

Fast Vector Query Processing for Large Datasets Beyond GPU Memory with Reordered Pipelining

Zili Zhang, Fangyue Liu, Gang Huang, Xuanzhe Liu, Xin Jin

What is Vector Query ?

Given a query vector

Query Vector

What is Vector Query ?

Given a query vector

Return Top-k Nearest vectors

Top-1(k=1) Nearest Vector

Vector Query in Real-World Applications

Enumeration (KNN)

- Low throughput
- High latency

ANN

- High throughput
- Low latency
- Accurate enough

Approximate Vector Query

Two Representative Vector Query Algorithms

Inverted Index

Graph Index

Approximate Vector Query

Two Representative Vector Query Algorithms

Inverted Index

Graph Index

- Simple computation pattern
- Less memory footprint

- Complex computation pattern
- More memory footprint

Vector Query on GPU

GPUs are natively designed for vector operations

Limited GPU Memory is a key bottleneck!

Vector Query on GPU

Vector Query on GPU

Challenge 1: How to reduce redundant data **transmission**?

Challenge 2: How to maximize GPU utilization for **computation**?

Challenge 3: How to maximize the efficiency of **pipeline**?

Transmission Challenge

Transmission Challenge

Redundant Transmission !

Transmission Challenge

Computation Challenge

Pipeline Challenge

Transmission: Cluster-based Retrofitting

Computation: Cluster Balancing

Computation: Dynamic kernel padding

Pipeline: Reordering + Dynamic Programming

Optimal processing order of clusters

Optimal groups of clusters

Pipeline: Reordering

Pipeline: Dynamic Programming

Rummy System

A GPU-based vector query system beyond GPU memory

Implementation and Evaluation Step

- Implementation
 ~12K LoC C++
 Faiss
- TestBed
 - > A100, V100, T4 GPU (for GPU)
 - > AWS C5X instance (for CPU)
- Datasets
 - SIFT, DEEP, TEXT (one billion items)

Evaluation

Rummy is able to achieve near-optimal performance

Evaluation

Rummy is more efficient than CPU-solutions

Conclusion

≻ Rummy:

The first GPU-based system for billion-scale vector query processing beyond GPU memory

Thanks!