
OctoSketch: Enabling Real-Time, Continuous
Network Monitoring over Multiple Cores

Yinda Zhang, Peiqing Chen, Alan Zaoxing Liu

1

Packet processing needs multiple CPU cores

2

CPU cores

Im
pr

ov
em

en
t

100x

1000x

10x

1x
2000s 2020s

Exponentially increasing
Bandwidths

Slowdown of
Moore’s Law

CPU Performance
Network Bandwidth

BESS

100s Gbps
traffic

10s Gbps

Need for network telemetry over multiple cores

3

Load balancer

Anomaly
detection

Accouting

Telemetry Applications

Heavy Hitter?

Flow size distribution?

SuperSpreaders?

Multiple CPU cores

BESS

100s Gbps
traffic

10s Gbps

0 8 13 2 0

4 5 0 1 9

6 10 3 0 1

+1

+1

+1
Top Flow Key

Storage
(e.g., heap)

Sketches: promising solutions for single-core telemetry
（UnivMon [SIGCOMM’16], NitroSketch [SIGCOMM’19], CocoSketch [SIGCOMM’21]）

4

Packet

Count-Min Sketch for
flow size estimation

d hashes
ℎ!, … , ℎ"

(Key, Size)

(1) high throughput (2) small memory usage (3) bounded error rates

𝑒!

Strawman solution for multi-core telemetry:
Key-based Partition

5

Multiple CPU cores

Divide different keys (e.g., 5-tuple)
to different cores

Sketch

Sketch

Sketch

Applications

Flow with
5-tuple X

Flow with
5-tuple Y

Load imbalance Multiple different keys needed by applications

Flow with source IP Z?

100s Gbps
traffic

Existing solution for multi-core telemetry:
Entire-sketch-merge

（UnivMon [SIGCOMM’16], Elastic Sketch [SIGCOMM’18], HeteroSketch [NSDI’22]）

6

Worker 1
Sketch

……

Communication
Channel

Aggregator

Merged Sketch

Worker 𝑘

Sketch 8 1 0 0

0 0 9 0
+

9 4 3 1

4 2 4 7Sketch

Count-Min Sketch
sent from the worker

Merged sketch
in the aggregator

Merge process

+8 +1

+9

+0 +0

+0 +0 +0

Maximum Frequency
aggregator can support

Bottleneck In the aggregator

7

Ideal accuracy: the accuracy of
sketch that works in a single core

and measures the whole trafficWorker 1
Sketch

……

Communication
Channel

Aggregator

Merged Sketch

Worker 𝑘

Sketch

Sketch

Bottleneck In the aggregator

8

� �a�� ��a��� ���a���� !����
&RXQWHU�9DOXH

��
í�

��
í�

��
í�

��
�

3
UR
ED
EL
OLW
\

����

Counter value distribution when sketch-merge

Waste communication and
computation on merging

useless counters

Heavy-tailed network traffic leads to
heavy-tailed counter values in the sketch

Worker 1
Sketch

……

Communication
Channel

Aggregator

Merged Sketch

Worker 𝑘

Sketch

Sketch

Bottleneck in the workers
（Elastic Sketch [SIGCOMM’18], NitroSketch [SIGCOMM’19], CocoSketch [SIGCOMM’21]）

9

Expensive flow key data structure
operations (≈20% CPU usage)

Flow Key
Storage

(e.g., heap)

(Key, Size)

Worker 𝟏
Sketch

……

Communication
Channel

Aggregator

Merged Sketch

Worker 𝒌

Sketch

Sketch

An entire sketch instance

OctoSketch: Real-Time multi-core monitoring

10

❏ Online accuracy: accuracy guarantees at any query time
❏ Idea 1: Only send “sufficiently changed” counters

❏ Performance: line-rate (e.g., 100G) with minimal CPU and memory
❏ Idea 3: Remove redundant data structures

A sketching framework for multicore monitoring that simultaneously has:

❏ Adaptive: adaptive to packet arrival rate and system objectives
❏ Idea 2: Dynamic resource allocation based on queue length

OctoSketch: Real-Time multi-core monitoring

11

❏ Online accuracy: accuracy guarantees at any query time
❏ Idea 1: Only send “sufficiently changed” counters

❏ Performance: line-rate (e.g., 100G) with minimal CPU and memory
❏ Idea 3: Remove redundant data structures

A sketching framework for multicore monitoring that simultaneously has:

❏ Adaptive: adaptive to packet arrival rate and system objectives
❏ Idea 2: Dynamic resource allocation based on queue length

Key Idea: Only send “sufficiently changed” counters

12

Worker Aggregator

𝑒!

Packet

Flow Key
Storage

Flow Key
Storage

A series of small counter change notification
A large sketch merging operation--

Merge-------------

push

Only send counters with
enough “information”

General to different sketches

• Applied to 9 representative sketches over 6 different tasks
• Cardinality-related sketches

• e.g., HyperLogLog

• Counters with flow keys
• e.g., CocoSketch

• Negative counter values
• e.g., UnivMon

13

Check out our paper for more details!

Benefit of the continuous, change-based mechanism

• Retains the same asymptotic error bounds as in the ideal case in
which traffic is not distributed at any query time.
• Offers accuracy guarantees for a variety of measurement tasks.

• e.g., finding heavy hitters, estimating cardinality

14

OctoSketch: Real-Time multi-core monitoring

15

❏ Online accuracy: accuracy guarantees at any query time
❏ Idea 1: Only send “sufficiently changed” counters

❏ Performance: line-rate (e.g., 100G) with minimal CPU and memory
❏ Idea 3: Remove redundant data structures

A sketching framework for multicore monitoring that simultaneously has:

❏ Adaptive: adaptive to packet arrival rate and system objectives
❏ Idea 2: Dynamic resource allocation based on queue length

• Packet rate is low ⇒ Send changes frequently (high online accuracy)

Idea 2: Adaptive sending rate

16

Threshold
(atomic variable)

Shared queues

……

Read
Decrease threshold to
increase sending rate

Aggregator

Worker 1

Workers

……

Send counters which are
larger than the threshold

Target
queue length

Worker 2

Worker k

pollingpush

• Scenario 1: Given resource budget, achieve best possible online
accuracy
• Given 70% CPU usage for the aggregator, modify the threshold to optimize

the online accuracy

Policies to meet various objectives

17

Bound minimum
sending rate

Shared queues

Read

AggregatorWorkers

Less resource usage

• Scenario 2: Given accuracy target, achieve minimum resource usage
• Given a 99% accuracy target, bound the minimum sending rate to free up

extra computation resources

OctoSketch: Real-Time multi-core monitoring

18

❏ Online accuracy: accuracy guarantees at any query time
❏ Idea 1: Only send “sufficiently changed” counters

❏ Performance: line-rate (e.g., 100G) with minimal CPU and memory
❏ Idea 3: Remove redundant data structures

A sketching framework for multicore monitoring that simultaneously has:

❏ Adaptive: adaptive to packet arrival rate and system objectives
❏ Idea 2: Dynamic resource allocation based on queue length

Idea 3: Remove redundant data structures

19

Worker Aggregator

𝑒!

Packet

Flow Key
Storage

Flow Key
Storage

Remove flow key storage in workers
Expensive flow key data structure operations---

Merge

push (𝑒!,)

Key 𝑒"-----------

Key 𝑒"

Evaluation setup

• Use cases: load balancer, key-value cache
• Platforms: CPU, DPDK, eBPF XDP

• 2-16 workers’ CPU + 1 aggregator CPU

• Baselines
• Entire-sketch-merge: operating at maximum frequency for merging
• Ideal accuracy: the accuracy of the sketch that works in a single core and

measures the whole traffic

20

OctoSketch can achieve high online accuracy

21

OctoSketch for the Count-Min sketch (Finding heavy hitters)

� �� �� �� ��
1XPEHU�RI�3DFNHWV�������

�

���

����

����

$
EV
RO
XW
H�
(U
UR
U

,GHDO
0HUJH

2FWR6NHWFK

Unstable and low accuracy

OctoSketch’s continuous mechanism helps it
maintain accuracy close to the ideal one

� � � � ��
1XPEHU�RI�:RUNHUV

�

��

��

��

���

7K
UR
XJ

KS
XW
��0

SS
V�

0HUJH 2FWR6NHWFK

OctoSketch can achieve good CPU performance

22

OctoSketch for the Count-Min sketch in DPDK

� � � � �� �� ��
1XPEHU�RI�:RUNHUV

���

���

���

���

&
38

�X
VD
JH
�S
HU
�Z
RU
NH
U

0HUJH 2FWR6NHWFK

≈20Mpps

≈20%

Removing redundant data structures helps OctoSketch achieve
both high throughput and low CPU usage on workers

OctoSketch is general to different sketches

23

Query Type Sketch Accuracy Throughput

Flow Size
Count-Min 9.32x 3.85x

Count Sketch 9.04x 3.22x

Cardinality
LogLog 54.93x 1.29x

HyperLogLog 38.97x 1.29x
Super-Spreader Locher Sketch 4.06x 4.51x

Quantile DDSketch 4.29x 0.92x
Multi-Key CocoSketch 37.25x 1.01x

Genreal
UnivMon 13.55x 2.63x

ElasticSketch 14.03x 0.93x

Conclusions

• Multicore monitoring is needed
• Sketch-merge over multiple cores is impractical
• OctoSketch key ideas:

• Continuous, change-based mechanism
• Adaptive resource allocation
• Remove redundant data structures

• OctoSketch achieves about 15.6x higher online accuracy and up to 4.5x
higher throughput while retaining the generality

24

Source code: https://github.com/Froot-NetSys/OctoSketch

https://github.com/Froot-NetSys/OctoSketch

