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Vector Query

High-dimension space
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Ø What is Vector Query ?

Query Vector

Given a query 
vector

Vector Query

3



Top-1(k=1) Nearest Vector

Ø What is Vector Query ?
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Ø Vector Query in Real-World Applications
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Vector Query

Milvus Pinecone Faiss Qdrant

Enumeration (KNN)

• Low throughput
• High latency

ANN

• High throughput
• Low latency
• Accurate enough
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Ø Two Representative Vector Query Algorithms 

Inverted Index Graph Index

Approximate Vector Query
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Ø Two Representative Vector Query Algorithms 

Inverted Index

Approximate Vector Query
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• Simple computation pattern
• Less memory footprint

• Complex computation pattern
• More memory footprint

Graph Index



Ø GPUs are natively designed for vector operations

[𝑥!, 𝑥", 𝑥#, … , 𝑥$]

[𝑦!, 𝑦", 𝑦, … , 𝑦$]

Distance
Calculation

…

Vector Query on GPU

Limited GPU Memory is a key bottleneck!
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Host Memory

Vector Query on GPU

GPU Memory

10



Vector Query on GPU

Challenge 1: How to reduce redundant data transmission?

Challenge 2: How to maximize GPU utilization for computation?

Challenge 3: How to maximize the efficiency of pipeline?
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Ø Transmission Challenge

𝐂𝟏 𝐂𝟐 𝐂𝟑

Vector Query on GPU: Challenge 
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Ø Transmission Challenge

𝐂𝟒 𝐂𝟓 𝐂𝟔

Vector Query on GPU: Challenge 
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Ø Transmission Challenge

𝐂𝟏 𝐂𝟐 𝐂𝟑

Redundant
Transmission !

Vector Query on GPU: Challenge 
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Ø Computation Challenge 
    

GPU
Underutilization !

Vector Query on GPU: Challenge 
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Ø Pipeline Challenge

Overlap PCIe
and GPU !

Vector Query on GPU: Challenge 
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Ø Transmission: Cluster-based Retrofitting

Rummy Design
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Ø Computation: Cluster Balancing
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Rummy Design
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Ø Computation: Dynamic kernel padding

Rummy Design
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Ø Pipeline: Reordering + Dynamic Programming

Optimal processing
order of clusters 

Optimal groups
of clusters

Rummy Design
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Ø Pipeline: Reordering

Rummy Design
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Ø Pipeline: Dynamic Programming

Rummy Design
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Ø A GPU-based vector query system beyond GPU memory

Rummy System
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Ø Implementation
Ø ~12K LoC C++
Ø Faiss

Ø TestBed
Ø A100, V100, T4 GPU (for GPU)
Ø AWS C5X instance (for CPU)

Ø Datasets
Ø SIFT, DEEP, TEXT (one billion items)

Implementation and Evaluation Step
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Ø Rummy is able to achieve near-optimal performance

Evaluation
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Ø Rummy is more efficient than CPU-solutions

Evaluation
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Conclusion

ØRummy: 

    The first GPU-based system for billion-scale vector query

    processing beyond GPU memory

Thanks!
zzlcs@pku.edu.cn
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