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Packet processing needs multiple CPU cores
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Need for network telemetry over multiple cores
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Sketches: promising solutions for single-core telemetry
（UnivMon [SIGCOMM’16], NitroSketch [SIGCOMM’19], CocoSketch [SIGCOMM’21]）
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Strawman solution for multi-core telemetry:
Key-based Partition
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Existing solution for multi-core telemetry:
Entire-sketch-merge

（UnivMon [SIGCOMM’16], Elastic Sketch [SIGCOMM’18], HeteroSketch [NSDI’22]）
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Maximum Frequency 
aggregator can support

Bottleneck In the aggregator
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Bottleneck In the aggregator
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Counter value distribution when sketch-merge

Waste communication and 
computation on merging 

useless counters

Heavy-tailed network traffic leads to 
heavy-tailed counter values in the sketch
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Bottleneck in the workers
（Elastic Sketch [SIGCOMM’18], NitroSketch [SIGCOMM’19], CocoSketch [SIGCOMM’21]）
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OctoSketch: Real-Time multi-core monitoring

10

❏ Online accuracy: accuracy guarantees at any query time
❏ Idea 1: Only send “sufficiently changed” counters

❏ Performance: line-rate (e.g., 100G) with minimal CPU and memory
❏ Idea 3: Remove redundant data structures

A sketching framework for multicore monitoring that simultaneously has:

❏ Adaptive: adaptive to packet arrival rate and system objectives 
❏ Idea 2: Dynamic resource allocation based on queue length



OctoSketch: Real-Time multi-core monitoring
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Key Idea: Only send “sufficiently changed” counters
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General to different sketches

• Applied to 9 representative sketches over 6 different tasks
• Cardinality-related sketches

• e.g., HyperLogLog

• Counters with flow keys
• e.g., CocoSketch

• Negative counter values
• e.g., UnivMon
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Check out our paper for more details!



Benefit of the continuous, change-based mechanism

• Retains the same asymptotic error bounds as in the ideal case in 
which traffic is not distributed at any query time.
• Offers accuracy guarantees for a variety of measurement tasks.

• e.g., finding heavy hitters, estimating cardinality
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OctoSketch: Real-Time multi-core monitoring
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• Packet rate is low ⇒ Send changes frequently (high online accuracy)

Idea 2: Adaptive sending rate
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• Scenario 1: Given resource budget, achieve best possible online 
accuracy
• Given 70% CPU usage for the aggregator, modify the threshold to optimize 

the online accuracy

Policies to meet various objectives
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OctoSketch: Real-Time multi-core monitoring
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Idea 3: Remove redundant data structures
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Evaluation setup

• Use cases: load balancer, key-value cache
• Platforms: CPU, DPDK, eBPF XDP

• 2-16 workers’ CPU + 1 aggregator CPU

• Baselines
• Entire-sketch-merge: operating at maximum frequency for merging
• Ideal accuracy: the accuracy of the sketch that works in a single core and 

measures the whole traffic
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OctoSketch can achieve high online accuracy
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OctoSketch for the Count-Min sketch (Finding heavy hitters)
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Unstable and low accuracy

OctoSketch’s continuous mechanism helps it
maintain accuracy close to the ideal one   
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OctoSketch can achieve good CPU performance
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OctoSketch for the Count-Min sketch in DPDK
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Removing redundant data structures helps OctoSketch achieve 
both high throughput and low CPU usage on workers



OctoSketch is general to different sketches
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Query Type Sketch Accuracy Throughput

Flow Size
Count-Min 9.32x 3.85x

Count Sketch 9.04x 3.22x

Cardinality
LogLog 54.93x 1.29x

HyperLogLog 38.97x 1.29x
Super-Spreader Locher Sketch 4.06x 4.51x

Quantile DDSketch 4.29x 0.92x
Multi-Key CocoSketch 37.25x 1.01x

Genreal
UnivMon 13.55x 2.63x

ElasticSketch 14.03x 0.93x



Conclusions

• Multicore monitoring is needed
• Sketch-merge over multiple cores is impractical
• OctoSketch key ideas:

• Continuous, change-based mechanism
• Adaptive resource allocation
• Remove redundant data structures

• OctoSketch achieves about 15.6x higher online accuracy and up to 4.5x 
higher throughput while retaining the generality
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Source code: https://github.com/Froot-NetSys/OctoSketch

https://github.com/Froot-NetSys/OctoSketch

