
Fast Vector Query Processing for Large Datasets
Beyond GPU Memory with Reordered Pipelining

Zili Zhang, Fangyue Liu,
Gang Huang, Xuanzhe Liu, Xin Jin

1

Vector Query

High-dimension space

DNN model

2

Billion-Scale

Ø What is Vector Query ?

Query Vector

Given a query
vector

Vector Query

3

Top-1(k=1) Nearest Vector

Ø What is Vector Query ?

Given a query
vector

Return Top-k
Nearest vectors

Vector Query

4

Ø Vector Query in Real-World Applications

Documents

User Prompt

Vector Query

LLM Respond

Retrieval Augmented Generation (RAG) Workflow

Vector
Database

`

Embedding
Model

Question:
…

New Question:
[Docs] +
Question

Vector Query

5

Vector Query

Milvus Pinecone Faiss Qdrant

Enumeration (KNN)

• Low throughput
• High latency

ANN

• High throughput
• Low latency
• Accurate enough

6

Ø Two Representative Vector Query Algorithms

Inverted Index Graph Index

Approximate Vector Query

7

Ø Two Representative Vector Query Algorithms

Inverted Index

Approximate Vector Query

8

• Simple computation pattern
• Less memory footprint

• Complex computation pattern
• More memory footprint

Graph Index

Ø GPUs are natively designed for vector operations

[𝑥!, 𝑥", 𝑥#, … , 𝑥$]

[𝑦!, 𝑦", 𝑦, … , 𝑦$]

Distance
Calculation

…

Vector Query on GPU

Limited GPU Memory is a key bottleneck!

9

Host Memory

Vector Query on GPU

GPU Memory

10

Vector Query on GPU

Challenge 1: How to reduce redundant data transmission?

Challenge 2: How to maximize GPU utilization for computation?

Challenge 3: How to maximize the efficiency of pipeline?

11

Ø Transmission Challenge

𝐂𝟏 𝐂𝟐 𝐂𝟑

Vector Query on GPU: Challenge

12

Ø Transmission Challenge

𝐂𝟒 𝐂𝟓 𝐂𝟔

Vector Query on GPU: Challenge

13

Ø Transmission Challenge

𝐂𝟏 𝐂𝟐 𝐂𝟑

Redundant
Transmission !

Vector Query on GPU: Challenge

14

Ø Computation Challenge

GPU
Underutilization !

Vector Query on GPU: Challenge

15

Ø Pipeline Challenge

Overlap PCIe
and GPU !

Vector Query on GPU: Challenge

16

Ø Transmission: Cluster-based Retrofitting

Rummy Design

17

Ø Computation: Cluster Balancing

G
PU

Time!! → #!!"!

!""

!"#

!"$

Idle

Idle

Idle

!" → #"

Rummy Design

18

Ø Computation: Dynamic kernel padding

Rummy Design

19

Ø Pipeline: Reordering + Dynamic Programming

Optimal processing
order of clusters

Optimal groups
of clusters

Rummy Design

20

Ø Pipeline: Reordering

Rummy Design

21

Ø Pipeline: Dynamic Programming

Rummy Design

22

Ø A GPU-based vector query system beyond GPU memory

Rummy System

23

Ø Implementation
Ø ~12K LoC C++
Ø Faiss

Ø TestBed
Ø A100, V100, T4 GPU (for GPU)
Ø AWS C5X instance (for CPU)

Ø Datasets
Ø SIFT, DEEP, TEXT (one billion items)

Implementation and Evaluation Step

24

Ø Rummy is able to achieve near-optimal performance

Evaluation

25

Ø Rummy is more efficient than CPU-solutions

Evaluation

26

Conclusion

ØRummy:

 The first GPU-based system for billion-scale vector query

 processing beyond GPU memory

Thanks!
zzlcs@pku.edu.cn

27

