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Traffic Flows Network Data Plane
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data
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batch
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Attention

Feed Forward

Running ML inference in a separate executor

Low throughput 
High latency

Bottlenecks of the ML-based traffic analysis on dedicated executor[1]

[1] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh, Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco. 
Re-architecting Traffic Analysis with Neural Network Interface Cards. In USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2022.

Intelligent Network Data Plane (INDP)
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Traffic Flows Intelligent Network Data Plane [2]

inbound

Today’s ML-based traffic analysis can be forwarding-native
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…

Parser Match/Action Deparser

Protocol-Independent Switch Architecture (PISA)

Enabling ML inference within network data plane

1. Customizable Packet Processing 

2. Stateful and Persistent Storage

[2] Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li, and Ke Xu. An Efficient Design of Intelligent Network Data Plane. In USENIX Security Symposium (USENIX Security), 2023. 3
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Constraints on ML models

1. Computation Constraints (simple OPs, …)

2. Storage Constraints (once register access, …)

Traffic Flows Intelligent Network Data Plane [2]

inbound

Today’s ML-based traffic analysis can be forwarding-native

[2] Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li, and Ke Xu. An Efficient Design of Intelligent Network Data Plane. In USENIX Security Symposium (USENIX Security), 2023.
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Protocol-Independent Switch Architecture (PISA)

4

Intelligent Network Data Plane (INDP)



Prior traffic analysis art targeting Intelligent Network Data Plane
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Neural Network on the NIC[1]

(NSDI’22)
NetBeacon[2]

(Security’23)



Feature Engineering

flow 
statistics

packets

feature
extraction

SWITCH

• Critical features are impossible / difficult to compute

• Handling dynamic features as a flow proceeds 

• Overheads for computing and storing statistical features

• Handcrafted feature engineering and overfitting concerns
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Their models rely on advanced feature engineering to boost accuracy

Motivation

Fundamental Limitations:



#1 Advance INDP to models that are not limited by the availability of flow features
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Cell …

X: Packet Length, Inter Packet Delay …

FCFC • Recurrent computation on 
raw packet metadata

• Without statistical feature 
engineering

• Output latest inference result 
for each packet
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Limited model accuracy on Network Data Plane

NetBeacon[2]

(Security’23)
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#2 Complement the on-switch RNN with an off-switch Transformer-based module
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Motivation

Traffic Flows On-switch: the vase majority of traffic

inbound

Off-switch: boost the overall accuracy
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Challenge 1: implement RNN inference on programmable switch

• Complex calculations in each RNN time step 
(multiplications, non-linear functions …)

PHV: headers & metadata

Key Challenges
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• Store and retrieve the hidden states through 
RNN time steps

Recurrent Computation Scheme in RNN Match-Action Paradigm in PISA

• Simple operations (add, XNOR, shift, …), 
limited stages

• Each register can only be accessed once, 
limited storage



Challenge 2: accurately identify the flows for escalation and analyze these flows online

Key Challenges

11

Network Data Plane

Server

batch
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How to classify the vast majority of traffic on-
switch and identify the flows with insufficient 
classification confidence accurately?

How to construct an appropriate system to 
analyze the escalated flows with a Transformer-
based model online?



Design Goals and Architecture of Brain-on-Switch
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Realize complex RNN computations using a 
set of novel data plane native operations

Construct an Integrated Model Inference System 
for fast online traffic analysis with Transformer
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BoS is a hybrid traffic analysis system with the co-design of: 
• An on-switch RNN, 
• An off-switch Integrated Model Inference System
• A carefully designed flow escalation mechanism



Design Goals and Architecture of Brain-on-Switch
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Design an escalation mechanism to accurately identify the 
flows with insufficient confidence from on-switch analysis
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Realize complex RNN computations using a 
set of novel data plane native operations

Construct an Integrated Model Inference System 
for fast online traffic analysis with Transformer



Input: 
packet length sequence,  Inter-Packet-Delay sequence

Binary RNN
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Data Plane Friendly RNN Architecture
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Feature Embedding: 
length embedding || IPD embedding -> Fully Connected

RNN Cell: 
Gated Recurrent Unit

Output Layer: 
Fully Connected + Softmax



• Binary activations & full-precision model weights
Better accuracy than full model binarization
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Data Plane Friendly RNN Architecture
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Straight-Through Estimator



• Forward propagation based on match-action 
table lookup

Binary RNN
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Data Plane Friendly RNN Architecture



• Expand RNN time steps in serial stagesBinary RNN
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Data Plane Friendly RNN Architecture

STE
GRU Memory

evt ht-1

① Read the previous hidden state

② Perform layer 
forward propagation

ht
ht

③ Update the hidden state

①②③ cannot be realized in one stage



• Expand RNN time steps in serial stagesBinary RNN
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Data Plane Friendly RNN Architecture



When a packet arrives, we use the latest ! embedding vectors to get an 
intermediate result.

Sliding Window Mechanism
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② Expanded ! RNN Time Steps
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As the flow proceeds, we shift the window by one packet to processing a new 
segment of embedding vectors repeatedly, which produces many intermediate 
results.

Sliding Window Mechanism
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For the latest packet, we accumulate all previous intermediate results, and 
select the class with the largest cumulative probability as the final result.

Sliding Window Mechanism
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Embrace advanced models for corner cases with insufficient classification confidence

• Identify the flows with ambiguity from the 
on-switch analysis by two thresholds

probability 
vector

UPDATE

• Forward these flows for escalated analysis 
using advanced models 

Analysis Escalation
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①Whether a packet is ambiguous is determined by the Confidence Threshold

Analysis Escalation
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②Whether a flow should be escalated is determined by the number of ambiguous packets 
in the flow, using the Escalation Threshold
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Losses for accurately identifying the flows with insufficient confidence
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Analysis Escalation

Improve the model’s ability to predict the ground-truth class

Negate the model’s prediction on all non-ground-truth classes / the one with largest probability



Enable fast online inference for escalated flows using Transformer-based model 

Network Data Plane

SWITCH

escalated flows
• Non-blocking 

processing pipeline 

• Single-threaded, 
stateful tasks

Integrated Model Inference System (IMIS)
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Server A Programmable Switch Server B

Tasks
• Encrypted Traffic Classification on VPN
• Botnet Traffic Classification on IoT
• Behavioral Analysis of IoT Devices
• P2P Application Fingerprinting

• Packet-level macro-accuracy
• SRAM and TCAM consumptions

Metrics

• Neural Network on the NIC [1]

• NetBeacon [2]

Baselines

Evaluation: Setup
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(Packet Generation) (IMIS Processing)(RNN Analysis)



Across 4 tasks, BoS achieves an average F1-score improvement of 0.13 and 0.31 than NetBeacon and N3IC.

Evaluation: End-to-End Accuracy
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On more challenging tasks with more classes, the improvement is even greater, up to 0.17 and 0.39.
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Evaluation: End-to-End Accuracy



• BoS uses 23.44%/20.10%/18.33%/18.33% 
of SRAM in 4 tasks, respectively. 
(Similar size to NetBeacon)  

• BoS uses 1.74%/1.04%/0.69%/0.69% of  
TCAM in 4 tasks, respectively. 
(20x less than NetBeacon)  

Evaluation: Hardware Resource Utilization
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• BoS effectively accommodates the off-switch analysis model to compensate for on-switch analysis.

• Our losses achieve better trade-off between the amount of escalated flows and the overall accuracy.

Evaluation: Deep Dive

• Efficiency of Analysis Escalation & System Performance of IMIS 
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• Efficiency of Analysis Escalation & System Performance of IMIS 

When the number of concurrent flows is below 4096, the maximum end-to-end latency imposed by IMIS
is less than 2 seconds even for 10.0 Mpps inbound rate (equivalently 41 Gbps as the packet sizes we send 
are 512 B, and BoS typically escalates less than 5% of flows to IMIS).
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Evaluation: Deep Dive



• Scaling Test of the Entire System

The macro-F1 scores of BoS
remain nearly identical as the   
throughput achieves 100Gbps,
and reveal a sublinear decline  
as the throughput achieves 
1.6Tbps. 
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Evaluation: Deep Dive



• BoS is an online traffic analysis system, which is powered by the co-design of an on-
switch RNN, an off-switch Integrated Model Inference System, and a carefully 
designed flow escalation mechanism.

• As a result, BoS can process over 95% of flows with the on-switch RNN accurately, 
and escalate the remainning ambiguous flows to the off-switch IMIS,  outperforming 
prior works in accuracy, scalability and hardware resource utilization.

Source code: https://github.com/InspiringGroup-Lab/Brain-on-Switch

Homepage of our group: https://inspiringgroup.github.io/

Conclusion of Brain-on-Switch
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https://github.com/InspiringGroup-Lab/Brain-on-Switch
https://inspiringgroup.github.io/
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