
Pudica: Toward Near-Zero Queuing Delay in
Congestion Control for Cloud Gaming

Shibo Wang, Shusen Yang, Xiao Kong, Chenglei Wu, Longwei Jiang,
Chenren Xu, Cong Zhao, Xuesong Yang, Jianjun Xiao, Xin Liu,

Changxi Zheng, Jing Wang, Honghao Liu

Xi’an Jiaotong University, Tencent Inc., Peking University,
Bonree, Tencent America, Columbia University



Cloud gaming has already gained world-wide
popularity while still under rapid growth

…

1



Cloud Gaming System

Cloud gaming server

Internet

End device (Client) Operation
commands

Game frames

Frame 
encoder

Graphics 
renderer

Command
sender

Frame
receiver

Command 
receiver

Frame
sender

Frame
decoder

Screen 
display

2



Cloud Gaming System

Consistently demand a low transmission delay for frames

3



Cloud Gaming System

A cloud gaming system needs a carefully designed congestion
control (CC) algorithm to manage frame delay.

3

Consistently demand a low transmission delay for frames



Congestion Control (CC) for Cloud Gaming

• Cloud gaming CC operates on both application and transport layers, which controls

two factors on the fly, namely the frame bitrate and packet sending pace.

Cloud gaming server

Internet

End device (Client) Operation
commands

Game frames

Frame 
encoder

Graphics 
renderer

Command
sender

Frame
receiver

Command 
receiver

Frame
sender

Frame
decoder

Screen 
display

Pacing rate Bitrate

Congestion controller

4



What Cloud Gaming Players Cares?

5



What Cloud Gaming Players Cares?
• We conducted case studies on two widely-played games1 to examine the metrics
that drive user engagement in cloud gaming:

⁃ As the stall rate (frame ratio of >100 ms) increases, the play time rapidly decreases.

⁃ Frame delay and bitrate also impact the play time, while not as significant as stall rate.

1A multiplayer online battle arena (MOBA) game and a first-person shooting (FPS) game. 5

Stall rate (unit: !
!""""

) Avg. frame delay (ms) Avg. frame bitrate



Our Goal of Congestion Control

• Ultra-low (or nearly zero) queuing delay at the bottleneck to
minimize the frame delay and stall rate.

6



Our Goal of Congestion Control

• Ultra-low (or nearly zero) queuing delay at the bottleneck to
minimize the frame delay and stall rate.

• Efficient link utilization to support high bitrate.

6



Our Goal of Congestion Control

• Ultra-low (or nearly zero) queuing delay at the bottleneck to
minimize the frame delay and stall rate.

• Efficient link utilization to support high bitrate.

• Decent fairness among homogeneous flows.

6



Our Goal of Congestion Control

Delay

Efficiency Fairness

6

• Ultra-low (or nearly zero) queuing delay at the bottleneck to
minimize the frame delay and stall rate.

• Efficient link utilization to support high bitrate.

• Decent fairness among homogeneous flows.



Our Goal of Congestion Control

Frame delay has a higher priority than efficiency or fairness.

Delay

Efficiency Fairness

6

• Ultra-low (or nearly zero) queuing delay at the bottleneck to
minimize the frame delay and stall rate.

• Efficient link utilization to support high bitrate.

• Decent fairness among homogeneous flows.



Why Existing Congestion Control Methods Fail?

Algorithm Avg. frame delay 95%ile frame delay Stall rate (>100 ms)

Copa [NSDI’18] 39.8 ms 114 ms 3.2%

Salsify1 [NSDI’18] 66.7 ms 186 ms 6.3%

SQP 109.4 ms 287 ms 3.6%

Pudica 23.2 ms 38 ms 0.7%

1Salsify refers to its frame size control part solely. 7

• Existing solutions fall short in achieving consistent low frame delay.



Why Existing Congestion Control Methods Fail?

• Periodical self-induced queue buildups for effective network probing.

8

Algorithm Indicator

Copa RTTstanding

Salsify Packet inter-arrival time

GCC Delay gradient

SQP Frame transport bandwidth

When the queue is nearly empty, these indicators fail to provide precise signals.



Why Existing Congestion Control Methods Fail?

Num. of bandwidth reductions (≥ 50%) per minute

• Slow adaptation to abrupt decreases in available bandwidth.

9

Internet users frequently encounter significant reductions in available bandwidth.



Why Existing Congestion Control Methods Fail?

• Slow adaptation to abrupt decreases in available bandwidth.

9

20 Mbps

5 Mbps Fr
am

e
de
la
y

Bitrate

𝒕

>250 ms
100 ms

Bandwidth

A delayed response of only 100 ms A frame delay spike exceeding 250 ms



Pudica Design: Requirement and Overview

• Basic requirements for achieving near-zero queuing:

⁃ Convergence to efficiency (i.e., high link utilization) and fairness without resorting
to overshoot-based network probing.

⁃ Prompt reaction to abrupt decreases in available bandwidth.

10



Pudica Design: Requirement and Overview

• Solutions in Pudica:

⁃ Probing the bandwidth utilization ratio (BUR) while avoiding frame-level
overshooting.

⁃ Bitrate adjustment based on both smoothed BUR estimations and more responsive
short-term BUR signals.

10

• Basic requirements for achieving near-zero queuing:

⁃ Convergence to efficiency (i.e., high link utilization) and fairness without resorting
to overshoot-based network probing.

⁃ Prompt reaction to abrupt decreases in available bandwidth.



Pudica Design: Network Probing and Estimation

• What to probe?

⁃ Pudica probes the bandwidth utilization ratio (BUR) rather than the bandwidth per se.

⁃ BUR is the ratio of current bandwidth usage to the link capacity.

11



Pudica Design: Network Probing and Estimation

• What to probe?

⁃ Pudica probes the bandwidth utilization ratio (BUR) rather than the bandwidth per se.

⁃ BUR is the ratio of current bandwidth usage to the link capacity.

⁃ BUR provides an indicator of the precise level of link utilization.

11



Pudica Design: Network Probing and Estimation

• What to probe?

⁃ Pudica probes the bandwidth utilization ratio (BUR) rather than the bandwidth per se.

⁃ BUR is the ratio of current bandwidth usage to the link capacity.

⁃ BUR provides an indicator of the precise level of link utilization.

⁃ BUR has been leveraged by ECN-based CC methods for achieving high link utilization
and low bottleneck queuing.

11



Pudica Design: Network Probing and Estimation
• How to probe?

12



Pudica Design: Network Probing and Estimation
• How to probe?

⁃ Estimates the BUR by probing the
bottleneck busy time for each
frame period.

12



Pudica Design: Network Probing and Estimation
• How to probe?

⁃ Estimates the BUR by probing the
bottleneck busy time (= red shadow
in right fig) for each frame period.

① Assume w/o cross traffic:

• #𝐵𝑈𝑅 = #!""$##"

%
= #!"""$##$&$%&

%

Sender ReceiverBottleneck
in out

𝑡!

𝐿

𝑡"#

𝑡!#
𝑡"##

𝑡" 𝑡"

𝑡!###

𝑡"###

𝑡!##

𝐷'()

𝐷'()
Next frame
sending

𝐿
𝑡$

12



Pudica Design: Network Probing and Estimation
• How to probe?

⁃ Estimates the BUR by probing the
bottleneck busy time (= red shadow
in right fig) for each frame period.

① Assume w/o cross traffic:

• #𝐵𝑈𝑅 = #!""$##"

%
= #!"""$##$&$%&

%

Sender ReceiverBottleneck
in out

𝑡!

𝐿

𝑡"#

𝑡!#
𝑡"##

𝑡" 𝑡"

𝑡!###

𝑡"###

𝑡!##

𝐷'()

𝐷'()
Next frame
sending

𝐿

Frame-level
queuing delay

𝑡$

12



Pudica Design: Network Probing and Estimation

Sender ReceiverBottleneck
in out

𝑡"

𝑡!

𝑡"

Agnostic
period

Sensible
period

𝑡"###

𝑡!###

𝑡"#

𝑡!#

𝐷'()

𝐷'()

Cross trafficOur flow

𝑡"##

𝑡!##

Next frame
sending

Frame-level
queuing delay

• How to probe?

⁃ Estimates the BUR by probing the
bottleneck busy time (≥ red shadow
in right fig) for each frame period.

① Assume w/o cross traffic:

• #𝐵𝑈𝑅 = #!""$##"

%
= #!"""$##$&$%&

%

② Assume w/ cross traffic:

• #𝐵𝑈𝑅 = #!"""$##$&$%&
% + 𝑅*+),-#(. 𝑡$

12



Pudica Design: Network Probing and Estimation
• How to probe?

⁃ Estimates the BUR by probing the
bottleneck busy time (= red shadow
in right fig) for each frame period.

① Assume w/o cross traffic:

• #𝐵𝑈𝑅 = #!""$##"

%
= #!"""$##$&$%&

%

② Assume w/ cross traffic:

• #𝐵𝑈𝑅 = #!"""$##$&$%&
% + 𝑅*+),-#(.

Sender ReceiverBottleneck
in out

Frame-level
queuing delay

𝑡"

𝑡!

𝑡"

Agnostic
period

Sensible
period

𝑡"###

𝑡!###

𝑡"#

𝑡!#

𝐷'()

𝐷'()

𝑡$

Cross trafficOur flow

𝑡"##

𝑡!##

Next frame
sending

Probe packet

• #𝑩𝑼𝑹 = 𝒕𝟏
"""$𝒕𝟎$𝑫𝒎𝒊𝒏

𝑳
+ 𝑹𝒑𝒓𝒐𝒃𝒆_𝒑𝒂𝒄𝒌𝒆𝒕

12



Pudica Design: Network Probing and Estimation
• How to probe?

⁃ Estimates the BUR by probing the
bottleneck busy time (= red shadow
in right fig) for each frame period.

• Pace adaptation scheme:
• Target:

⁃ Keep bursty in sensible period
⁃ Shrink the agnostic period

Sender ReceiverBottleneck
in out

𝑡"

𝑡!

𝑡"

Agnostic
period

Sensible
period

𝑡"###

𝑡!###

𝑡"#

𝑡!#

𝐷'()

𝐷'()

Cross trafficOur flow

𝑡"##

𝑡!##

Next frame
sending

Probe packet

𝑡$

12



Pudica Design: Network Probing and Estimation
• How to probe?

⁃ Estimates the BUR by probing the
bottleneck busy time (= red shadow
in right fig) for each frame period.

• Pace adaptation scheme:
• Target:

⁃ Keep bursty in sensible period
⁃ Shrink the agnostic period

𝑷𝒂𝒄𝒆𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓 =
𝜸𝝆

𝐦𝐢𝐧(3𝑩𝑼𝑹, 𝟏)

1.25

Sender ReceiverBottleneck
in out

𝑡"

𝑡!

𝑡"

Agnostic
period

Sensible
period

𝑡"###

𝑡!###

𝑡"#

𝑡!#

𝐷'()

𝐷'()

Cross trafficOur flow

𝑡"##

𝑡!##

Next frame
sending

Probe packet

𝑡$

12



Pudica Design: Bitrate Adaptation over the
Smoothed BUR

14



Pudica Design: Bitrate Adaptation over the
Smoothed BUR

• Utilize a window of historical BUR samples to obtain the smoothed BUR estimation.

14



Pudica Design: Bitrate Adaptation over the
Smoothed BUR

• Utilize a window of historical BUR samples to obtain the smoothed BUR estimation.

• Control strategy:

⁃ When smoothed BUR ≤ 𝛂,

multiplicative increase (MI) for efficiency convergence

⁃ When smoothed BUR > 𝛂,

simultaneous additive increase (AI) and multiplicative decrease (MD)
for fairness convergence and the maintenance of near-zero queuing

14



Pudica Design: Bitrate Adaptation over the
Smoothed BUR

0.85

• Utilize a window of historical BUR samples to obtain the smoothed BUR estimation.

• Control strategy:

⁃ When smoothed BUR ≤ 𝛂,

multiplicative increase (MI) for efficiency convergence

⁃ When smoothed BUR > 𝛂,

simultaneous additive increase (AI) and multiplicative decrease (MD)
for fairness convergence and the maintenance of near-zero queuing

14



Pudica Design: Bitrate Adaptation over the
Smoothed BUR

• Utilize a window of historical BUR samples to obtain the smoothed BUR estimation.

• Control strategy:

⁃ When smoothed BUR ≤ 𝛂,

multiplicative increase (MI) for efficiency convergence

⁃ When smoothed BUR > 𝛂,

simultaneous additive increase (AI) and multiplicative decrease (MD)
for fairness convergence and the maintenance of near-zero queuing

For more details, please check out our paper.

0.85

14



Pudica Design: Bitrate Adaptation over the
Short-Term BUR

• Smoothed BUR fails to respond promptly to abrupt bandwidth decreases.

15



Pudica Design: Bitrate Adaptation over the
Short-Term BUR

• Smoothed BUR fails to respond promptly to abrupt bandwidth decreases.

• Control strategy:

⁃ When the BUR of recent one frame exceeds one,

Temporary and slight bitrate fallback: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑏𝑖𝑡𝑟𝑎𝑡𝑒×(1 − 𝜉)

⁃ When the BURs of consecutive three frames exceed one,

Active queue draining: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← (𝛼×𝑟𝑎𝑡𝑒!"#$ − 𝑟𝑎𝑡𝑒%!&'('())

15



Pudica Design: Bitrate Adaptation over the
Short-Term BUR

• Smoothed BUR fails to respond promptly to abrupt bandwidth decreases.

• Control strategy:

⁃ When the BUR of recent one frame exceeds one,

Temporary and slight bitrate fallback: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑏𝑖𝑡𝑟𝑎𝑡𝑒×(1 − 𝜉)

⁃ When the BURs of consecutive three frames exceed one,

Active queue draining: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← (𝛼×𝑟𝑎𝑡𝑒!"#$ − 𝑟𝑎𝑡𝑒%!&'('())

⁃ When the BUR of recent one frame recovers from the queue-draining phase,

One-step bitrate recovery: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑟𝑎𝑡𝑒!"#$

15



• Control strategy:

⁃ When the BUR of recent one frame exceeds one,

Temporary and slight bitrate fallback: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑏𝑖𝑡𝑟𝑎𝑡𝑒×(1 − 𝜉)

⁃ When the BURs of consecutive three frames exceed one,

Active queue draining: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← (𝛼×𝑟𝑎𝑡𝑒!"#$ − 𝑟𝑎𝑡𝑒%!&'('())

⁃ When the BUR of recent one frame recovers from the queue-draining phase,

One-step bitrate recovery: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑟𝑎𝑡𝑒!"#$

Pudica Design: Bitrate Adaptation over the
Short-Term BUR

• Smoothed BUR fails to respond promptly to abrupt bandwidth decreases.

Next delay

15



Evaluation: Methodology

• Deploy four CC methods, including Pudica, Salsify, Copa, and SQP, on Tencent START
cloud gaming platform for large-scale A/B tests.

• The evaluation involved more than 57,000 gaming sessions across 15 cities, two
network types (Ethernet and WiFi), and three ISPs over five weeks.

• We set the frame rate as 60 and the maximal bitrate as 50 Mbps for all algorithms.

• Metrics (per gaming session):

⁃ Average, 95%ile, and 99%ile round-trip frame delay.

⁃ Stall rates for frame delays exceeding 100 ms and 200 ms.

⁃ Average bitrate and valid bitrate (i.e., average bitrate of frames with delay<50 ms).

16



Evaluation: System-Level Performance at Scale

• For Ethernet networks, Pudica (1) reduces the average and 99%ile frame delay by 1.5×
and 3.2×, respectively; (2) reduces the stall rate of 100 ms and 200 ms by 16.3× and
22.5×, respectively; (3) achieves a slight frame bitrate enhancement.

Better Better Better

Better

Better Better

17



Evaluation: System-Level Performance at Scale

• For WiFi networks, Pudica (1) reduces the average and 99%ile frame delay by 5.7× and
5.5×, respectively; (2) reduces the stall rate of 100 ms and 200 ms by 5.5× and 12.1×,
respectively; (3) achieve the comparable frame bitrate.

Better Better Better

Better

Better Better

18



Evaluation: System-Level Performance at Scale

• For WiFi networks, Pudica (1) reduces the average and 99%ile frame delay by 5.7× and
5.5×, respectively; (2) reduces the stall rate of 100 ms and 200 ms by 5.5× and 12.1×,
respectively; (3) achieve the comparable frame bitrate.

Better Better Better

Better

Better Better

For more evaluation results, please refer to our paper.

18



Summary

• We present Pudica, an Internet congestion control algorithm designed
for cloud gaming:

⁃ Pudica proposes a BUR (i.e., bandwidth utilization ratio) probing approach and a holistic
BUR-based control framework.

⁃ Pudica achieves the convergence to efficiency and fairness under the constraint of near-
empty bottleneck queues, and the agile adaptation to abrupt bandwidth decreases.

⁃ By conducting large-scale A/B tests on Tencent START cloud gaming services, Pudica
considerably reduces the frame delay and stall rate while preserving high bitrate.

19


