
A Practical Bi-Level Approach to Resource
Management for SLO-Targeted Microservices

Zibo Wang12, Pinghe Li3, Chieh-Jan Mike Liang1, Feng Wu2, Francis Y. Yan1

Autothrottle:

1 Microsoft Research
2 University of Science and Technology of China
3 ETH Zurich



Cloud applications are shifting toward microservices



What microservice applications look like

Gateway Stateless services Stateful services

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient



Gateway Stateless services Stateful services

A client request traverses many services

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient

User

Text

Unique Id

Media

Compose Post

Social Graph

Home Timeline 
Redis

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

User Timeline 
MongoDB

User Timeline 
Redis

Url Shorten

User Mention

Media Filter

Text Filter

Compose Post 
Redis

Post Storage

Write Home 
Timeline

Write User 
Timeline

Client Nginx



Gateway Stateless services Stateful services

Different requests have different trajectories

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient User Timeline Post Storage 
Memcached

Post Storage 
MongoDB

Post Storage
User Timeline 

MongoDB
User Timeline 

Redis

Client Nginx



Inadequate CPU allocations => high application latency

Gateway Stateless services Stateful services

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient User Timeline

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

User Timeline 
MongoDB

User Timeline 
Redis

Client Nginx

end-to-end latency: 800ms
SLO: 200ms

1 core
1 core

1 core 1 core

1 core1 core

✖ SLO violation



Excessive CPU allocations => waste of resources

Gateway Stateless services Stateful services

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient User Timeline

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

User Timeline 
MongoDB

User Timeline 
Redis

Client Nginx

end-to-end latency: 50ms
SLO: 200ms

8 cores
8 cores

8 cores 8 cores

8 cores8 cores

✖ waste CPU



● Search space grows exponentially with number of services
● Mapping from CPU allocations to latency is unclear

Minimizing CPU allocation while meeting SLO

Gateway Stateless services Stateful services

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient User Timeline

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

User Timeline 
MongoDB

User Timeline 
Redis

Client Nginx

end-to-end latency: 190ms
SLO: 200ms

???
???

??? ???

??????



● Example: Kubernetes’ default heuristics

Existing approach: service-level allocation

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient
✔ Low overhead
✔ Fast reaction
✖ No global visibility

Parameter: target CPU utilization = 50%
Input: CPU usage = 2 cores
Output: CPU allocation = 2 / 50% = 4 cores

Per-service allocation algorithm

blue
green
yellow

orange
red

purple
brown



CPU 
usage

CPU 
usage

CPU 
usage

CPU 
usage

CPU 
usage

SLO

RPS,
latency

● Example: Sinan (ASPLOS ’21)

Existing approach: application-level allocation

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient

ML-based allocation server

✔ Global visibility
✖ Less responsive
✖ High (re-)training overhead

blue
green
yellow

orange
red

purple
brown



How to obtain the best of both worlds?

Service-level Application-level

Low overhead
Fast reaction

Global visibility

✔

✖

✖

✔

???

✔

✔



Our bi-level approach to resource management

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient

SLO

RPS,
latency

global local local local local local

blue
green
yellow

orange
red

purple
brown



global
SLO

RPS,
latency

Our bi-level approach to resource management

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient
Use locally available metrics to perform CPU allocation

✔ Low overhead
✔ Fast reaction

local local local local local



local local local local local

Our bi-level approach to resource management

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient

Monitor RPS, end-to-end latencies, and SLO violations

✔ Global visibility

SLO

RPS,
latency

global



SLO

RPS,
latency

global local local local local local

Our bi-level approach to resource management

Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient
Performance target

● Periodically determined by the global controller
● Enabling local controllers to remain autonomous

performance target



Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient

Implementing bi-level approach with Autothrottle

Captain

CPU scheduler

allocation throttle,
usage

throttle ratio

RPS,
latency

SLO

Tower

CPU allocation

blue
green
yellow

orange
red

purple
brown



Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient

RPS,
latency

Interface: throttle ratio

SLO

Tower Captain

CPU scheduler

allocation throttle,
usage

CPU allocation

blue
green
yellow

orange
red

purple
brown

throttle ratio



● Example: Linux CFS (Completely Fair Scheduler)

Interface: throttle ratio

remaining CPU

request latency

throttle!no throttle no throttle

0 100ms 200ms 300ms

throttle ratio =
1 period

3 periods

period 1 period 2 period 3



Throttle ratio has a higher correlation with latency



Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient

RPS,
latency

Service-level: fast and lightweight Captains

SLO

Tower

CPU scheduler

allocation throttle,
usage

CPU allocation

throttle ratio

blue
green
yellow

orange
red

purple
brown

Captain



CPU usage history
time

● Closed-loop control based on throttle ratio target

● Collect data every 100ms, adjust allocation every 1s

Service-level: fast and lightweight Captains

throttle ratio > target

allocation

max

CPU usage history

allocation

time

max + buffer

CPU usage history

allocation

time

Captain

blue
green
yellow

orange
red

purple
brown



Home Timeline

User

Text

Unique Id

Media

User Timeline

Compose Post

Social Graph

User
MongoDB

User 
Memcached

Compose Post 
Redis

Home Timeline 
Redis

Post Storage

Post Storage 
Memcached

Post Storage 
MongoDB

Social Graph 
MongoDB

Social Graph 
Redis

Url Shorten

User Mention

User Timeline 
MongoDB

User Timeline 
Redis

Media Filter

Text Filter

Write Home 
Timeline

Write User 
Timeline

NginxClient

RPS,
latency

Application-level: online learning Tower

SLO

CPU scheduler

allocation throttle,
usage

CPU allocation

throttle ratio

blue
green
yellow

orange
red

purple
brown

CaptainTower



● Determine the best throttle targets for Captains to achieve

● Lightweight online learning: contextual bandit algorithm

○ One step per minute, each step runs in ~100ms

Application-level: online learning Tower

Tower

context: RPS

action #1 

action #2

action #3

……

cost: computed with CPU allocation, 
end-to-end latency, and SLO

action: all performance 
targets for Captains



● Testbed: 5 Azure VMs, 160 CPU cores in total

● 4 workload traces

○ with patterns commonly observed in production environments

○ e.g. Puffer’s streaming requests, Google’s cluster usage, and Twitter tweets

● 3 benchmark applications

○ Train-Ticket

○ Hotel-Reservation from DeathStarBench

○ Social-Network used in Sinan

Evaluation methodology



Less allocation 
is better

Evaluation results

Kubernetes’ algorithm wastes up to 35% CPU
● It uses the same CPU utilization for all services

Sinan wastes even more CPU
● Its search space is too large to explore



Large-scale evaluation on a 512-core cluster

Kubernetes’ algorithm wastes up to 39% CPU

Less allocation 
is better



A 21-day comparison



Autothrottle: automatic exploration
K8s-CPU: manual parameter tuning

A 21-day comparison



SLO = 200ms

A 21-day comparison



A 21-day comparison

K8s-CPU violated SLO in 71 of 480 hours



A 21-day comparison

K8s-CPU violated SLO in 71 of 480 hours



A 21-day comparison Red boxes mark K8s-CPU’s SLO violations

K8s-CPU violated SLO in 71 of 480 hours



A 21-day comparison
Autothrottle saves an average of 12 cores and up to 35 cores

K8s-CPU violated SLO in 71 of 480 hours



A 21-day comparison

● Tower: global visibility
● Throttle ratio: higher correlation with latency
● Captains: low overhead and fast reaction



● Autothrottle: a bi-level learning-assisted resource management 
framework for SLO-targeted microservices.

● Results show a CPU saving up to 26% while satisfying SLO

● Open-sourced at https://github.com/microsoft/autothrottle

Conclusion

throttle ratio
Captain

Captain
Captain

Tower

https://github.com/microsoft/autothrottle

