for integrated services packet switching net-
works. In ACM SIGCOMM Computer Communication Review (1996),
vol. 26, ACM, pp. 157–168.

[27] HOGAN, M., LANDAU-FEIBISH, S., ARASHLOO, M. T., REXFORD,
J., AND WALKER, D. Modular switch programming under resource
constraints. In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22) (2022), pp. 193–207.

[28] HONG, C.-Y., CAESAR, M., AND GODFREY, P. Finishing flows
quickly with preemptive scheduling. In Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication (2012), ACM, pp. 127–
138.

[29] IOANNOU, A., AND KATEVENIS, M. G. Pipelined heap (priority
queue) management for advanced scheduling in high-speed networks.
IEEE/ACM Transactions on Networking (ToN) 15, 2 (2007), 450–461.

[30] JANG, K., SHERRY, J., BALLANI, H., AND MONCASTER, T. Silo:
Predictable message latency in the cloud. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication
(2015), pp. 435–448.

[31] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES, D., PRABHAKAR,
B., GREENBERG, A., AND KIM, C. {EyeQ}: Practical network
performance isolation at the edge. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13) (2013),
pp. 297–311.

[32] JEYAKUMAR, V., ALIZADEH, M., MAZIERES, D., PRABHAKAR,
B., AND KIM, C. Eyeq: Practical network performance isolation for
the multi-tenant cloud. In Presented as part of the (2012).

[33] KLASSEN, F., AND APPNETA. Tcpreplay. In
https://tcpreplay.appneta.com/wiki/captures.html. 2023, 2023,
p. 1.

[34] LEUNG, J. Y.-T. A new algorithm for scheduling periodic, real-time
tasks. Algorithmica 4, 1-4 (1989), 209.

[35] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND SHENKER,
S. Universal packet scheduling. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16) (2016),
pp. 501–521.

[36] NAGARAJ, K., BHARADIA, D., MAO, H., CHINCHALI, S., AL-
IZADEH, M., AND KATTI, S. Numfabric: Fast and flexible bandwidth
allocation in datacenters. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), ACM, pp. 188–201.

[37] NETWORK SIMULATOR DEVELOPMENT GROUP, T. The network sim-
ulator 3. In https://www.nsnam.org/. 2022, 2022, p. 1.

[38] OPEN, H.-L. L. F. D. F.-R. S. F. P. N. P. Broadcom. np. In
https://nplang.org/. 2019, 2019, p. 1.

[39] PAREKH, A. K., AND GALLAGER, R. G. A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case. IEEE/ACM transactions on networking, 3 (1993),
344–357.

[40] PAREKH, A. K., AND GALLAGER, R. G. A generalized proces-
sor sharing approach to flow control in integrated services networks:
the multiple node case. IEEE/ACM transactions on networking 2, 2
(1994), 137–150.

[41] POPA, L., KUMAR, G., CHOWDHURY, M., KRISHNAMURTHY, A.,
RATNASAMY, S., AND STOICA, I. Faircloud: sharing the network
in cloud computing. ACM SIGCOMM Computer Communication Re-
view 42, 4 (2012), 187–198.

[42] RUFFY, F., WANG, T., AND SIVARAMAN, A. Gauntlet: Finding bugs
in compilers for programmable packet processing. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20) (2020), pp. 683–699.

[43] SCHRAGE, L. A proof of the optimality of the shortest remaining
processing time discipline. Operations Research 16, 3 (1968), 687–
690.

[44] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNAMURTHY,
A. Approximating fair queueing on reconfigurable switches. In 15th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 18) (2018), pp. 1–16.

[45] SHARMA, N. K., ZHAO, C., LIU, M., KANNAN, P. G., KIM, C.,
KRISHNAMURTHY, A., AND SIVARAMAN, A. Programmable calen-
dar queues for high-speed packet scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20)
(2020), pp. 685–699.

[46] SHIEH, A., KANDULA, S., GREENBERG, A. G., KIM, C., AND
SAHA, B. Sharing the data center network. In NSDI (2011), vol. 11,
pp. 23–23.

[47] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queuing using
deficit round-robin. IEEE/ACM Transactions on networking, 3 (1996),
375–385.

[48] SIVARAMAN, A., SUBRAMANIAN, S., AGRAWAL, A., CHOLE, S.,
CHUANG, S.-T., EDSALL, T., ALIZADEH, M., KATTI, S., MCKE-
OWN, N., AND BALAKRISHNAN, H. Towards programmable packet
scheduling. In Proceedings of the 14th ACM workshop on hot topics
in networks (2015), ACM, p. 23.

[49] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at
line rate. In Proceedings of the 2016 ACM SIGCOMM Conference
(2016), ACM, pp. 44–57.

[50] STEPHENS, B., SINGHVI, A., AKELLA, A., AND SWIFT, M. Ti-
tan: Fair packet scheduling for commodity multiqueue nics. In 2017
USENIX Annual Technical Conference (USENIX ATC 17) (2017),
pp. 431–444.

[51] VARGHESE, G., AND LAUCK, A. Hashed and hierarchical timing
wheels: efficient data structures for implementing a timer facility.
IEEE/ACM transactions on networking 5, 6 (1997), 824–834.

[52] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND ROWTRON, A.
Better never than late: Meeting deadlines in datacenter networks. In
ACM SIGCOMM Computer Communication Review (2011), vol. 41,
ACM, pp. 50–61.

[53] XING, J., HSU, K.-F., KADOSH, M., LO, A., PIASETZKY, Y.,
KRISHNAMURTHY, A., AND CHEN, A. Runtime programmable
switches. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22) (2022), pp. 651–665.

[54] YU, Z., HU, C., WU, J., SUN, X., BRAVERMAN, V., CHOWDHURY,
M., LIU, Z., AND JIN, X. Programmable packet scheduling with
a single queue. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference (2021), pp. 179–193.

[55] YUAN, Y., ALAMA, O., FEI, J., NELSON, J., PORTS, D. R., SA-
PIO, A., CANINI, M., AND KIM, N. S. Unlocking the power of in-
line {Floating-Point} operations on programmable switches. In 19th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 22) (2022), pp. 683–700.

[56] ZENO, L., PORTS, D. R., NELSON, J., KIM, D., LANDAU-FEIBISH,
S., KEIDAR, I., RINBERG, A., RASHELBACH, A., DE-PAULA, I.,
AND SILBERSTEIN, M. {SwiSh}: Distributed shared state abstrac-
tions for programmable switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22) (2022),
pp. 171–191.

[57] ZHANG, H., AND BENNETT, J. C. Wf2q: worst-case fair weighted
fair queueing. In IEEE INFOCOM (1996), vol. 96, pp. 120–128.

Appendix

A Inversion Magnitude

In Section 2.2 we defined Packet Inversions. However, the
number of packet inversions alone cannot fully reflect the
severity of errors that an approximating packet scheduler
may introduce. To quantify the severity of each packet in-
version, we extend the concept of packet inversion with In-
version Magnitude.

Inversion Magnitude: When a packet with rank r departs
from the scheduler and a packet with smaller rank r′26 exists
in the scheduler, the inversion magnitude is r− r′.

Take the example in Figure 14: There are packet inver-
sions in both scenarios shown in Figure 14 (b) and (c), but
the severities are different. In the case of Figure 14 (c), a
large packet with rank = 25 is scheduled prior to a packet
with a smaller rank = 2. When compared with the case of
Figure 14 (b), packets with smaller ranks experience longer
delays in Figure 14 (c).

As mentioned in Section 2.2.1, packet inversions with
larger magnitudes lead to more severe consequences. For
scheduling algorithms such as SCFQ [25] and SFQ [26],
which update a virtual clock using packet departure times,
a larger inversion magnitude leads to a worse skew of the
virtual clock and results in worse throughput loss or addi-
tional delay on newly arrived flows. For the scheduling dis-
ciplines that aim to minimize tail packet delay, a larger inver-
sion magnitude can cause packets with the least slack time to
experience longer delays.

(a) Ideal scheduling order

(b) Inverse between rank 2 and rank 3

(c) Inverse between rank 2 and rank 25

Figure 14: Packet Inversion and Inversion Magnitude

B Overflows in Sifter

There are two types of overflows in Sifter: (1) FIFO Over-
flow and (2) Calendar Queue Overflow.

FIFO Overflow FIFO overflows are the cases where a
packet is dropped when the associated FIFO is full. As
shown in Figure 15 (a), a packet with rank 15 is dropped

26The smaller rank has higher priority

Figure 15: Overflows in Sifter

since the FIFO that covers the rank range from 10 to 19 is al-
ready full. Such overflows lead to a different outcome when
compared with an ideal PIFO. PIFO always drops the packet
with the largest rank when the capacity is full, while Sifter
may drop packets with relatively smaller ranks in the cases
of FIFO overflow.

The solutions to mitigate FIFO overflow is straightfor-
ward: (1) extend the size of each FIFO in the RCQ or (2)
reduce the FIFO granularity g so that each FIFO covers a
narrower rank range, which reduces the number of packets
in each FIFO. In Appendix D, we show that the above adjust-
ments in the design parameters reduce the FIFO overflows.

Calendar Queue Overflow A Calendar Queue Overflow,
occurs when an incoming packet has a rank value larger than
the maximum rank that the scheduler covers. Figure 15 (b)
presents an example of Calendar Queue Overflow, where
the rank value of an incoming packet is 100 and the max-
imum rank value that the scheduler supports is 99. Such
overflows have a similar effect as overflows in PIFOs, where
packets with the largest ranks are dropped. Calendar Queue
Overflow can be mitigated by increasing the rank range that
the scheduler covers, however, if overflows are unavoidable,
packets with the largest ranks are the ones to be dropped in
most cases.

We further evaluate the impact of overflows and how the
above solutions mitigate them in Appendix D.

C Average Number of Extra Memory Ac-
cesses

According to Section 3, the key idea for Sifter to eliminate
packet inversions is to apply “Sift Sorting”, which moves
packet descriptors between the RCQ and the Mini-PIFO.
While Sifter ensures accurate packet scheduling, the trade-
off is the extra memory accesses introduced by the sift-
ing process. In our evaluation, we quantify the number of
extra memory accesses that Sifter introduces to guarantee
inversion-free packet scheduling.

As defined in Section 3.4, the average extra number of

Figure 16: Average number of extra memory accesses per-packet.

memory accesses refers to the additional number of accesses
to a packet descriptor between the times it is enqueued and
dequeued from the packet scheduler when compared with a
simple FIFO queue. For all FIFO-based packet schedulers,
the number of memory accesses for each packet descriptor
is equivalent to that of a simple FIFO queue, which is one
access when writing the packet descriptor into the FIFO and
another access when reading it out.

We conducted multiple tests with our single-node micro-
benchmark in Section 5.1 to evaluate the average number of
extra memory accesses with different Mini-PIFO sizes SP.
We used a configuration with 25 FIFOs with a depth of 40
and a Mini-PIFO size SP between 10 and 20 in the evalua-
tion.

Figure 16 shows the average number of extra memory ac-
cesses per packet scheduled by Sifter with different Mini-
PIFO sizes SP under different traffic loads27. From the eval-
uation results in Figure 16, Sifter has an average number of
extra memory accesses of less than 2 in most cases, which,
in total, is less than twice the baseline (the number of mem-
ory accesses for FIFO-based schedulers). This indicates un-
der most circumstances that the packet descriptors in Sifter
would at most experience one Sifting Process which intro-
duces one extra read and one extra write operation before
the dequeue operation. As the Mini-PIFO size SP increases,
Sifter can achieve nearly zero extra memory accesses since
more packets would enqueue and dequeue directly from the
Mini-PIFO, bypassing the RCQ FIFOs and the Sifting pro-
cess.

D Evaluation of Design Parameters

As described in Section 3 and Section 4, there are multiple
design parameters in Sifter including the number of FIFOs F ,
the FIFO size SF , the PIFO size SP, as well as the granularity
g. In this section, we explore the performance and FPGA
resource consumption as a function of the design parameters.

27We applied empirical traffic based on web-search flow distributions [3].
The configured traffic loads control the arrival rate of flows.

D.1 FCT Performance
We set up a series of evaluations on the single-node micro-
benchmark28 to test the performance with different design
parameters.

FIFO size As stated in Appendix B, the FIFO overflow oc-
currence largely depends on the FIFO size SF . Here we eval-
uate the impact of the FIFO size SF on FCT. We set up four
Sifter schedulers with 32 FIFO queues with different FIFO
sizes SF ranging from 32 to 256 locations. The Mini-PIFO
size SP of all four Sifter schedulers is set to 32. In order
to meet the inversion-free condition (3) and (6), we set the
speed-up factor K of the four Sifter schedulers to range be-
tween 2 and 16.

Figure 17(a) shows that when the FIFO size SF is large
enough to hold the incoming packets associated with each
rank range, FIFO overflows are essentially eliminated and
Sifter delivers an identical performance of an ideal PIFO.

PIFO size To investigate how the Mini-PIFO size SP im-
pacts performance, we start with a design parameter config-
uration to induce overflows with a specific traffic profile. We
set up four Sifter schedulers with 32 FIFO queues, each with
a FIFO size SF = 64. We configured different Mini-PIFO
sizes SP as 32, 64, 128, and 256 to investigate whether a
larger PIFO would reduce overflow events.

Figure 17(b) shows the FCT performance of Sifter sched-
ulers with increasing Mini-PIFO sizes. From the results, a
larger Mini-PIFO provides better FCT performance for the
smaller flows (whose packets tend to have smaller ranks).
In addition, according to section 3.4 and Appendix C, a
larger Mini-PIFO decreases the frequency of Sifting opera-
tion, thereby reducing the number of extra memory accesses.

Number of FIFOs According to Appendix B, FIFO over-
flow occurs when the packets associated with a FIFO exceed
the FIFO capacity. In addition to increasing the FIFO size
SF , another solution to reduce FIFO overflows is to decrease
the rank range associated with each FIFO. To cover the same
overall rank range when reducing the rank range associated
with each FIFO, we increase the total number F of the FIFO
queues.

We set the FIFO size SF = 64 to observe the performance
improvements due only to increasing the total number of
FIFOs. All the Sifter schedulers cover the same total rank
range of 512. When increasing the number F of FIFOs from
8 to 64, the granularity g (the rank range that each FIFO cov-
ers) of each FIFO is decreased from 64 to 8.

Figure 17(c) shows the FCT performance of Sifter sched-
ulers with increasing the number of FIFO. Similarly to in-
creasing the FIFO size SF in the previous evaluations, in-

28Details of the micro-benchmark topology are given in Section 5.1.

creasing the number of FIFOs F also decreases the occur-
rence of FIFO overflows. When the number of FIFOs F is
large enough to eliminate FIFO overflows, Sifter provides
performance that matches that of an ideal PIFO.

D.2 Resource Overhead
In this section, we assess the logic resource utilization of the
Sifter scheduler with different design parameters.

We synthesized the Sifter VHDL implementation with dif-
ferent parameter setups using AMD/Xilinx’s Vivado soft-
ware [5] targeting an AMD/Xilinx Alveo U250 FPGA board
[4], which we used to implement the Sifter hardware proto-
type described in Section 5.3. Figure 18 shows the increase
in resource consumption as we increase the FIFO size SF ,
Mini-PIFO size SP as well as the total number of FIFOs
F . The evaluated resources on the FPGA device are Look
Up Tables (LUT), Flip Flops (FF), and Look Up Table RAM
(LUTRAM).

FIFO size To observe how the resource utilization grows
as a function of the FIFO size SF , we configured Sifter with
32 FIFOs and a Mini-PIFO of size 32 and increased the FIFO
size SF from 32 to 256.

Figure 18(a) shows the growth of the resource utilization
as we increased the FIFO size SF . The results indicate that
the extra resources due to increasing the FIFO size SF are
not significant. From Figure 18(a), the resource consump-
tion is around 1.5% when we apply a fairly large FIFO size
SF = 256. Combined with the performance evaluations in
Appendix D.1, increasing the FIFO size SF of Sifter is the
most efficient way to reduce the occurrence of FIFO over-
flows and to match the performance of an ideal PIFO.

PIFO size According to Section 3.5, Sifter needs to fulfill
condition (3) and (6) to guarantee inversion-free operation.
To meet the above conditions, Sifter needs a larger Mini-
PIFO to support larger FIFO sizes.

We increased the Mini-PIFO size SP from 32 to 256 us-
ing the same parameter setup as in the previous evaluation,
where we fixed the total number of FIFOs F to 32 and set the
size of FIFOs SF as 256.

Figure 18(b) shows how the resource utilization grows as
the Mini-PIFO size SP increases. From the results, we find
that increasing the Mini-PIFO size SP consumes more re-
sources on the FPGA when compared with increasing the
FIFO size SF .

Number of FIFOs As stated in Appendix B and D, another
way to reduce FIFO overflows is to increase the number of
FIFOs F .

To evaluate the effect of increasing the number of FIFOs
on resource utilization, we fixed the size of FIFOs SF and the

size of the Mini-PIFO SP to 32 locations, while increasing
the number of FIFOs F from 8 to 128. Figure 18(c) shows
the growth of the resource utilization as we increase the num-
ber of FIFOs F . FIFOs consume fewer resources when com-
pared with the Mini-PIFO. According to the results in Figure
18(c), a configuration with 64 FIFOs only consumes 2% of
the resources on the FPGA while one with 128 FIFOs costs
around 3.3% of the available resources.

Combining the results of resource consumption in Fig-
ure 18(a) and 18(c), both solutions of increasing FIFO size
SF and increasing the number of FIFOs F are efficient ap-
proaches to reduce FIFO overflows.

E Sifter Hardware Prototype Details

Packet Descriptor We used a 72-bit packet descriptor for
the Sifter hardware prototype as shown in Figure 19. There
are 5 fields in the descriptor: (1) a 15-bit Packet Pointer for
the address of the packet in packet buffer, (2) an 11-bit Packet
Length for the packet length in bytes, (3) a 20-bit Packet
Rank for the assigned scheduling order of each packet, (4)
a 10-bit Flow ID to identify the flow and (5) a 16-bit Packet
ID for packet identification29.

Figure 19: Packet Descriptor Structure

Packet Rank and FIFO indexing According to Section
4, we designed a fast RCQ FIFO indexing operation to find
the index of the FIFO associated with the packet rank by bit
slice selection and shifting. By configuring the number of
FIFOs F and the granularity g as powers of two, the associ-
ated FIFO index is always equivalent to a grouping of bits in
the packet rank.

In the configuration shown in Figure 20, the scheduler has
32 FIFOs in the RCQ, and the granularity g of each FIFO
is 32 (each FIFO covers a rank range of 32). We subdivide
the 20-bit packet rank into three sections: 10 Rotation bits,
5 Index bits and 5 Lower bits. Since the granularity g = 32,
the RCQ does not discriminate between descriptors that have
equal (15) upper bits but different (5) Lower bits. Since the
RCQ has 32 FIFOs in total, the FIFO index contains 5 bits.
Sifter uses the Index bits (9th down to 5th bits, inclusive) in
the packet rank to find the FIFO associated with the rank
value. The Rotation bits in the packet rank only indicates

29The Packed ID may not be necessary in many applications but we added
it to detect and identify missing packets

(a) Different FIFO sizes SF (b) Different PIFO sizes SP (c) Different FIFO numbers F

Figure 17: Normalized FCT with Different Design Parameters

(a) Different FIFO sizes SF (b) Different PIFO sizes SP (c) Different FIFO numbers F

Figure 18: Resource Overhead with Different Design Parameters

the number of times the RCQ has rotated and does not af-
fect FIFO indexing. In the following example in Figure 20,
Sifter needs to find the FIFO index associated with packet
rank 996. After we convert 996 into binary and select the
Index bits, the value is 11111 and matches index 31 of the
associated FIFO. This approach was used to implement fast
RCQ FIFO indexing to avoid using time-consuming math
operations.

Figure 20: Fast RCQ FIFO Indexing

Speed-up Factor in Sifter Prototype In Section 3.5, we
provided the conditions that Sifter must meet to guarantee
inversion-free packet scheduling. Specifically, for a given
FIFO size SF and Sifting threshold T hR, Sifter must provide
a speed-up factor K that satisfies condition (3). In our Sifter
prototype implementation, this speed-up factor K needs to be
greater than 2.

Our Sifter FPGA prototype implementation requires a
minimum of 5 clock cycles for each Enqueue and Dequeue
operation, as well as the operation to simultaneously “sift”
a packet descriptor between the RCQ and the Mini-PIFO.
However, to ensure inversion-free packet scheduling, we
need to provide a speed-up factor K = 2, which means that

the operation to sift a packet descriptor needs to be twice as
fast as the dequeue operation. Therefore, our hardware pro-
totype can sustain a dequeue interval of 10 clock cycles to
achieve the necessary speed-up factor.

F Micro-benchmark Evaluation: FCT and
end-to-end delay

We analyzed multiple flows using the micro-benchmark to
evaluate the FCT and end-to-end delay performance of dif-
ferent packet schedulers. We extended the single-node star
topology with 129 end-hosts to create a 128-to-1 in-cast pat-
tern. We generated empirical traffic according to web-search
flow size distributions in data centers [3]. The arrival pattern
of the TCP flows follows a Poisson distribution, where the
average arrival rate is determined by the configured traffic
load. Upon the arrival of each TCP flow, the simulator ran-
domly selects a sender host and starts a TCP connection30 to
the receiver host.

Sifter has the closest FCT to the ideal PIFO Figure 21
shows the FCT of Sifter, PCQ, SP-PIFO, the ideal PIFO, and
the stand-alone Mini-PIFO in this single-node star topology.
Overall, Sifter has the FCT performance that is closest to
the ideal PIFO. For the small-sized flows, Sifter outperforms
PCQ and SP-PIFO by eliminating packet inversions. When
compared with the stand-alone Mini-PIFO, Sifter has a much

30For simplicity, all packets in our packet-based simulation have the same
size of 1500 bytes and each TCP flow shares the same weight in SFQ.

(a) Single-node FCT, 70% load (b) Single-node FCT, 90% load

Figure 21: FCT with single-node topology

(a) Average delay, 70% load (b) Average delay, 90% load

Figure 22: Average end-to-end delay with the single-node topology

better capacity to reduce packet losses, which leads to fewer
re-transmissions and lower FCT for the mid-sized flows.

Sifter provides lower delay for short flows We examine
the effect of scheduling inversions on short-flow delays be-
cause they are more susceptible to those inversions.

Figure 22 shows the end-to-end delay for packets of short
flows. When compared with PCQ and SP-PIFO, Sifter has
a lower end-to-end average delay in most cases. As dis-
cussed in Section 2.2.1, packet scheduling inversions have
a larger impact on the delays of short-flow packets. When
packets with larger timestamps depart before packets with
smaller timestamps from the short flows, packets from the
short flows experience longer delays.

G Use Case: Modified Shortest Remaining
Processing Time to minimize FCT

Shortest Remaining Processing Time (SRPT) [43] is an ef-
fective scheduling algorithm for minimizing average FCT.
However, SRPT may lead to starvation and packet misor-
dering within each flow. There are two mainstream solu-
tions for these issues: per-flow queues and pFabric’s star-
vation prevention [3]. However, these solutions have costly
implementations. The per-flow queue solution requires the
scheduler to support a number of queues equal to the num-
ber of active flows (> 10K flows [49]), which is imprac-
tical for current switches. The second solution, starvation
prevention by bit-wise comparison among packets from the
same flow, requires complex hardware implementation and
is power-hungry.

Figure 23: Normalized FCT with Modified SRPT

Figure 24: End-to-End Delay with Modified SRPT

pFabric also proposed a modification to the SRPT
scheduling algorithm to make it more practical with negligi-
ble impact on FCT performance. Instead of setting the rank
of each packet using the remaining flow size, this modified
SRPT algorithm simply sets the rank of all the packets from
the same flow as the total flow size. Although the rank does
not reflect the remaining size of each flow, the packet out-of-
order and starvation issues are eliminated.

In this part of the simulation, we applied the modified
SRPT algorithm for Sifter, PCQ, and SP-PIFO. Each of the
schedulers has 16 FIFOs with a depth of 64 and Sifter has
a Mini-PIFO with a capacity of 32. We also set up an ideal
PIFO with a capacity of 1024 and a standalone Mini-PIFO
with a capacity of 32, the same as Sifter.

We applied two types of traffic in the evaluation: Pois-
son arrival traffic and bursty arrival traffic. We generated the
Poisson arrival traffic following the procedure in Appendix F.
The flow size follows empirical distributions of Web-search
traffic [3] and the arrival pattern of the TCP flows follows
a Poisson distribution. In addition, we added short bursts of
TCP flows with Poisson arrivals to form bursty arrival traffic,
aiming to create congestion on the bottleneck link.
Sifter achieves FCT and delay performance matching an
ideal PIFO In the use case of the modified SRPT algo-
rithm, each packet’s rank is equivalent to the flow size it be-
longs to. As a result, the range of packet ranks is not larger
than that of active flow sizes, which makes packet schedul-
ing much easier. Therefore, all packet schedulers can achieve
near-optimal FCT and delay performance, as shown in Fig-
ure 23 (a) and Figure 24 (a).

To increase the range of packet ranks, we introduced short
bursts in flow arrivals. Figure 23 (b) and Figure 24 (b) show
that with a wider range of packet ranks and heavier packet

(a) Throughput and Packet Rate

(b) Scheduling Order

Figure 25: ASIC Simulation

congestion, the performance of PCQ and SP-PIFO degrades
while Sifter still closely approximates the benchmark of an
ideal PIFO.

H Simulated ASIC Performance

As discussed in Section 5.3, the FPGA prototype sustains a
100 Gbps line rate for packets larger than 370 bytes, due to
the limitation of the clock frequency of 322 MHz achiev-
able in the target FPGA. The 370-byte value is derived as
follows: The 322 MHz clock has a period of 3.1 ns. As
explained in Appendix E it takes 10 clocks to achieve a K
factor of 2. Sifter’s FPGA prototype can dequeue a packet
every 10 x 3.1 = 31 ns, which is equivalent to 3100 bits (387
bytes) at 100 Gbps. The 387-byte length includes 20 bytes of
Ethernet overhead (Preamble, SFD, Interframe Gap), which
makes the actual packet 367 bytes. We rounded up this value
to 370 bytes so that we can easily control the dequeue rate
in hardware by counting down 37 bytes per clock (10 x 37
= 370). To demonstrate that Sifter can achieve 100 Gbps
with a faster clock rate (e.g., in an ASIC), we ran a simula-
tion using our Python-based Cocotb test environment [21],
where we set the clock frequency to 1.7 GHz. As shown in
Figure 25 (a), Sifter can sustain a 100 Gbps line rate with
the minimum size packets of 64 bytes. Figure 25 (b) shows
that Sifter’s VHDL implementation performs inversion-free
scheduling for 64-byte packets when running at 1.7 GHz.

I Pseudo-code of Sifter

We summarize the Enqueue, Dequeue, and Sifting processes
with pseudo-code in Algorithm 1.

Algorithm 1 Enqueue, Dequeue and Sifting process of Sifter

1: function INITIALIZATION
2: Initialize Sentinel s = ∞

1: function ENQUEUE PACKET(P(i,k))
2: if R(i,k) ≤ s then
3: Mini-PIFO enqueue P(i,k)
4: if P(i′,k′) evicted from Mini-PIFO then
5: RCQ enqueue P(i′,k′)
6: else
7: RCQ enqueue P(i,k)

1: function DEQUEUE PACKET()
2: Dequeue packet P(i,k) from Mini-PIFO
3: if OP ≤ T hS then
4: SIFTING()

1: function SIFTING()
2: Find earliest non-empty FIFO f in RCQ
3: Update s as the largest rank covered by FIFO f
4: for Packet P(i,k) in f do
5: if R(i,k) ≤ s then
6: Mini-PIFO enqueue P(i,k)
7: if P(i′,k′) evicted from Mini-PIFO then
8: RCQ enqueue P(i′,k′)
9: s = MAX{R(i′,k′),s}

10: else
11: RCQ enqueue P(i,k)
12: if RCQ is empty then
13: Reset Sentinel s = ∞

14: else if OP ≤ T hS then
15: SIFTING()

For variable names and definitions, please refer to Table 1.

Acknowledgements

We acknowledge AMD/Xilinx for providing the Alveo U250
board and Exegy for providing the nxFramework, both of
which enabled the FPGA prototyping of Sifter. We extend
our sincere gratitude to our shepherd, Brent Stephens, and
the anonymous NSDI reviewers for their valuable feedback.

