Autothrottle:

A Practical Bi-Level Approach to Resource Management for SLO-Targeted Microservices

Zibo Wang¹², Pinghe Li³, Chieh-Jan Mike Liang¹, Feng Wu², Francis Y. Yan¹

¹ Microsoft Research

² University of Science and Technology of China

³ ETH Zurich

Cloud applications are shifting toward microservices

What microservice applications look like

A client request traverses many services

Different requests have different trajectories

Inadequate CPU allocations => high application latency

Excessive CPU allocations => waste of resources

Minimizing CPU allocation while meeting SLO

- Search space grows exponentially with number of services
- Mapping from CPU allocations to latency is unclear

Existing approach: service-level allocation

• Example: Kubernetes' default heuristics

Existing approach: application-level allocation

• Example: Sinan (ASPLOS '21)

How to obtain the best of both worlds?

Enabling local controllers to remain autonomous

Implementing bi-level approach with Autothrottle

Interface: throttle ratio

Interface: throttle ratio

• Example: Linux CFS (Completely Fair Scheduler)

Throttle ratio has a higher correlation with latency

Service-level: fast and lightweight Captains

Service-level: fast and lightweight Captains

- Closed-loop control based on throttle ratio target
- Collect data every 100ms, adjust allocation every 1s

Application-level: online learning Tower

Application-level: online learning Tower

- Determine the best throttle targets for Captains to achieve
- Lightweight online learning: contextual bandit algorithm
 - One step per minute, each step runs in ~100ms

Evaluation methodology

- Testbed: 5 Azure VMs, 160 CPU cores in total
- 4 workload traces
 - with patterns commonly observed in production environments
 - e.g. Puffer's streaming requests, Google's cluster usage, and Twitter tweets
- 3 benchmark applications
 - Train-Ticket
 - Hotel-Reservation from DeathStarBench
 - Social-Network used in Sinan

Evaluation results

Large-scale evaluation on a 512-core cluster

Kubernetes' algorithm wastes up to 39% CPU

Autothrottle: automatic exploration K8s-CPU: manual parameter tuning


```
A 21-day comparison
```


Conclusion

- Autothrottle: a bi-level learning-assisted resource management framework for SLO-targeted microservices.
- Results show a CPU saving up to 26% while satisfying SLO
- Open-sourced at <u>https://github.com/microsoft/autothrottle</u>

