Brain-on-Switch:

Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed

Jinzhu Yan, Haotian Xu, Zhuotao Liu[⊠], Qi Li, Ke Xu, Mingwei Xu, Jianping Wu

Tsinghua University April, 2024

Bottlenecks of the ML-based traffic analysis on dedicated executor^[1]

Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh, Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco.
 Re-architecting Traffic Analysis with Neural Network Interface Cards. In USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2022.

Today's ML-based traffic analysis can be forwarding-native

Protocol-Independent Switch Architecture (PISA)

Enabling ML inference within network data plane

- I. Customizable Packet Processing
- 2. Stateful and Persistent Storage

3

Today's ML-based traffic analysis can be forwarding-native

Protocol-Independent Switch Architecture (PISA)

Prior traffic analysis art targeting Intelligent Network Data Plane

Their models rely on advanced feature engineering to boost accuracy

Fundamental Limitations:

- Critical features are impossible / difficult to compute
- Handling dynamic features as a flow proceeds
- Overheads for computing and storing statistical features
- Handcrafted feature engineering and overfitting concerns

#I Advance INDP to models that are not limited by the availability of flow features

X: Packet Length, Inter Packet Delay ...

- Recurrent computation on raw packet metadata
- Without statistical feature engineering
- Output latest inference result for each packet

Motivation

Limited model accuracy on Network Data Plane

#2 Complement the on-switch RNN with an off-switch Transformer-based module

Off-switch: boost the overall accuracy

Challenge I: implement RNN inference on programmable switch

Parser
Match/Action
Deparser

Image: Stage 1
Image: Stage 2
Image: Stage N
Image: Stage N

Match Image: Action Image: Register Image: PHV: headers & metadata

- Complex calculations in each RNN time step (multiplications, non-linear functions ...)
- Store and retrieve the hidden states through RNN time steps

- Simple operations (add, XNOR, shift, ...), limited stages
- Each register can only be accessed once, limited storage

Match-Action Paradigm in PISA

Challenge 2: accurately identify the flows for escalation and analyze these flows online

How to classify the vast majority of traffic onswitch and identify the flows with insufficient classification confidence accurately?

How to construct an appropriate system to analyze the escalated flows with a Transformerbased model online?

BoS is a hybrid traffic analysis system with the co-design of:

- An on-switch RNN,
- An off-switch Integrated Model Inference System
- A carefully designed flow escalation mechanism

Realize complex RNN computations using a set of novel data plane native operations

Construct an Integrated Model Inference System for fast online traffic analysis with Transformer

Design an escalation mechanism to accurately identify the flows with insufficient confidence from on-switch analysis

Realize complex RNN computations using a set of novel data plane native operations

Construct an Integrated Model Inference System for fast online traffic analysis with Transformer

Input:

packet length sequence, Inter-Packet-Delay sequence

Feature Embedding:

length embedding || IPD embedding -> Fully Connected

RNN Cell:

Gated Recurrent Unit

Output Layer: Fully Connected + Softmax

• Binary activations & full-precision model weights Better accuracy than full model binarization

• Forward propagation based on match-action table lookup

GRU Layer							
Input: <i>x_t</i> (6bit)	Input: h_{t-1} (6bit)	Output: <i>h_t</i> (6bit)					
000000	000000	001000					
000000	000001	000001					
••••							
111111	111110	010111					
111111	111111	111110					

• Expand RNN time steps in serial stages

• Expand RNN time steps in serial stages

When a packet arrives, we use the latest S embedding vectors to get an intermediate result.

As the flow proceeds, we shift the window by one packet to processing a new segment of embedding vectors repeatedly, which produces many intermediate results.

For the latest packet, we accumulate all previous intermediate results, and select the class with the largest cumulative probability as the final result.

Embrace advanced models for corner cases with insufficient classification confidence

① Whether a packet is ambiguous is determined by the Confidence Threshold

② Whether a flow should be escalated is determined by the number of ambiguous packets in the flow, using the Escalation Threshold

Losses for accurately identifying the flows with insufficient confidence

24

Enable fast online inference for escalated flows using Transformer-based model

- Non-blocking processing pipeline
- Single-threaded, stateful tasks

- Packet-level macro-accuracy .
- SRAM and TCAM consumptions •

Baselines

- Neural Network on the NIC^[1]
- NetBeacon^[2] ۲

Tasks

- Encrypted Traffic Classification on VPN
- Botnet Traffic Classification on IoT •
- Behavioral Analysis of IoT Devices ٠
- P2P Application Fingerprinting •

Evaluation: End-to-End Accuracy

Table 3: Analysis accuracy for BoS and other two closely related art.

Methods	BoS			NetBeacon [71] (Tree-based Models)			N3IC [51] (Binary MLP)		
Network Load	Low	Normal	High	Low	Normal	High	Low	Normal	High
Encrypted Traffic Classification on VPN (ISCXVPN2016)									
Email	0.935 / 0.933	0.936 / 0.925	0.933 / 0.923	0.309 / 0.514	0.315 / 0.524	0.320 / 0.525	0.347 / 0.326	0.354 / 0.339	0.367 / 0.350
Chat	0.903 / 0.818	0.902 / 0.818	0.901 / 0.814	0.739 / 0.935	0.739 / 0.933	0.742 / 0.925	0.336 / 0.655	0.336 / 0.654	0.342 / 0.656
Streaming	0.926 / 0.941	0.926 / 0.939	0.926 / 0.910	0.963 / 0.919	0.962 / 0.904	0.962 / 0.874	0.741 / 0.608	0.742 / 0.603	0.743 / 0.581
FTP	0.973 / 0.928	0.973 / 0.926	0.973 / 0.922	0.946 / 0.659	0.946 / 0.655	0.947 / 0.654	0.563 / 0.396	0.567 / 0.396	0.575 / 0.397
VoIP	0.968 / 0.958	0.968 / 0.958	0.968 / 0.957	0.938 / 0.882	0.939 / 0.881	0.939 / 0.882	0.883 / 0.783	0.884 / 0.782	0.886 / 0.787
P2P	0.905 / 0.927	0.903 / 0.928	0.876 / 0.930	0.810/0.959	0.798 / 0.959	0.778 / 0.960	0.578 / 0.739	0.577 / 0.742	0.565 / 0.748
Macro-F1	0.926	0.925	0.919	0.786	0.784	0.780	0.565	0.567	0.568
Botnet Traffic Classification on IoT (BOTIOT)									
Data Exfiltration	0.964 / 0.974	0.951 / 0.973	0.899 / 0.971	0.691 / 0.845	0.684 / 0.847	0.658 / 0.848	0.514 / 0.879	0.508 / 0.881	0.506 / 0.879
Key Logging	0.960 / 0.946	0.961 / 0.962	0.959 / 0.902	0.921 / 0.425	0.921 / 0.419	0.918 / 0.399	0.055 / 0.033	0.058 / 0.033	0.052 / 0.031
OS Scan	0.996 / 0.996	0.995 / 0.989	0.995 / 0.966	0.838 / 0.963	0.841 / 0.963	0.844 / 0.945	0.831 / 0.693	0.830 / 0.677	0.831 / 0.672
Service Scan	0.993 / 0.992	0.986 / 0.973	0.979 / 0.978	0.928 / 0.876	0.927 / 0.870	0.917 / 0.858	0.845 / 0.663	0.830 / 0.664	0.840 / 0.663
Macro-F1	0.978	0.974	0.955	0.785	0.782	0.769	0.547	0.542	0.541
Behavioral Analysis of IoT Devices (CICIOT2022)									
Power	0.926 / 0.887	0.924 / 0.882	0.921 / 0.882	0.819/0.726	0.820/0.724	0.817 / 0.724	0.639 / 0.750	0.640 / 0.750	0.640 / 0.748
Idle	0.922 / 0.943	0.921 / 0.942	0.918 / 0.941	0.810/0.938	0.808 / 0.938	0.806 / 0.936	0.618 / 0.640	0.620 / 0.642	0.622 / 0.646
Interact	0.934 / 0.946	0.934 / 0.948	0.934 / 0.943	0.871/0.786	0.873 / 0.786	0.872 / 0.784	0.651 / 0.504	0.655 / 0.506	0.661 / 0.510
Macro-F1	0.926	0.925	0.923	0.822	0.821	0.820	0.629	0.631	0.633
P2P Application Fingerprinting (PeerRush)									
eMule	0.943 / 0.949	0.918 / 0.949	0.898 / 0.950	0.846 / 0.954	0.821 / 0.955	0.805 / 0.954	0.734 / 0.866	0.730 / 0.867	0.723 / 0.875
uTorrent	0.949 / 0.924	0.950/0.912	0.941 / 0.894	0.882 / 0.870	0.885 / 0.858	0.885 / 0.831	0.734 / 0.789	0.735 / 0.790	0.738 / 0.783
Vuze	0.946 / 0.962	0.945 / 0.947	0.941 / 0.930	0.910/0.810	0.907 / 0.790	0.904 / 0.793	0.821 / 0.626	0.826 / 0.622	0.826 / 0.616
Macro-F1	0.945	0.937	0.925	0.877	0.866	0.858	0.755	0.755	0.752

Across 4 tasks, **BoS** achieves an average FI-score improvement of 0.13 and 0.31 than NetBeacon and N3IC.

Evaluation: End-to-End Accuracy

Table 3: Analysis accuracy for BoS and other two closely related art.

Methods	BoS			NetBeacon [71] (Tree-based Models)			N3IC [51] (Binary MLP)			
Network Load	Low	Normal	High	Low	Normal	High	Low	Normal	High	
Encrypted Traffic Classification on VPN (ISCXVPN2016)										
Email	0.935 / 0.933	0.936 / 0.925	0.933 / 0.923	0.309 / 0.514	0.315 / 0.524	0.320 / 0.525	0.347 / 0.326	0.354 / 0.339	0.367 / 0.350	
Chat	0.903 / 0.818	0.902 / 0.818	0.901 / 0.814	0.739 / 0.935	0.739 / 0.933	0.742 / 0.925	0.336 / 0.655	0.336 / 0.654	0.342 / 0.656	
Streaming	0.926 / 0.941	0.926 / 0.939	0.926 / 0.910	0.963 / 0.919	0.962 / 0.904	0.962 / 0.874	0.741 / 0.608	0.742 / 0.603	0.743 / 0.581	
FTP	0.973 / 0.928	0.973 / 0.926	0.973 / 0.922	0.946 / 0.659	0.946 / 0.655	0.947 / 0.654	0.563 / 0.396	0.567 / 0.396	0.575 / 0.397	
VoIP	0.968 / 0.958	0.968 / 0.958	0.968 / 0.957	0.938 / 0.882	0.939 / 0.881	0.939 / 0.882	0.883 / 0.783	0.884 / 0.782	0.886 / 0.787	
P2P	0.905 / 0.927	0.903 / 0.928	0.876 / 0.930	0.810/0.959	0.798 / 0.959	0.778 / 0.960	0.578 / 0.739	0.577 / 0.742	0.565 / 0.748	
Macro-F1	0.926	0.925	0.919	0.786	0.784	0.780	0.565	0.567	0.568	
	Botnet Traffic Classification on IoT (BOTIOT)									
Data Exfiltration	0.964 / 0.974	0.951 / 0.973	0.899 / 0.971	0.691 / 0.845	0.684 / 0.847	0.658 / 0.848	0.514 / 0.879	0.508 / 0.881	0.506 / 0.879	
Key Logging	0.960 / 0.946	0.961 / 0.962	0.959 / 0.902	0.921 / 0.425	0.921 / 0.419	0.918 / 0.399	0.055 / 0.033	0.058 / 0.033	0.052 / 0.031	
OS Scan	0.996 / 0.996	0.995 / 0.989	0.995 / 0.966	0.838 / 0.963	0.841 / 0.963	0.844 / 0.945	0.831 / 0.693	0.830 / 0.677	0.831 / 0.672	
Service Scan	0.993 / 0.992	0.986 / 0.973	0.979 / 0.978	0.928 / 0.876	0.927 / 0.870	0.917 / 0.858	0.845 / 0.663	0.830 / 0.664	0.840 / 0.663	
Macro-F1	0.978	0.974	0.955	0.785	0.782	0.769	0.547	0.542	0.541	
Behavioral Analysis of IoT Devices (CICIOT2022)										
Power	0.926 / 0.887	0.924 / 0.882	0.921 / 0.882	0.819/0.726	0.820 / 0.724	0.817 / 0.724	0.639 / 0.750	0.640 / 0.750	0.640 / 0.748	
Idle	0.922 / 0.943	0.921 / 0.942	0.918 / 0.941	0.810/0.938	0.808 / 0.938	0.806 / 0.936	0.618 / 0.640	0.620 / 0.642	0.622 / 0.646	
Interact	0.934 / 0.946	0.934 / 0.948	0.934 / 0.943	0.871/0.786	0.873 / 0.786	0.872 / 0.784	0.651 / 0.504	0.655 / 0.506	0.661 / 0.510	
Macro-F1	0.926	0.925	0.923	0.822	0.821	0.820	0.629	0.631	0.633	
P2P Application Fingerprinting (PeerRush)										
eMule	0.943 / 0.949	0.918 / 0.949	0.898 / 0.950	0.846 / 0.954	0.821 / 0.955	0.805 / 0.954	0.734 / 0.866	0.730 / 0.867	0.723 / 0.875	
uTorrent	0.949 / 0.924	0.950/0.912	0.941 / 0.894	0.882/0.870	0.885 / 0.858	0.885 / 0.831	0.734 / 0.789	0.735 / 0.790	0.738 / 0.783	
Vuze	0.946 / 0.962	0.945 / 0.947	0.941 / 0.930	0.910/0.810	0.907 / 0.790	0.904 / 0.793	0.821 / 0.626	0.826 / 0.622	0.826 / 0.616	
Macro-F1	0.945	0.937	0.925	0.877	0.866	0.858	0.755	0.755	0.752	

On more challenging tasks with more classes, the improvement is even greater, up to 0.17 and 0.39.

	Datasets (Tasks)	ISCXVPN 2016	BOT IOT	CICIOT 2022	Peer Rush
SRAM	Flow Info. (stateful)	5.21%	5.21%	5.21%	5.21%
	EV (stateful)	3.65%	3.65%	3.65%	3.65%
	CPR (stateful)	5.63%	3.75%	2.81%	2.81%
	FE (stateless)	2.19%	2.19%	2.19%	2.19%
	GRU (stateless)	3.02%	1.56%	0.73%	0.73%
	Total★	23.44%	20.10%	18.33%	18.33%
TCAM	Argmax (Total)	1.74%	1.04%	0.69%	0.69%

* Including other components not listed, *e.g.*, packet counters for each flow.

- BoS uses 23.44%/20.10%/18.33%/18.33%
 of SRAM in 4 tasks, respectively.
 (Similar size to NetBeacon)
- BoS uses 1.74%/1.04%/0.69%/0.69% of TCAM in 4 tasks, respectively. (20x less than NetBeacon)

• Efficiency of Analysis Escalation & System Performance of IMIS

Figure 9: [Testbed] The trade-off between percentage of escalated flows and the overall accuracy.

- **BoS** effectively accommodates the off-switch analysis model to compensate for on-switch analysis.
- Our losses achieve better trade-off between the amount of escalated flows and the overall accuracy.

• Efficiency of Analysis Escalation & System Performance of IMIS

Figure 10: [Testbed] The inference throughput and latency of the off-switch IMIS.

When the number of concurrent flows is below 4096, the maximum end-to-end latency imposed by **IMIS** is less than 2 seconds even for 10.0 Mpps inbound rate (equivalently 41 Gbps as the packet sizes we send are 512 B, and **BoS** typically escalates less than 5% of flows to **IMIS**).

• Scaling Test of the Entire System

Figure 11: [Testbed] Scaling test of BoS when we progressively increase the aggregate throughput to 100 Gbps.

The macro-FI scores of **BoS** remain nearly identical as the throughput achieves 100Gbps, and reveal a sublinear decline as the throughput achieves 1.6Tbps.

Figure 12: [Simulation] Scaling test of BoS when we progressively increase the aggregate throughput to 1.6 Tbps.

- **BoS** is an online traffic analysis system, which is powered by the co-design of an onswitch RNN, an off-switch Integrated Model Inference System, and a carefully designed flow escalation mechanism.
- As a result, **BoS** can process over 95% of flows with the on-switch RNN accurately, and escalate the remainning ambiguous flows to the off-switch IMIS, outperforming prior works in accuracy, scalability and hardware resource utilization.

Source code: https://github.com/InspiringGroup-Lab/Brain-on-Switch

Homepage of our group: <u>https://inspiringgroup.github.io/</u>

Brain-on-Switch:

Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed

Thanks! Questions?

yanjz22@mails.tsinghua.edu.cn