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Cloud applications are shifting toward microservices



What microservice applications look like
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Gateway Stateless services Stateful services

A client request traverses many services
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Gateway Stateless services Stateful services

Different requests have different trajectories
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Inadequate CPU allocations => high application latency

Gateway Stateless services Stateful services
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Excessive CPU allocations => waste of resources

Gateway Stateless services Stateful services
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● Search space grows exponentially with number of services
● Mapping from CPU allocations to latency is unclear

Minimizing CPU allocation while meeting SLO

Gateway Stateless services Stateful services
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● Example: Kubernetes’ default heuristics

Existing approach: service-level allocation
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✔ Low overhead
✔ Fast reaction
✖ No global visibility

Parameter: target CPU utilization = 50%
Input: CPU usage = 2 cores
Output: CPU allocation = 2 / 50% = 4 cores

Per-service allocation algorithm
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● Example: Sinan (ASPLOS ’21)

Existing approach: application-level allocation
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ML-based allocation server

✔ Global visibility
✖ Less responsive
✖ High (re-)training overhead
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How to obtain the best of both worlds?

Service-level Application-level

Low overhead
Fast reaction

Global visibility
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Our bi-level approach to resource management
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RPS,
latency

Our bi-level approach to resource management
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Use locally available metrics to perform CPU allocation

✔ Low overhead
✔ Fast reaction

local local local local local



local local local local local

Our bi-level approach to resource management
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Monitor RPS, end-to-end latencies, and SLO violations

✔ Global visibility
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Our bi-level approach to resource management
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Performance target

● Periodically determined by the global controller
● Enabling local controllers to remain autonomous

performance target
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Implementing bi-level approach with Autothrottle
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Interface: throttle ratio
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● Example: Linux CFS (Completely Fair Scheduler)

Interface: throttle ratio

remaining CPU

request latency
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Throttle ratio has a higher correlation with latency
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Service-level: fast and lightweight Captains
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CPU usage history
time

● Closed-loop control based on throttle ratio target

● Collect data every 100ms, adjust allocation every 1s

Service-level: fast and lightweight Captains
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Application-level: online learning Tower
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● Determine the best throttle targets for Captains to achieve

● Lightweight online learning: contextual bandit algorithm

○ One step per minute, each step runs in ~100ms

Application-level: online learning Tower

Tower

context: RPS

action #1 

action #2

action #3

……

cost: computed with CPU allocation, 
end-to-end latency, and SLO

action: all performance 
targets for Captains



● Testbed: 5 Azure VMs, 160 CPU cores in total

● 4 workload traces

○ with patterns commonly observed in production environments

○ e.g. Puffer’s streaming requests, Google’s cluster usage, and Twitter tweets

● 3 benchmark applications

○ Train-Ticket

○ Hotel-Reservation from DeathStarBench

○ Social-Network used in Sinan

Evaluation methodology



Less allocation 
is better

Evaluation results

Kubernetes’ algorithm wastes up to 35% CPU
● It uses the same CPU utilization for all services

Sinan wastes even more CPU
● Its search space is too large to explore



Large-scale evaluation on a 512-core cluster

Kubernetes’ algorithm wastes up to 39% CPU

Less allocation 
is better



A 21-day comparison



Autothrottle: automatic exploration
K8s-CPU: manual parameter tuning

A 21-day comparison



SLO = 200ms

A 21-day comparison



A 21-day comparison

K8s-CPU violated SLO in 71 of 480 hours



A 21-day comparison

K8s-CPU violated SLO in 71 of 480 hours



A 21-day comparison Red boxes mark K8s-CPU’s SLO violations

K8s-CPU violated SLO in 71 of 480 hours



A 21-day comparison
Autothrottle saves an average of 12 cores and up to 35 cores

K8s-CPU violated SLO in 71 of 480 hours



A 21-day comparison

● Tower: global visibility
● Throttle ratio: higher correlation with latency
● Captains: low overhead and fast reaction



● Autothrottle: a bi-level learning-assisted resource management 
framework for SLO-targeted microservices.

● Results show a CPU saving up to 26% while satisfying SLO

● Open-sourced at https://github.com/microsoft/autothrottle

Conclusion

throttle ratio
Captain

Captain
Captain

Tower

https://github.com/microsoft/autothrottle

